1
|
Li C, Xue Q, Li H, Peng Y, Wu Y, Yuan M, Duan Q, Hong X, Chen G, Liao F, Wu P, Miao C. Huangqin Qingre Chubi Capsule improves rheumatoid arthritis accompanied depression through the Wnt1/β-catenin signaling pathway. Int Immunopharmacol 2024; 138:112474. [PMID: 38917529 DOI: 10.1016/j.intimp.2024.112474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
AIM OF THE STUDY Research on the mechanism of Huangqin Qingre Chubi Capsules (HQC) in improving rheumatoid arthritis accompanied depression (RA-dep) model rats. METHODS We employed real-time qPCR (RT-qPCR), western blotting (WB), confocal microscopy, bioinformatics, and other methods to investigate the anti-RA-dep effects of HQC and its underlying mechanisms. RESULTS HQC alleviated the pathological indexes of inflammation and depression in RA-dep model rats, decreased the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, increased the levels of norepinephrine(NE) and serotonin(5-HT), and improved the injury of hippocampus. The analysis of network pharmacology suggests that HQC may target the Wnt/β-catenin pathway in the treatment of RA-dep. Furthermore, molecular dynamics simulations revealed a strong affinity between HQC and the Wnt1 molecule. RT-qPCR and Western Blot (WB) experiments confirmed the critical role of the Wnt1/β-catenin signaling pathway in the treatment of RA-dep model rats with HQC. In vitro, the HQC drug-containing serum (HQC-serum) activates the Wnt1/β-catenin signaling pathway in hippocampal cells and, in conjunction with Wnt1, ameliorates RA-dep. In summary, HQC exerts its anti-inflammatory and antidepressant effects in the treatment of RA-dep by binding to Wnt1 and regulating the Wnt1/β-catenin signaling pathway. CONCLUSIONS HQC improved the inflammatory reaction and depression-like behavior of RA-dep model rats by activating Wnt1/β-catenin signal pathway. This study revealed a new pathogenesis of RA-dep and contributes to the clinical promotion of HQC in the treatment of RA-dep.
Collapse
Affiliation(s)
- Chen Li
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Qiuyun Xue
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Hui Li
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yanhui Peng
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yajie Wu
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Meiling Yuan
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Qiangjun Duan
- Department of Experimental Teaching Center, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xinghui Hong
- Department of Experimental Teaching Center, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Guangliang Chen
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Faxue Liao
- The First Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Public Health Clinical Center, Hefei, China.
| | - Peng Wu
- Department of Anatomy, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Prevention and Treatment of Rheumatoid Arthritis, Anhui University of Chinese Medicine, Hefei, Anhui, China; School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
2
|
Chen Y, Jiang B, Qu C, Jiang C, Zhang C, Wang Y, Chen F, Sun X, Su L, Luo Y. Bioactive components in prunella vulgaris for treating Hashimoto's disease via regulation of innate immune response in human thyrocytes. Heliyon 2024; 10:e36103. [PMID: 39253271 PMCID: PMC11382315 DOI: 10.1016/j.heliyon.2024.e36103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024] Open
Abstract
Background Hashimoto's thyroiditis (HT) is a thyroid autoimmune disease characterized by lymphocytic infiltration and thyroid destruction. Prunella vulgaris (PV) is a traditional Chinese herbal medicine with documented clinical efficacy in treating HT. We previously reported an immunoregulatory effect of PV in thyrocytes; however, the bioactive components of PV remained unclear. This study aimed to elucidate key components of PV for treating HT and their acting mechanisms. Methods Network pharmacology was used to predict key PV components for HT. The predicted components were tested to determine whether they could exert an immunoregulatory effect of PV in human thyrocytes. Limited proteolysis-mass spectrometry (Lip-MS) was used to explore interacting proteins with PV components in human thyrocytes. Microscale thermophoresis binding assay was used to evaluate the affinity of PV components with the target protein. Results Eleven PV components with 192 component targets and 3415 HT-related genes were gathered from public databases. With network pharmacology, a 'component-target-disease' network was established wherein four flavonoids including quercetin, luteolin, kaempferol, morin, and a phytosterol, β-sitosterol were predicted as key components in PV for HT. In stimulated primary human thyrocytes or Nthy-ori-31 cells, key components inhibited gene expressions of inflammatory cytokines including tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), and interferon-β (IFN-β), cellular apoptosis, and activation of nuclear factor κB (NF-κB) and interferon regulatory factor 3 (IRF-3). Heat shock protein 90 alpha, class A, member 1 (HSP90AA1), was identified to interact with flavonoids in PV by Lip-MS. Morin had the highest affinity with HSP90AA1 (KD = 122.74 μM), followed by kaempferol (KD = 168.53 μM), luteolin (KD = 293.94 μM), and quercetin (KD = 356.86 μM). Conclusion Quercetin, luteolin, kaempferol, morin, and β-sitosterol reproduced an anti-inflammatory and anti-apoptosis effect of PV in stimulated human thyrocytes, which potentially contributed to the treatment efficacy of PV in HT.
Collapse
Affiliation(s)
- Yongzhao Chen
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University of Chinese Medicine, Zhongshan Road 321, Nanjing, 210008, China
| | - Bo Jiang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008, China
| | - Cheng Qu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008, China
| | - Chaoyu Jiang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008, China
| | - Chen Zhang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008, China
| | - Yanxue Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008, China
| | - Fei Chen
- General Surgery Center, Department of Thyroid Surgery, Zhujiang Hospital, Southern Medical University 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510280, China
| | - Xitai Sun
- Division of Pancreas and Metabolism Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China, Zhongshan Road 321, Nanjing, 210008, China
| | - Lei Su
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008, China
| | - Yuqian Luo
- Clinical Medicine Research Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China, Zhongshan Road 321, Nanjing, 210008, China
| |
Collapse
|
3
|
Zhang J, Peng C, Lv M, Yang S, Xie L, Feng J, Wei Y, Hu T, He J, Xie Z, Yu M. Polygonum hydropiper Compound Extract Inhibits Clostridium perfringens-Induced Intestinal Inflammatory Response and Injury in Broiler Chickens by Modulating NLRP3 Inflammasome Signaling. Antibiotics (Basel) 2024; 13:793. [PMID: 39334968 PMCID: PMC11428944 DOI: 10.3390/antibiotics13090793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Necrotic enteritis (NE) is a critical disease affecting broiler health, with Clostridium perfringens as its primary pathogen. Polygonum hydropiper compound extract (PHCE), formulated based on traditional Chinese veterinary principles, contains primarily flavonoids with antibacterial, anti-inflammatory, and antioxidant properties. However, PHCE's efficacy against Clostridium perfringens-induced NE and its underlying mechanism remain unclear. This study employed network pharmacology and molecular docking to predict PHCE's potential mechanisms in treating NE, followed by determining its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against Clostridium perfringens (C. perf). Subsequently, the effects of various PHCE doses on intestinal damage, antioxidant capacity, and inflammatory factors in C. perf-infected broilers were assessed. Network pharmacology and molecular docking suggested that PHCE's therapeutic mechanism for NE involves the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome signaling pathway, with flavonoids such as quercetin, kaempferol, and isorhamnetin as key active components. PHCE exhibited an MIC of 3.13 mg/mL and an MBC of 12.5 mg/mL against C. perf. High PHCE doses effectively reduced intestinal damage scores in both the jejunum and ileum, accompanied by attenuated intestinal pathological changes. Additionally, the high dose significantly increased superoxide dismutase (SOD) levels while decreasing malondialdehyde (MDA), hydrogen peroxide (H2O2), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) in the jejunum and ileum (p < 0.01 or p < 0.05). PHCE also modulated the expression of caspase-1, IL-1β, gasdermin D (GSDMD), and NLRP3 mRNA, key components of the NLRP3 inflammasome signaling pathway, in both intestinal segments. These findings collectively indicate that PHCE protects against C. perf-induced oxidative stress and inflammatory damage in NE. By enhancing antioxidant capacity, PHCE likely reduces oxidative stress and inflammatory responses, subsequently modulating NLRP3 inflammasome signaling pathway key factor expression. Overall, this research provides valuable insights into the protective mechanism of the herbal compound PHCE and its potential benefits for avian health.
Collapse
Affiliation(s)
- Jinwu Zhang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Chunzi Peng
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Maojie Lv
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Shisen Yang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Liji Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China
| | - Jiaxun Feng
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Yingyi Wei
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Tingjun Hu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jiakang He
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Zhixun Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China
| | - Meiling Yu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China
| |
Collapse
|
4
|
Guo Y, Peng X, Liu F, Zhang Q, Ding L, Li G, Qiu F. Potential of natural products in inflammation: biological activities, structure-activity relationships, and mechanistic targets. Arch Pharm Res 2024; 47:377-409. [PMID: 38739203 DOI: 10.1007/s12272-024-01496-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
A balance between the development and suppression of inflammation can always be found in the body. When this balance is disturbed, a strong inflammatory response can damage the body. It sometimes is necessary to use drugs with a significant anti-inflammatory effect, such as nonsteroidal anti-inflammatory drugs and steroid hormones, to control inflammation in the body. However, the existing anti-inflammatory drugs have many adverse effects, which can be deadly in severe cases, making research into new safer and more effective anti-inflammatory drugs necessary. Currently, numerous types of natural products with anti-inflammatory activity and distinct structural features are available, and these natural products have great potential for the development of novel anti-inflammatory drugs. This review summarizes 260 natural products and their derivatives with anti-inflammatory activities in the last two decades, classified by their active ingredients, and focuses on their structure-activity relationships in anti-inflammation to lay the foundation for subsequent new drug development. We also elucidate the mechanisms and pathways of natural products that exert anti-inflammatory effects via network pharmacology predictions, providing direction for identifying subsequent targets of anti-inflammatory natural products.
Collapse
Affiliation(s)
- Yajing Guo
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Xuling Peng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Fanfei Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Qi Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Liqin Ding
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Gen Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China.
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China.
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China.
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
5
|
Gao S, Tang L, Ma J, Wang K, Yao H, Tong J, Zhang H. Evaluation of the mechanism of Gong Ying San activity on dairy cows mastitis by network pharmacology and metabolomics analysis. PLoS One 2024; 19:e0299234. [PMID: 38630770 PMCID: PMC11023200 DOI: 10.1371/journal.pone.0299234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/02/2024] [Indexed: 04/19/2024] Open
Abstract
OBJECTIVES The goal of this investigation was to identify the main compounds and the pharmacological mechanism of the traditional Chinese medicine formulation, Gong Ying San (GYS), by infrared spectral absorption characteristics, metabolomics, network pharmacology, and molecular-docking analysis for mastitis. The antibacterial and antioxidant activities were determined in vitro. METHODS The chemical constituents of GYS were detected by ultra-high-performance liquid chromatography Q-extractive mass spectrometry (UHPLC-QE-MS). Related compounds were screened from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP, http://tcmspw.com/tcmsp.php) and the Encyclopedia of Traditional Chinese Medicine (ETCM, http://www.tcmip.cn/ETCM/index.php/Home/) databases; genes associated with mastitis were identified in DisGENT. A protein-protein interaction (PPI) network was generated using STRING. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment screening was conducted using the R module. Molecular-docking analyses were performed with the AutoDockTools V1.5.6. RESULTS Fifty-four possible compounds in GYS with forty likely targets were found. The compound-target-network analysis showed that five of the ingredients, quercetin, luteolin, kaempferol, beta-sitosterol, and stigmasterol, had degree values >41.6, and the genes TNF, IL-6, IL-1β, ICAM1, CXCL8, CRP, IFNG, TP53, IL-2, and TGFB1 were core targets in the network. Enrichment analysis revealed that pathways associated with cancer, lipids, atherosclerosis, and PI3K-Akt signaling pathways may be critical in the pharmacology network. Molecular-docking data supported the hypothesis that quercetin and luteolin interacted well with TNF-α and IL-6. CONCLUSIONS An integrative investigation based on a bioinformatics-network topology provided new insights into the synergistic, multicomponent mechanisms of GYS's anti-inflammatory, antibacterial, and antioxidant activities. It revealed novel possibilities for developing new combination medications for reducing mastitis and its complications.
Collapse
Affiliation(s)
- Shuang Gao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, P.R. China
| | - Liyun Tang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, P.R. China
| | - Jiayi Ma
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, P.R. China
| | - Kaiming Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, P.R. China
| | - Hua Yao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, P.R. China
| | - Jinjin Tong
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, P.R. China
| | - Hua Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, P.R. China
| |
Collapse
|
6
|
Ren C, Carrillo ND, Cryns VL, Anderson RA, Chen M. Environmental pollutants and phosphoinositide signaling in autoimmunity. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133080. [PMID: 38091799 PMCID: PMC10923067 DOI: 10.1016/j.jhazmat.2023.133080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 02/08/2024]
Abstract
Environmental pollution stands as one of the most critical challenges affecting human health, with an estimated mortality rate linked to pollution-induced non-communicable diseases projected to range from 20% to 25%. These pollutants not only disrupt immune responses but can also trigger immunotoxicity. Phosphoinositide signaling, a pivotal regulator of immune responses, plays a central role in the development of autoimmune diseases and exhibits high sensitivity to environmental stressors. Among these stressors, environmental pollutants have become increasingly prevalent in our society, contributing to the initiation and exacerbation of autoimmune conditions. In this review, we summarize the intricate interplay between phosphoinositide signaling and autoimmune diseases within the context of environmental pollutants and contaminants. We provide an up-to-date overview of stress-induced phosphoinositide signaling, discuss 14 selected examples categorized into three groups of environmental pollutants and their connections to immune diseases, and shed light on the associated phosphoinositide signaling pathways. Through these discussions, this review advances our understanding of how phosphoinositide signaling influences the coordinated immune response to environmental stressors at a biological level. Furthermore, it offers valuable insights into potential research directions and therapeutic targets aimed at mitigating the impact of environmental pollutants on the pathogenesis of autoimmune diseases. SYNOPSIS: Phosphoinositide signaling at the intersection of environmental pollutants and autoimmunity provides novel insights for managing autoimmune diseases aggravated by pollutants.
Collapse
Affiliation(s)
- Chang Ren
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Noah D Carrillo
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Vincent L Cryns
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Richard A Anderson
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mo Chen
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
7
|
Wu G, Ren Z, Hao Q, Wong Y, Zha D, Cao X, Liu R. The mechanism of Zhenzhu Pills treating intracerebral hemorrhage secondary injury based on network pharmacology and molecular docking. Medicine (Baltimore) 2024; 103:e36837. [PMID: 38363944 PMCID: PMC10869077 DOI: 10.1097/md.0000000000036837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/12/2023] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) secondary injury is serious and affects patient's prognosis. The Zhenzhu Pills used to treat subacute ICH in Tibet has shown to have a certain curative effect. Network pharmacology and molecular docking technology are employed to explore the potential mechanism of Zhenzhu Pills. The components and potential targets of Zhenzhu Pills were screened from the Traditional Chinese Medicine Systems Pharmacology database. The Gene Expression Omnibus Series 24265 was used to screen differentially expressed genes between perihematomal tissue and normal brain. METHODS The herbs-components-targets network was established, with weighted eigenvalue to identify the core components and targets of Zhenzhu Pills treatment of ICH secondary injury. Targets' bioinformatics enrichment was proceeded by gene ontology and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis. Finally, molecular docking was used to identify the hydrogen bonding activity between the key components and action targets. RESULTS Five herbal drugs were screened from Traditional Chinese Medicine Systems Pharmacology database, with a total of 48 components and 234 targets. The Gene Expression Omnibus Series 24265 dataset was evaluated and 920 differentially expressed genes were identified. A total of 29 intersection targets of Zhenzhu Pills were explored in the treatment of ICH secondary injury. Drugs-components-targets network analysis showed that the pivotal targets were prostaglandin G/H synthase 2, interleukin 6, heme oxygenase-1, vascular endothelial growth factor, and vascular cell adhesion molecule 1, and the core components were quercetin, luteolin, and kaempferol. Gene ontology and KEGG pathway enrichment analysis showed that biological processes such as cell chemotaxis, wound healing, leukocyte migration, and regulation of body fluid levels played an important role in the secondary injury of ICH. The results of KEGG pathway analysis were mainly related to advanced glycation end products-receptor for advanced glycation end products signal pathway and tumor necrosis factor signal pathway. Molecular docking of 3 flavonoids with 5 core targets with the results also showed active hydrogen bonding. CONCLUSIONS This study provides insights into the potential mechanisms of Zhenzhu Pills in the treatment of secondary injuries resulting from ICH and highlights specific components, targets, and molecular pathways involved in this therapeutic effect. These possible therapeutic mechanisms include inhibiting inflammation, edema, oxidative stress, and so on.
Collapse
Affiliation(s)
- Gang Wu
- Department of Neurosurgery, Peking University People’s Hospital, Beijing, P.R. China
| | - Zeng Ren
- Department of Neurosurgery, People’s Hospital of Tibet Autonomous Region, Lhasa, Tibet Autonomous Region, P.R. China
| | - Qingpei Hao
- Department of Neurosurgery, Peking University People’s Hospital, Beijing, P.R. China
| | - Yu Wong
- Department of Neurosurgery, People’s Hospital of Tibet Autonomous Region, Lhasa, Tibet Autonomous Region, P.R. China
| | - Duo Zha
- Department of Neurosurgery, People’s Hospital of Tibet Autonomous Region, Lhasa, Tibet Autonomous Region, P.R. China
| | - Xudong Cao
- Department of Neurosurgery, People’s Hospital of Tibet Autonomous Region, Lhasa, Tibet Autonomous Region, P.R. China
| | - Ruen Liu
- Department of Neurosurgery, Peking University People’s Hospital, Beijing, P.R. China
| |
Collapse
|
8
|
Wang D, Zhang J, Dai H, Tong K, Chen M, Peng J, Huang W. Probable targets and mechanism of ginsenoside Rg1 for non-alcoholic fatty liver disease: a study integrating network pharmacology, molecular docking, and molecular dynamics simulation. J Biomol Struct Dyn 2023:1-14. [PMID: 38038388 DOI: 10.1080/07391102.2023.2289045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/09/2023] [Indexed: 12/02/2023]
Abstract
Ginsenoside Rg1 (GRg1), a key bioactive component of medicinal herbs, has shown beneficial effects on non-alcoholic fatty liver disease (NAFLD) and numerous other conditions. Nevertheless, the specific targets that are actively involved and the potential mechanisms underlying NAFLD treatment remain unclear. This study aimed to elucidate the therapeutic effects and mechanism of GRg1 in alleviating NAFLD using a combined approach of network pharmacology and molecular biology validation. The analysis yielded 294 targets for GRg1 and 1293 associated with NAFLD, resulting in 89 overlapping targets. Through protein-protein interactions (PPI) network topology analysis, 10 key targets were identified. Upon evaluating the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) analysis, GRg1 may exert therapeutic effects on NAFLD by negatively regulating the apoptotic process, insulin and endocrine resistance, the AGE-RAGE signaling pathway in diabetic complications, and the Estrogen, PI3K/Akt, and MAPK pathways. The three differential gene targets for Akt1, EGFR, and IGF1 were identified through the compound-target network in conjunction with the aforementioned methods. The molecular docking and molecular dynamics (MD) simulations showed that AKT1 and EGFR had a strong binding affinity with GRg1. Overall, our findings point to a novel therapeutic strategy involving NAFLD, with further in vivo and in vitro studies promising to deepen our comprehension and validate its potential advantages.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Danni Wang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jia Zhang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haifeng Dai
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kexin Tong
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingjing Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiayi Peng
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenxiang Huang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Li L, Yang L, Yang L, He C, He Y, Chen L, Dong Q, Zhang H, Chen S, Li P. Network pharmacology: a bright guiding light on the way to explore the personalized precise medication of traditional Chinese medicine. Chin Med 2023; 18:146. [PMID: 37941061 PMCID: PMC10631104 DOI: 10.1186/s13020-023-00853-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023] Open
Abstract
Network pharmacology can ascertain the therapeutic mechanism of drugs for treating diseases at the level of biological targets and pathways. The effective mechanism study of traditional Chinese medicine (TCM) characterized by multi-component, multi-targeted, and integrative efficacy, perfectly corresponds to the application of network pharmacology. Currently, network pharmacology has been widely utilized to clarify the mechanism of the physiological activity of TCM. In this review, we comprehensively summarize the application of network pharmacology in TCM to reveal its potential of verifying the phenotype and underlying causes of diseases, realizing the personalized and accurate application of TCM. We searched the literature using "TCM network pharmacology" and "network pharmacology" as keywords from Web of Science, PubMed, Google Scholar, as well as Chinese National Knowledge Infrastructure in the last decade. The origins, development, and application of network pharmacology are closely correlated with the study of TCM which has been applied in China for thousands of years. Network pharmacology and TCM have the same core idea and promote each other. A well-defined research strategy for network pharmacology has been utilized in several aspects of TCM research, including the elucidation of the biological basis of diseases and syndromes, the prediction of TCM targets, the screening of TCM active compounds, and the decipherment of mechanisms of TCM in treating diseases. However, several factors limit its application, such as the selection of databases and algorithms, the unstable quality of the research results, and the lack of standardization. This review aims to provide references and ideas for the research of TCM and to encourage the personalized and precise use of Chinese medicine.
Collapse
Affiliation(s)
- Ling Li
- School of Comprehensive Health Management, Xihua University, Chengdu, Sichuan, China.
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Lele Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
- Zhuhai UM Science and Technology Research Institute, Zhuhai, Guangdong, China
| | - Liuqing Yang
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan, China
| | - Chunrong He
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan, China
| | - Yuxin He
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan, China
| | - Liping Chen
- School of Comprehensive Health Management, Xihua University, Chengdu, Sichuan, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qin Dong
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan, China
| | - Huaiying Zhang
- School of Comprehensive Health Management, Xihua University, Chengdu, Sichuan, China
| | - Shiyun Chen
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
10
|
Yu Q, Liu M, Zhao T, Su M, Wang S, Xu W, He S, Li K, Mu X, Wu J, Sun P, Zheng F, Weng N. Mechanism of baixiangdan capsules on anti-neuroinflammation: combining dry and wet experiments. Aging (Albany NY) 2023; 15:7689-7708. [PMID: 37556347 PMCID: PMC10457058 DOI: 10.18632/aging.204934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023]
Abstract
Neuroinflammation plays an important role in the pathogenesis of neurological disorders, and despite intensive research, treatment of neuroinflammation remains limited. BaiXiangDan capsule (BXD) is widely used in clinical practice. However, systematic studies on the direct role and mechanisms of BXD in neuroinflammation are still lacking. We systematically evaluated the potential pharmacological mechanisms of BXD on neuroinflammation using network pharmacological analysis combined with experimental validation. Multiple databases are used to mine potential targets for bioactive ingredients, drug targets and neuroinflammation. GO and KEGG pathway analysis was also performed. Interactions between active ingredients and pivotal targets were confirmed by molecular docking. An experimental model of neuroinflammation was used to evaluate possible therapeutic mechanisms for BXD. Network pharmacological analysis revealed that Chrysoeriol, Kaempferol and Luteolin in BXD exerted their anti-neuroinflammatory effects mainly by acting on targets such as NCOA2, PIK3CA and PTGS2. Molecular docking results showed that their average affinity was less than -5 kcal/mol, with an average affinity of -8.286 kcal/mol. Pathways in cancer was found to be a potentially important pathway, with involvement of PI3K/AKT signaling pathways. In addition, in vivo experiments showed that BXD treatment ameliorated neural damage and reduced neuronal cell death. Western blotting, RT-qPCR and ELISA analysis showed that BXD inhibited not only the expression of IL-1β, TNF-α and NO, but also NF-κB, MMP9 and PI3K/AKT signaling pathways. This study applied network pharmacology and in vivo experiments to explore the possible mechanisms of BXD against neuroinflammation, providing insight into the treatment of neuroinflammation.
Collapse
Affiliation(s)
- Qingying Yu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Molin Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Tingting Zhao
- College of Foreign Languages, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Mengyue Su
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Shukun Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Wenhua Xu
- Preventive Treatment Center, Shenzhen Integrated Traditional Chinese and Western Medicine Hospital, Shenzhen 518000, China
| | - Shuhua He
- Department of Psychiatry, Boai Hospitai of Zhongshan, Zhongshan 528400, China
| | - Kejie Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Xiangyu Mu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Jibiao Wu
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Peng Sun
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Feng Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Ning Weng
- Department of Traditional Chinese Medicine, Shandong Mental Health Center, Shandong University, Jinan 250000, China
| |
Collapse
|
11
|
Zhou S, Liu J, Tan L, Wang Y, Li J, Wang Y, Ding C, Long H. Changes in metabolites in raw and wine processed Corni Fructus combination metabolomics with network analysis focusing on potential hypoglycemic effects. Front Pharmacol 2023; 14:1173747. [PMID: 37608891 PMCID: PMC10440738 DOI: 10.3389/fphar.2023.1173747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023] Open
Abstract
Introduction: Corni Fructus (CF) is a Chinese herbal medicine used for medicinal and dietary purposes. It is available commercially in two main forms: raw CF (unprocessed CF) and wine-processed CF. Clinical observations have indicated that wine-processed CF exhibits superior hypoglycemic activity compared to its raw counterpart. However, the mechanisms responsible for this improvement are not well understood. Methods: To address this gap in knowledge, we conducted metabolomics analysis using ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry (UPLC-QTOF-MS) to compare the chemical composition of raw CF and wine-processed CF. Subsequently, network analysis, along with immunofluorescence assays, was employed to elucidate the potential targets and mechanisms underlying the hypoglycemic effects of metabolites in CF. Results: Our results revealed significant compositional differences between raw CF and wine-processed CF, identifying 34 potential markers for distinguishing between the two forms of CF. Notably, wine processing led to a marked decrease in iridoid glycosides and flavonoid glycosides, which are abundant in raw CF. Network analysis predictions provided clues that eight compounds might serve as hypoglycemic metabolites of CF, and glucokinase (GCK) and adenylate cyclase (ADCYs) were speculated as possible key targets responsible for the hypoglycemic effects of CF. Immunofluorescence assays confirmed that oleanolic acid and ursolic acid, two bioactive compounds present in CF, significantly upregulated the expression of GCK and ADCYs in the HepG2 cell model. Discussion: These findings support the notion that CF exerted hypoglycemic activity via multiple components and targets, shedding light on the impact of processing methods on the chemical composition and hypoglycemic activity of Chinese herbal medicine.
Collapse
Affiliation(s)
- Siqian Zhou
- Center for Medical Research and Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
- Hunan University of Chinese Medicine, Changsha, China
| | - Jian Liu
- Center for Medical Research and Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Leihong Tan
- Department of Pharmacy, The Second Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yikun Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jing Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Yajing Wang
- Hunan University of Chinese Medicine, Changsha, China
| | | | - Hongping Long
- Center for Medical Research and Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
- Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
12
|
Zholdasbayev ME, Atazhanova GA, Musozoda S, Poleszak E. Prunella vulgaris L.: An Updated Overview of Botany, Chemical Composition, Extraction Methods, and Biological Activities. Pharmaceuticals (Basel) 2023; 16:1106. [PMID: 37631021 PMCID: PMC10460042 DOI: 10.3390/ph16081106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Prunella vulgaris L. (PV) is a well-known renewable drug resource full of different groups of biologically active substances with a wide range of pharmacological actions and applications in medicine. In this review, we present an updated comprehensive overview of the botany, extracting methods, chemical composition, and pharmacological activity of different parts of PV extracts. As a result of this review, it was found that chemical composition of PV depends on various factors ranging from the part of the plant to the method of extraction. We also highlight extraction methods that have not been previously used for obtaining PV extracts and may have high scientific interest. With this review, we hope to guide present and future professionals and provide possible previously unexplored areas to find new solutions associated with PV plant.
Collapse
Affiliation(s)
- Mussa E. Zholdasbayev
- School of Pharmacy, NJSC “Karaganda Medical University”, Gogol Street, 40, Karaganda 100000, Kazakhstan;
| | - Gayane A. Atazhanova
- School of Pharmacy, NJSC “Karaganda Medical University”, Gogol Street, 40, Karaganda 100000, Kazakhstan;
| | - Safol Musozoda
- Department of Pharmaceutical Technology and Pharmacology, Building No. 3, Tajik National University, Rudaki Avenue Street, 17, Dushanbe 734035, Tajikistan;
| | - Ewa Poleszak
- Department of Applied and Social Pharmacy, Medical University of Lublin, st. Al. Racławickie 1, 20-059 Lublin, Poland;
| |
Collapse
|
13
|
Su Y, Bai Q, Tao H, Xu B. Prospects for the application of traditional Chinese medicine network pharmacology in food science research. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 36882903 DOI: 10.1002/jsfa.12541] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
There has always been a particular difficulty with in-depth research on the mechanisms of food nutrition and bioactivity. The main function of food is to meet the nutritional needs of the human body, rather than to exert a therapeutic effect. Its relatively modest biological activity makes it difficult to study from the perspective of general pharmacological models. With the popularity of functional foods and the concept of dietary therapy, and the development of information and multi-omics technology in food research, research into these mechanisms is moving towards a more microscopic future. Network pharmacology has accumulated nearly 20 years of research experience in traditional Chinese medicine (TCM), and there has been no shortage of work from this perspective on the medicinal functions of food. Given the similarity between the concept of 'multi-component-multi-target' properties of food and TCM, we think that network pharmacology is applicable to the study of the complex mechanisms of food. Here we review the development of network pharmacology, summarize its application to 'medicine and food homology', and propose a methodology based on food characteristics for the first time, demonstrating its feasibility for food research. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuanyuan Su
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Qiong Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Hongxun Tao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
14
|
Zhou W, Wang Y, Huang Y, Liu J, Cheng C, Xue Q, Wang X, Chang J, Miao C. Huangqin Qingre Qubi Capsule inhibits RA pathology by binding FZD8 and further inhibiting the activity of Wnt/β-catenin signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115886. [PMID: 36336221 DOI: 10.1016/j.jep.2022.115886] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huangqin Qingre Qubi Capsule (HQC) is a Chinese herbal compound for the treatment of rheumatoid arthritis (RA), which is made from dry roots of Scutellaria baicalensis Georgi, dry mature seeds of Gardenia jasminoides J.Ellis, dry and mature seeds of Coix lacryma-jobi var. stenocarpa Oliv., dry mature seeds of Amygdalus persica L. and roots and rhizomes of Clematis chinensis Osbeck in the proportion of 10:9:30:5:10. HQC has a significant effect in clinical treatment of RA, which can inhibit RA inflammation, improve oxidative stress state, and effectively relieve symptoms of RA patients. AIM OF THE STUDY The anti-arthritis effect of HQC and its mechanism, especially whether it improves RA through FZD8-Wnt/β-catenin signal axis, were studied using adjuvant arthritis (AA) rats and FLS from RA patients. MATERIALS AND METHODS Real time qPCR (RT-qPCR), Western blot (WB), confocal microscopy and other molecular biological methods were used to study the anti-RA effect of HQC and its mechanism. RESULTS The expression of FZD8 was significantly up-regulated in synovium and FLS of AA rats and RA FLS. FZD8 significantly activated the Wnt/β-catenin signaling pathway, promoted abnormal proliferation of FLS, increased the levels of inflammatory factors IL-1β, IL-6 and IL-8, and significantly increased the expression of matrix metalloproteinase 3 (MMP3) and fibronectin. HQC has significant therapeutic effect on AA rats. Molecular docking and molecular dynamics showed that HQC had a good binding ability with FZD8. We also confirmed that HQC inhibited Wnt/β-catenin signaling pathway by binding FZD8, and reduced the levels of the above inflammatory factors and pathological genes of RA. CONCLUSIONS The expression of FZD8 is significantly increased in AA rats and FLS from RA patients. Clarify that HQC improves RA through the FZD8-Wnt/β-catenin signal axis, provide a clear therapeutic mechanism for HQC to improve RA, and also provide a basis for clinical promotion of HQC.
Collapse
Affiliation(s)
- Wanwan Zhou
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yuting Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jian Liu
- Department of Rheumatology, The First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, China; Institute of Rheumatism, Anhui University of Chinese Medicine, Hefei, China.
| | - Chenglong Cheng
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Qiuyun Xue
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China
| | - Jun Chang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Public Health Clinical Center, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Life Sciences, Anhui Medical University, Hefei, China.
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China; Institute of Rheumatism, Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
15
|
Ni P, Zhao B, Pang Y, Pan K. Mechanism of Tianma Gouteng Decoction in the treatment of Parkinson's disease based on network pharmacology and molecular docking. Am J Transl Res 2023; 15:596-611. [PMID: 36777831 PMCID: PMC9908455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/20/2022] [Indexed: 02/14/2023]
Abstract
OBJECTIVE To explore the pharmacological mechanism and molecular targets of Tianma Gouteng Decoction (TMGTD) in the treatment of Parkinson's disease (PD). METHODS We applied network pharmacology to screen the active components of TMGTD and predict target genes in multiple Chinese herbal medicine databases and compound databases, and built a drug-ingredient-target network. Then, we used the CytoHubba plug-in to filter out the core components of TMGTD according to the order of degree value. We screened PD-related pathogenic targets in the DrugBank, Genecard and OMIM databases from high to low in Betweenness Centrality (BC) value and Closeness Centrality (CC) value. Subsequently, we determined the intersection target of TMGTD and PD by Venn diagram and performed protein-protein interaction (PPI) analysis, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on core molecules and intersection targets. Finally, molecular docking was performed to verify the binding of the top three core molecules of TMGTD with the top three core targets of PD. RESULTS The core components of TMGTD are quercetin, kaempferol and palmitic acid. The main targets of TMGTD in the treatment of PD are ALB, GAPDH and AKT1. GO analysis and KEGG analysis showed that the biological process of TMGTD in the treatment of PD is closely related to the activities of neurotransmitter receptors, G protein-coupled receptors and dopamine neurotransmitter receptors. TMGTD possesses therapeutic effects on PD mainly through the PI3K-Akt signaling pathway and MAPK signaling pathway. Molecular docking shows the high affinity of the quercetin, kaempferol and palmitic acid with PD core targets. CONCLUSION TMGTD plays a pivotal role in the treatment of PD through multiple components, multiple targets and multiple pathways. The results provide a research direction for the subsequent exploration of the mechanism of TMGTD in PD treatment.
Collapse
Affiliation(s)
- Pengyun Ni
- Department of Science and Education, Baoji Traditional Chinese Medicine HospitalBaoji 721000, Shaanxi, China
| | - Bingbing Zhao
- Department of Emergency, Baoji Traditional Chinese Medicine HospitalBaoji 721000, Shaanxi, China
| | - Yu Pang
- Department of Gynecology, Baoji Traditional Chinese Medicine HospitalBaoji 721000, Shaanxi, China
| | - Kaiting Pan
- Department of Neurology, Baoji Third HospitalBaoji 721000, Shaanxi, China
| |
Collapse
|
16
|
Zhai Z, Zhu Z, Kong F, Xie D, Cai J, Dai J, Zhong Y, Gan Y, Zheng S, Xu Y, Sun T. Distinguish the Characteristic Mechanism of 3 Drug Pairs of Corydalis Rhizome in Ameliorating Angina Pectoris: Network Pharmacology and Meta-Analysis. Nat Prod Commun 2023. [DOI: 10.1177/1934578x231152309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Objective: Angina pectoris (AP), affecting over 523 million people, can be alleviated by corydalis rhizome (CR), usually combined with chuanxiong rhizome (CXR), angelica dahuricae radix (ADR), or astragali radix (AR) to enhance the effect. This study aims to distinguish the different mechanisms among 3 drug pairs to treat AP. Methods: The drug pair-disease intersection targets, compound targets, protein–protein interaction (PPI), and herb-compound-target-pathway network were obtained by Cytoscape, STRING, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses ( http://www.kegg.jp/ or http://www.genome.jp/kegg/ ). Importantly, with principal component analysis (PCA), the key point of KEGG and GO were explored and supported, while by meta-analysis, the different mechanisms of the drug pairs on AP were discovered. Results: JUN, SRC, PIK3CA, and MAPK1 as PPI core network of CR-AP, (CR-CXR)-AP, (CR-ADR)-AP, and (CR-AR)-AP. (highest confidence > 0.9). 10, 45, 35, and 21 key compounds, and 68, 123, 117, and 97 core targets were obtained from CR-AP, (CR-CXR)-AP, (CR-ADR)-AP, and (CR-AR)-AP based on more than 2-fold median value for degree and betweenness centrality, more than the median of closeness centrality. The core pathways of (CR-CXR)-AP and (CR-AR)-AP cover “fluid shear stress and atherosclerosis” and the “pathways in cancer”, while (CR-ADR)-AP was found as the “pathways in cancer” by PCA and KEGG ( P < .01). The core biological processes of (BP) (CR-CXR)-AP, (CR-ADR)-AP, and (CR-AR)-AP were all enriched in the “circulatory system process” by PCA and GO ( P < .01). Moreover, meta-analysis indicated the significant differences ( P < .05) of the 3 drug pairs. Conclusion: CR-CXR, CR-ADR, or CR-AR outperformed CR-AP in AP mitigation. Furthermore, meta-analysis revealed, CR-CXR was superior to alleviating AP by affecting “circulatory system process” and “fluid shear stress and atherosclerosis”, particularly the targets PTGS1, PTGS2, ADRB2, ADRA2C, and NOS, when compared with the drug pair of CR-ADR and the CR-AR.
Collapse
Affiliation(s)
- Zhenwei Zhai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhishan Zhu
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fanjing Kong
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Cai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingyi Dai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanmei Zhong
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanxiong Gan
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shichao Zheng
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Xu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Sun
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
17
|
Xu H, You M, Xiang X, Zhao J, Yuan P, Chu L, Xie C. Molecular Mechanism of Epimedium Extract against Ischemic Stroke Based on Network Pharmacology and Experimental Validation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3858314. [PMID: 36338345 PMCID: PMC9633197 DOI: 10.1155/2022/3858314] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/29/2022] [Indexed: 02/05/2024]
Abstract
Ischemic stroke exhibits high morbidity, disability, and mortality, and treatments for ischemic stroke are limited despite intensive research. The potent neuroprotective benefits of Epimedium against ischemic stroke have gained lots of interest. Nevertheless, systematic research on the direct role and mechanisms of Epimedium in ischemic stroke is still lacking. Network pharmacology analysis coupled with experimental verification was utilized to systematically evaluate the potential pharmacological mechanism of Epimedium against ischemic stroke. The TCMSP database was used to mine the bioactive ingredients and Epimedium's targets. The DrugBank, OMIM, and GeneCards databases were employed to identify potential targets of ischemic stroke. GO and KEGG pathway analyses were also carried out. The interaction between active components and hub targets was confirmed via molecular docking. An experimental ischemic stroke model was used to evaluate the possible therapeutic mechanism of Epimedium. As a result, 23 bioactive compounds of Epimedium were selected, and 30 hub targets of Epimedium in its function against ischemic stroke were identified, and molecular docking results demonstrated good binding. The IL-17 signaling pathway was revealed as a potentially significant pathway, with the NF-κB and MAPK/ERK signaling pathways being involved. Furthermore, in vivo experiments demonstrated that Epimedium treatment could improve neurological function and reduce infarct volume. Additionally, Epimedium reduced the activation of microglia and astrocytes in both the ischemic penumbra of the hippocampus and cerebral cortex following ischemic stroke. Western blot and RT-qPCR analyses demonstrated that Epimedium not only depressed the expression of IL-1β, TNF-α, IL-6, and IL-4 but also inhibited the NF-κB and MAPK/ERK signaling pathways. This study applied network pharmacology and in vivo experiment to explore possible mechanism of Epimedium's role against ischemic stroke, which provides insight into the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Hongbei Xu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou 550004, China
| | - Mingyao You
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou 550004, China
| | - Xiang Xiang
- Neurosurgery Department of Chongqing University, Three Gorges Hospital, Chongqing 400010, China
| | - Jun Zhao
- Department of Neurosurgery, Dazhou Hospital of Integrated Traditional and Western Medicine, 635000, China
| | - Ping Yuan
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou 550004, China
| | - Lan Chu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou 550004, China
| | - Chenchen Xie
- Department of Neurology, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu 610081, China
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
18
|
Zhang Y, Lu KN, Ding JW, Peng Y, Pan G, Teng LS, Luo DC. Identification of Long Noncoding RNAs Associated With the Clinicopathological Features of Papillary Thyroid Carcinoma Complicated With Hashimoto’s Thyroiditis. Front Oncol 2022; 12:766016. [PMID: 35359359 PMCID: PMC8963332 DOI: 10.3389/fonc.2022.766016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 02/11/2022] [Indexed: 12/20/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play a significant role in cancer biology. This study aimed to determine the roles of lncRNAs in establishing the differences in clinical features between patients with papillary thyroid carcinoma (PTC) without Hashimoto’s thyroiditis (HT) and patients with PTC and HT. In the present study, we detected the differentially expressed lncRNAs between tumor tissues of patients with PTC with or without HT through lncRNA microarrays. The data were verified and analyzed through qRT-PCR, cell viability, cell cycle and bioinformatics analyses. We found that 1031 lncRNAs and 1338 mRNAs were abnormally expressed in 5 tissue samples of PTC complicated with HT [PTC/HT (+)] compared with 5 samples of PTC without HT [PTC/HT (-)]. Gene Ontology and pathway analyses of the mRNAs suggested that several biological processes and pathways, particularly immune system processes, were induced in the PTC/HT (+) tissues. Twenty lncRNAs were verified in 31 PTC/HT (+) and 64 PTC/HT (-) specimens by qRT-PCR, and the results were consistent with the microarray data. Specifically, ENST00000452578, a downregulated lncRNA in PTC/HT(+), was negatively correlated with the tumor size. Cell viability assays revealed that ENST00000452578 could inhibit cell proliferation. Our results indicate that lncRNAs and mRNAs play an important role in establishing the different clinical characteristics between patients with PTC/HT(+) and patients with PTC/HT(-), and might provide new insights from the perspective of RNA for obtaining a further understanding of the clinical features related to PTC with HT.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Oncological Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai-Ning Lu
- Department of Oncological Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jin-Wang Ding
- Department of Head and Neck Surgery, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
| | - You Peng
- Department of Oncological Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gang Pan
- Department of Oncological Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li-Song Teng
- Cancer Center, The First Affiliated Hospital, Zhejiang University school of Medicine, Hangzhou, China
- *Correspondence: Li-Song Teng, ; Ding-Cun Luo,
| | - Ding-Cun Luo
- Department of Oncological Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Li-Song Teng, ; Ding-Cun Luo,
| |
Collapse
|
19
|
Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu Decoction against sepsis. Comput Biol Med 2022; 144:105389. [PMID: 35303581 DOI: 10.1016/j.compbiomed.2022.105389] [Citation(s) in RCA: 152] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Huanglian Jiedu Decoction (HLJDD) is a classical herbal formula with potential efficacy in the treatment of sepsis. However, the main components and potential mechanisms of HLJDD remain unclear. This study aims to initially clarify the potential mechanism of HLJDD in the treatment of sepsis based on network pharmacology and molecular docking techniques. METHODS The principal components and corresponding protein targets of HLJDD were searched on TCMSP, BATMAN-TCM and ETCM and the compound-target network was constructed by Cytoscape3.8.2. Sepsis targets were searched on OMIM and DisGeNET databases. The intersection of compound target and disease target was obtained and the coincidence target was imported into STRING database to construct a PPI network. We further performed GO and KEGG enrichment analysis on the targets. Finally, molecular docking study was approved for the core target and the active compound. RESULTS There are 257 nodes and 792 edges in the component target network. The compounds with a higher degree value are quercetin, kaempferol, and wogonin. The protein with a higher degree in the PPI network is JUN, RELA, TNF. GO and KEGG analysis showed that HLJDD treatment of sepsis mainly involves positive regulation of transcription from RNA polymerase II promoter, negative regulation of apoptosis process, response to hypoxia and other biological processes. The signaling pathways mainly include PI3K-AKT, MAPK, TNF signaling pathway. The molecular docking results showed that quercetin, kaempferol and wogonin have higher affinity with JUN, RELA and TNF. CONCLUSION This study reveals the active ingredients and potential molecular mechanism of HLJDD in the treatment of sepsis, and provides a reference for subsequent basic research.
Collapse
|