1
|
Tankoua WLD, Nkwengoua EZT, Desiré S, Ndogo Eteme O, Tchana Satchet EM, de Araujo RSA, Nayarisseri A, de Lima MDCA, de Aquino TM, Barthélémy N, Mendonça-Junior FJB. Spectroscopic exploration of mode of binding of ctDNA and BSA with acridone alkaloids isolated from Zanthoxylum leprieurii (Rutaceae). Nat Prod Res 2024:1-15. [PMID: 39467251 DOI: 10.1080/14786419.2024.2421908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/30/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024]
Abstract
Zanthoxylum leprieurii is a medicinal plant widely studied due to its great phytochemical diversity, especially its acrinonic alkaloids, which have shown to be promising anticancer candidates. The aim of this work was to promote the isolation of acridonic alkaloids from fruits of Z. leprieurii and carried out absorption and fluorescence spectroscopy studies with calf thymus DNA and BSA. Five acridone alkaloids have been isolated, including the first description of 3-desmethoxy arborinine (2). In the study of interaction with biomacromolecules it was observed that all compounds show interaction with calf thymus DNA and BSA. Compound 2 promoted the bigger increase in BSA fluorescence (3.01%) with a lower fluorescence quenching constant (Ksv = 0.13 × 104). Taken together, these results reaffirm the great phytochemical diversity of Z. leprieurii, and show that acridonic alkaloids have an affinity with both DNA and BSA, therefore providing clues to their mechanisms of action related to their anticancer activities.
Collapse
Affiliation(s)
- Whistler Lucain Dibahteu Tankoua
- Laboratory of Medicinal Chemistry, Department of Organic Chemistry, Faculty of Sciences, University of Yaounde I, Yaounde, Cameroon
| | - Ernestine Zondegoumba T Nkwengoua
- Laboratory of Medicinal Chemistry, Department of Organic Chemistry, Faculty of Sciences, University of Yaounde I, Yaounde, Cameroon
- Laboratory of Synthesis and Drug Delivery, Department of Biological Science, State University of Paraiba, João Pessoa-Paraíba, Brazil
| | - Soh Desiré
- Laboratory of Medicinal Chemistry, Department of Organic Chemistry, Faculty of Sciences, University of Yaounde I, Yaounde, Cameroon
| | - Olivier Ndogo Eteme
- Laboratory of Medicinal Chemistry, Department of Organic Chemistry, Faculty of Sciences, University of Yaounde I, Yaounde, Cameroon
| | - Emmanuella Marthe Tchana Satchet
- Laboratory of Medicinal Chemistry, Department of Organic Chemistry, Faculty of Sciences, University of Yaounde I, Yaounde, Cameroon
| | - Rodrigo Santos A de Araujo
- Laboratory of Synthesis and Drug Delivery, Department of Biological Science, State University of Paraiba, João Pessoa-Paraíba, Brazil
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa-Paraíba, Brazil
| | - Anuraj Nayarisseri
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore, Madhya Pradesh India
| | | | - Thiago Mendonça de Aquino
- Grupo de Pesquisa em Estratégias Terapêuticas, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, Brasil
| | - Nyassé Barthélémy
- Laboratory of Medicinal Chemistry, Department of Organic Chemistry, Faculty of Sciences, University of Yaounde I, Yaounde, Cameroon
| | - Francisco J B Mendonça-Junior
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa-Paraíba, Brazil
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore, Madhya Pradesh India
| |
Collapse
|
2
|
Das B, Bhardwaj PK, Chaudhary SK, Pathaw N, Singh HK, Tampha S, Singh KK, Sharma N, Mukherjee PK. Bioeconomy and ethnopharmacology - Translational perspective and sustainability of the bioresources of northeast region of India. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118203. [PMID: 38641075 DOI: 10.1016/j.jep.2024.118203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The ecological environment of Northeast region of India (NER), with its high humidity, has resulted in greater speciation and genetic diversity of plant, animal, and microbial species. This region is not only rich in ethnic and cultural diversity, but it is also a major biodiversity hotspot. The sustainable use of these bioresources can contribute to the region's bioeconomic development. AIM OF THE STUDY The review aimed to deliver various perspectives on the development of bioeconomy from NER bioresources under the tenets of sustainable utilization and socioeconomic expansion. MATERIALS AND METHODS Relevant information related to prospects of the approaches and techniques pertaining to the sustainable use of ethnomedicine resources for the growth of the bioeconomy were retrieved from PubMed, ScienceDirect, Google Scholar, Scopus, and Springer from 1984 to 2023. All the appropriate abstracts, full-text articles and various book chapters on bioeconomy and ethnopharmacology were conferred. RESULT As the population grows, so does the demand for basic necessities such as food, health, and energy resources, where insufficient resource utilization and unsustainable pattern of material consumption cause impediments to economic development. On the other hand, the bioeconomy concept leads to "the production of renewable biological resources and the conversion of these resources and waste streams into value-added products. CONCLUSIONS In this context, major emphasis should be placed on strengthening the economy's backbone in order to ensure sustainable use of these resources and livelihood security; in other words, it can boost the bio-economy by empowering the local people in general.
Collapse
Affiliation(s)
- Bhaskar Das
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Pardeep Kumar Bhardwaj
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Sushil K Chaudhary
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Neeta Pathaw
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Huidrom Khelemba Singh
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Soibam Tampha
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Khaidem Kennedy Singh
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Pulok Kumar Mukherjee
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India; Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Meghalaya Center, Shillong, Meghalaya 793009, India.
| |
Collapse
|
3
|
Owor RO, Kawuma C, Nantale G, Kiyimba K, Obakiro SB, Ouma S, Lulenzi J, Gavamukulya Y, Chebijira M, Lukwago TW, Egor M, Musagala P, Andima M, Kibuule D, Waako P, Hokello J. Ethnobotanical survey and phytochemistry of medicinal plants used in the management of HIV/AIDS in Eastern Uganda. Heliyon 2024; 10:e31908. [PMID: 38845918 PMCID: PMC11153244 DOI: 10.1016/j.heliyon.2024.e31908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Currently, highly active antiretroviral therapy is unable to cure HIV/AIDS because of HIV latency. This study aimed at documenting medicinal plants used in the management of HIV/AIDS in Eastern Uganda so as to identify phytochemicals with HIV latency reversing potential. An ethnobotanical survey was conducted across eight districts in Eastern Uganda. Traditional medicine practitioners were interviewed using semi-structured questionnaires. Qualitative and quantitative phytochemical tests were respectively, performed to determine the presence and quantity of phytochemicals in frequently mentioned plant species. Data were analysed and presented using descriptive statistics and Informant Consensus Factor (ICF). Twenty-one plant species from fourteen plant families were reported to be used in the management of HIV/AIDS. Six plant species with the highest frequency of mention were: Zanthoxylum chalybeum, Gymnosporia senegalensis, Warbugia ugandensis, Leonatis nepetifolia, Croton macrostachyus and Rhoicissus tridentata. Qualitative phytochemical analysis of all the six most frequently mentioned plant species revealed the presence of flavonoids, tannins, terpenoids, alkaloids and phenolics. Quantitative analysis revealed the highest content of flavonoids in L. nepetifolia (20.4 mg/g of dry extract) while the lowest content was determined in C. macrostachyus (7.1 mg/g of dry extract). On the other hand, the highest content of tannins was observed in L. nepetifolia. (199.9 mg/g of dry extract) while the lowest content was found in R. tridentata. (42.6 mg/g of dry extract). Medicinal plants used by traditional medicine practitioners in Eastern Uganda to manage HIV/AIDS are rich in phytochemicals including flavonoids and tannins. Further studies to evaluate the HIV-1 latency reversing ability of these phytochemicals are recommended to discover novel molecules against HIV/AIDS.
Collapse
Affiliation(s)
- Richard Oriko Owor
- Department of Chemistry, Faculty of Science and Education, Busitema University, P.O Box 236, Tororo, Uganda
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
| | - Carol Kawuma
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
- Department of Biology, Faculty of Science and Education, Busitema University, P.O. Box 236, Tororo, Uganda
| | - Gauden Nantale
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
- Department of Biology, Faculty of Science and Education, Busitema University, P.O. Box 236, Tororo, Uganda
| | - Kenedy Kiyimba
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Samuel Baker Obakiro
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Simple Ouma
- The AIDS Support Organization (TASO), P.O Box 10443, Kampala, Uganda
| | - Jalia Lulenzi
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
- Department of Paediatrics and Child Health, Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Yahaya Gavamukulya
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, Busitema University P.O Box 1460, Mbale, Uganda
| | - Mercy Chebijira
- Department of Chemistry, Faculty of Science and Education, Busitema University, P.O Box 236, Tororo, Uganda
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
| | - Tonny Wotoyitide Lukwago
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Moses Egor
- Department of Chemistry, Faculty of Science and Education, Busitema University, P.O Box 236, Tororo, Uganda
| | - Peter Musagala
- Department of Chemistry, Faculty of Science and Education, Busitema University, P.O Box 236, Tororo, Uganda
| | - Moses Andima
- Department of Chemistry, Faculty of Science and Education, Busitema University, P.O Box 236, Tororo, Uganda
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
| | - Dan Kibuule
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Paul Waako
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Joseph Hokello
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
- Department of Biology, Faculty of Science and Education, Busitema University, P.O. Box 236, Tororo, Uganda
| |
Collapse
|
4
|
Gonçalves E, Smaoui S, Brito M, Oliveira JM, Arez AP, Tavares L. Sickle Cell Disease: Current Drug Treatments and Functional Foods with Therapeutic Potential. Curr Issues Mol Biol 2024; 46:5845-5865. [PMID: 38921020 PMCID: PMC11202234 DOI: 10.3390/cimb46060349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Sickle cell anemia (SCA), the most common form of sickle cell disease (SCD), is a genetic blood disorder. Red blood cells break down prematurely, causing anemia and often blocking blood vessels, leading to chronic pain, organ damage, and increased infection risk. SCD arises from a single-nucleotide mutation in the β-globin gene, substituting glutamic acid with valine in the β-globin chain. This review examines treatments evaluated through randomized controlled trials for managing SCD, analyzes the potential of functional foods (dietary components with health benefits) as a complementary strategy, and explores the use of bioactive compounds as functional food ingredients. While randomized trials show promise for certain drugs, functional foods enriched with bioactive compounds also hold therapeutic potential. Further research is needed to confirm clinical efficacy, optimal dosages, and specific effects of these compounds on SCD, potentially offering a cost-effective and accessible approach to managing the disease.
Collapse
Affiliation(s)
- Elisângela Gonçalves
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Institute of Hygiene and Tropical Medicine, (IHMT), NOVA University of Lisbon (UNL) 1349-008 Lisbon, Portugal; (E.G.); (A.P.A.)
| | - Slim Smaoui
- Laboratory of Microbial and Enzymes Biotechnology and Biomolecules (LBMEB), Centre of Biotechnology of Sfax (CBS), University of Sfax-Tunisia, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia;
| | - Miguel Brito
- Health Research Centre of Angola (CISA), Caxito, Angola;
- H&TRC—Health & Technology Research Center, Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-092 Lisbon, Portugal
| | - J. M. Oliveira
- School of Design, Management and Production Technologies Northern Aveiro, University of Aveiro, Estrada do Cercal, 449, 3810-193 Oliveira de Azeméis, Portugal;
- EMaRT Group—Emerging Materials, Research, Technology, University of Aveiro, 3810-193 Aveiro, Portugal
- CICECO Aveiro—Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Paula Arez
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Institute of Hygiene and Tropical Medicine, (IHMT), NOVA University of Lisbon (UNL) 1349-008 Lisbon, Portugal; (E.G.); (A.P.A.)
| | - Loleny Tavares
- School of Design, Management and Production Technologies Northern Aveiro, University of Aveiro, Estrada do Cercal, 449, 3810-193 Oliveira de Azeméis, Portugal;
- EMaRT Group—Emerging Materials, Research, Technology, University of Aveiro, 3810-193 Aveiro, Portugal
- CICECO Aveiro—Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
5
|
Eteme ON, Zondegoumba EN, Tadayozzi YS, Serafim JA, Leite WQ, de Freitas Genari Severino M, Vicente EF. Methods for extraction, isolation and sequencing of cyclotides and others cyclic peptides with anti-helminthic activities: An overview. Parasitol Int 2024; 98:102808. [PMID: 37717651 DOI: 10.1016/j.parint.2023.102808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
The mortality rate caused by parasitic worms on their hosts is of great concern and studies have been carried out to find molecules to reduce the prevalence, host-parasite interaction, and resistance of parasites to treatments. Existing drugs on the market are very often toxic and have many side effects, hence the need to find new, more active molecules. It has been demonstrated in several works that medicinal plants constitute a wide range of new molecules that can solve this problem. Several works have already been able to demonstrate that cyclic peptides of plant origin have shown good activity in the fight against different types of helminths. Therefore, this review aims to provide a general overview of the methods and techniques of extraction, isolation, activities and mechanisms of action of cyclotides and other cyclic peptides for application in the treatment of helminthic infections.
Collapse
Affiliation(s)
- Olivier Ndogo Eteme
- São Paulo State University (UNESP), School of Sciences and Engineering, Tupã, São Paulo 17602-496, Brazil; University of Yaounde I, Faculty of Science, Department of Organic Chemistry, PO. BOX 812, Cameroon.
| | | | - Yasmin Saegusa Tadayozzi
- São Paulo State University (UNESP), School of Sciences and Engineering, Tupã, São Paulo 17602-496, Brazil
| | - Jessica Aparecida Serafim
- São Paulo State University (UNESP), School of Sciences and Engineering, Tupã, São Paulo 17602-496, Brazil
| | - Wendell Queiroz Leite
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal 14884-900, Brazil
| | | | - Eduardo Festozo Vicente
- São Paulo State University (UNESP), School of Sciences and Engineering, Tupã, São Paulo 17602-496, Brazil.
| |
Collapse
|
6
|
Zhang J, Guo J, Yang N, Huang Y, Wen J, Xiang Q, Liu Q, Chen Y, Hu T, Rao C. Zanthoxylum armatum DC fruit ethyl acetate extract site induced hepatotoxicity by activating endoplasmic reticulum stress and inhibiting autophagy in BRL-3A models. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117245. [PMID: 37802376 DOI: 10.1016/j.jep.2023.117245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zanthoxylum armatum DC (Z. armatum) is renowned not only as a culinary spice but also as a staple in traditional ethnic medicine, predominantly in Southeast Asia and various other regions. Recent research has unveiled its multifaceted pharmacological properties, including anti-inflammatory, antibacterial, and toothache relief effects. Nonetheless, some studies have reported the potential toxicity of Z. armatum, emphasizing the need to further explore its toxicity mechanisms for safer application. AIM OF THE STUDY This study investigated the effect and mechanism of hepatotoxicity in BRL-3A cells induced by Z. armatum. MATERIALS AND METHODS The compounds of the ethyl acetate extract of Z. armatum (ZADC-EA) were identified by ultrahigh performance liquid chromatography coupled with quadrupole-orbitrap high resolution mass spectrometry (UPLC-Q-Orbitrap HRMS). The hepatotoxicity of the extract was evaluated by detecting cell viability, aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) activity, and apoptosis. Endoplasmic reticulum stress, autophagy, and apoptosis were detected by Ad-mCherry-GFP-LC3B, flow cytometry, and Western blot to explore the mechanism of hepatotoxicity induced by ZADC-EA. RESULTS UPLC-Q-Orbitrap HRMS analysis revealed the presence of compounds belonging to flavonoids, terpenoids, and alkaloids. The IC50 value of ZADC-EA was 62.43 μg/mL, the cell viability of BRL-3A decreased in a time-dose dependent manner, and the levels of AST, ALT, and LDH were upregulated. In addition, ZADC-EA-induced increased expression of eIF2α-ATF4-CHOP pathway proteins, inhibited autophagy, and promoted apoptosis. CONCLUSIONS This study provides insights into the hepatotoxicity mechanisms of ZADC-EA on BRL-3A cells. It was found that ZADC-EA could induce endoplasmic reticulum stress and inhibit autophagy, then intensify apoptosis, and endoplasmic reticulum stress could exacerbate autophagy inhibition.
Collapse
Affiliation(s)
- Jian Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Jiafu Guo
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Nannan Yang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Yan Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Jiayu Wen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Qiwen Xiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Qiuyan Liu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Tingting Hu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| |
Collapse
|
7
|
Asigbaase M, Adusu D, Musah AA, Anaba L, Nsor CA, Abugre S, Derkyi M. Ethnobotanical and ethnopharmacological survey of medicinal tree species used in the treatment of diseases by forest-fringe communities of Southwestern Ghana. Heliyon 2024; 10:e23645. [PMID: 38226220 PMCID: PMC10788458 DOI: 10.1016/j.heliyon.2023.e23645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024] Open
Abstract
Demand for medicinal plant remedies is rising globally, while indigenous knowledge about medicinal plants is declining rapidly. The preservation of indigenous knowledge is critical in discovering and developing innovative drugs. The ongoing discussions on providing nature-based solutions to contemporary issues make it urgent to document indigenous knowledge about medicinal trees, especially in areas with limited or no studies such as our study area. Our study aimed to understand the use of medicinal trees among the communities fringing the Asukese and Amama Shelterbelt Forest Reserves. We administered structured questionnaires and interviewed 88 respondents who were selected using snowball and simple random techniques. The ethnobotanical survey data were processed and evaluated using parameters such as Indigenous Knowledge Index (IKI), Relative Citation Frequency (RCF), Species Use Value (SUV), Family Use Value (FUV), and Plant Part Value (PPV). We found that ethnobotanical knowledge about medicinal trees was higher in respondents who were widowed or had larger number of dependants. We found that the local communities used diverse medicinal trees (70 species belonging to 33 families) to treat 83 ailments. Azadirachta indica had the highest RCF (8.9) and SUV (23.4). The other top four species according to the SUV were Alstonia boonei (SUV = 11.1), Khaya senegalensis (SUV = 10.7), Moringa oleifera (SUV = 10.3) and Cocos nucifera (SUV = 10.2). The most-well represented and valuable families were Fabaceae, Anacardiaceae, Meliaceae, Arecaceae, Rubiaceae and Malvaceae. Medicinal trees had alternative uses such as food, fodder, fuelwood, and construction material. Indigenous knowledge about medicinal trees was transmitted to younger generations predominantly by parents. The results show that the most known botanical families and species with the most useful parts were the most useful plant families and species. Thus, the selection of medicinal trees was driven by their traits. Furthermore, results indicate that species diversity is critical to the healthcare needs of local communities and that their conservation and sustainable use and the preservation of indigenous knowledge are crucial to ensuring good health and the general well-being of local communities of all ages.
Collapse
Affiliation(s)
- Michael Asigbaase
- Department of Forest Sciences, University of Energy and Natural Resources, Sunyani, Ghana
| | - Daniel Adusu
- Department of Environmental Management, University of Energy and Natural Resources, Sunyani, Ghana
| | - Adisa Ayeley Musah
- Department of Biological Sciences, University of Energy and Natural Resources, Sunyani, Ghana
| | - Linda Anaba
- Department of Theoretical and Applied Biology, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Collins Ayine Nsor
- Department of Forest Resources Technology, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Simon Abugre
- Department of Forest Sciences, University of Energy and Natural Resources, Sunyani, Ghana
| | - Mercy Derkyi
- Department of Forest Sciences, University of Energy and Natural Resources, Sunyani, Ghana
| |
Collapse
|
8
|
Wekesa EN, Kimani NM, Kituyi SN, Omosa LK, Santos CBR. Therapeutic Potential of the Genus Zanthoxylum Phytochemicals: A Theoretical ADME/Tox Analysis. SOUTH AFRICAN JOURNAL OF BOTANY : OFFICIAL JOURNAL OF THE SOUTH AFRICAN ASSOCIATION OF BOTANISTS = SUID-AFRIKAANSE TYDSKRIF VIR PLANTKUNDE : AMPTELIKE TYDSKRIF VAN DIE SUID-AFRIKAANSE GENOOTSKAP VAN PLANTKUNDIGES 2023; 162:129-141. [PMID: 37840557 PMCID: PMC10569136 DOI: 10.1016/j.sajb.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Natural products (NPs) are essential in the search for new drugs to treat a wide range of diseases, including infectious and malignant disorders. However, despite the discovery of many bioactive NPs, they often do not make it to market as drugs due to toxicity and other challenges. The development of NPs into drugs is a long and expensive process, and many promising compounds are abandoned along the way. These molecules require in silico ADMET profiling in order to speed up their development into drugs lower costs, and the high attrition rate. The objective of this work was to produce thorough ADMET profiles of secondary metabolites from several classes that were isolated from Zanthoxylum species. The genus has a long history of therapeutic use, including treating tumours, hypertension, gonorrhoea, coughs, bilharzia, chest pains, and toothaches. The study used a dataset of 406 compounds from the genus for theoretical ADMET analysis. The findings revealed that 81% of the compounds met Lipinski's rule of five, indicating good oral bioavailability. The drug-likeness criteria were taken into account, with percentages ranging from 66.2 to 88.1 percent. Additionally, 9.2% of the compounds were predicted to be lead-like, demonstrating their potential as promising drug development candidates. Interestingly, none of the compounds inhibited hERG I, while 33% inhibited hERG II, potentially having cardiac implications. Additionally, 30% of the compounds exhibited AMES toxicity inhibition, while 23.6% were identified as hepatotoxic and 22.2% would cause skin sensitivity. Moreover, 81.8% of the compounds demonstrated high intestinal absorption, making them desirable for oral drugs. In conclusion, these findings highlight the diverse properties of the investigated compounds and their potential for drug development.
Collapse
Affiliation(s)
| | | | - Sarah N. Kituyi
- Department of Biological Sciences, University of Embu, Kenya
- The Fogarty International center of the National Institutes of Health- 31 Center Dr, Bethesda, MD 20892, United States
| | | | - Cleydson B. R. Santos
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Health Science Institute, Federal University of Pará, Belém 66075-110, PA, Brazil
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil
| |
Collapse
|
9
|
Sharma A, Sharma C, Shah OP, Chigurupati S, Ashokan B, Meerasa SS, Rashid S, Behl T, Bungau SG. Understanding the mechanistic potential of plant based phytochemicals in management of postmenopausal osteoporosis. Biomed Pharmacother 2023; 163:114850. [PMID: 37172332 DOI: 10.1016/j.biopha.2023.114850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/14/2023] Open
Abstract
Postmenopausal osteoporosis, an epidemic disorder is defined as a loss in bone mineral density and a greater possibility of fractures in older women. It is a multifactorial disease under the control of various genetic, hormonal, and environmental factors. Insufficiency of estrogen hormone, leads to postmenopausal osteoporosis. Hormone replacement therapy (HRT), despite being the most effective treatment, it is associated with the risk of breast cancer and cardiovascular disorders. This review seeks to compile the most recent information on medicinal plants and natural compounds used to treat and prevent postmenopausal osteoporosis. Furthermore, the origin, chemical constituents and the molecular mechanisms responsible for this therapeutic and preventive effect are also discussed. Literature research was conducted using PubMed, Science direct, Scopus, Web of Science, and Google Scholar. Different plant extracts and pure compounds exerts their antiosteoporotic activity by inhibition of RANKL and upregulation of OPG. RANKL signaling regulates osteoclast formation, characterized by increased bone turnover and osteoprotegrin is a decoy receptor for RANKL thereby preventing bone loss from excessive resorption. In addition, this review also includes the chemical structure of bioactive compounds acting on NFκB, TNF α, RUNX2. In conclusion, we propose that postmenopausal osteoporosis could be prevented or treated with herbal products.
Collapse
Affiliation(s)
- Aditi Sharma
- Department of Pharmacology, School of Pharmaceutical Sceinces, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Chakshu Sharma
- Department of Pharmacology, School of Pharmaceutical Sceinces, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Om Praksah Shah
- Department of Pharmacology, School of Pharmaceutical Sceinces, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Saveetha Nagar, Thandalam, Chennai, 602105 India
| | - Bhaskaran Ashokan
- Department of Surgery, College of Medicine, Shaqra University, Shaqra 15526, Saudi Arabia
| | - Semmal Syed Meerasa
- Department of Physiology, College of Medicine, Shaqra University, Shaqra 15526, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, PO Box 173, Al-Kharj 11942, Saudi Arabia
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun 248007, Uttarakhand, India.
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410028, Romania; Doctoral School of Biomedical Sciences, University of Oradea, Oradea 410028, Romania.
| |
Collapse
|
10
|
Mutinda ES, Kimutai F, Mkala EM, Waswa EN, Odago WO, Nanjala C, Ndungu CN, Gichua MK, Njire MM, Gituru RW, Hu GW. Ethnobotanical uses, phytochemistry and pharmacology of pantropical genus Zanthoxylum L. (Rutaceae): An update. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115895. [DOI: https:/doi.org/10.1016/j.jep.2022.115895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
|
11
|
Mutinda ES, Kimutai F, Mkala EM, Waswa EN, Odago WO, Nanjala C, Ndungu CN, Gichua MK, Njire MM, Gituru RW, Hu GW. Ethnobotanical uses, phytochemistry and pharmacology of pantropical genus Zanthoxylum L. (Rutaceae): An update. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115895. [PMID: 36513263 DOI: 10.1016/j.jep.2022.115895] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/24/2022] [Accepted: 10/30/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plants have been used in various parts of the world to treat various diseases. The genus Zanthoxylum L. (Rutaceae) is the second largest genus of this family and comprises approximately 225-549 species distributed in the tropical and temperate regions of the world. Plants of this genus are trees and shrubs with various applications in folklore medicine for food, medicine, construction, and other uses. AIM OF THE REVIEW The goal of this review is to give an updated data on the ethnobotanical applications, phytochemistry, and pharmacology of the Zanthoxylum species to investigate their medicinal potential and identify research gaps for future research studies. MATERIALS AND METHODS Data was obtained through a systematic search of published literature and online databases such as Google Scholar, Web of Science, PubMed, Science Direct, and Sci-Finder. The botanical names were confirmed using the World Flora Online and chemical structures were drawn using the ChemBio Draw Ultra Version 14.0 Software. RESULTS The Zanthoxylum species have a wide use in different parts of the continents as a remedy for various diseases such as digestive diseases, gastrointestinal disorders, venereal diseases, respiratory diseases, rheumatism, bacterial diseases, viral, and other diseases. Various parts of the plant comprising fruits, seeds, twigs, leaves, oils, and stems are administered singly or in the form of decoction, infusion, powder, paste, poultice, juice, or mixed with other medicinal plants to cure the disease. More than 400 secondary metabolites have been isolated and characterized in this genus with various biological activities, which comprise alkaloids, flavonoids, coumarins, lignans, alcohols, fatty acids, amides, sesquiterpenes, monoterpenes, and hydrocarbons. The crude extracts, fractions, and chemical compounds isolated from the genus have demonstrated a wide range of biological activities both in vivo and in vitro, including; anti-cancer, antimicrobial, anti-sickling, hepatoprotective, antipyretic, antitumor, and other pharmacological activities. CONCLUSION This genus has demonstrated an array of phytoconstituents with therapeutic potential. The ethnobotanical uses of this genus have been confirmed in modern pharmacological research. This genus is a potential source for modern drug discovery and health care products. Further and extensive research is therefore required on the safety approval and therapeutic application of the species of this genus as well as clinical trials and pharmacokinetic studies.
Collapse
Affiliation(s)
- Elizabeth Syowai Mutinda
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Festus Kimutai
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Elijah Mbandi Mkala
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Emmanuel Nyongesa Waswa
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wyclif Ochieng Odago
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Consolata Nanjala
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Caroline Njambi Ndungu
- Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya.
| | - Moses Kirega Gichua
- Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya.
| | - Moses Muguci Njire
- Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya.
| | - Robert Wahiti Gituru
- Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya.
| | - Guang-Wan Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Ethnobotanical Study of Traditional Medicinal Plants Used for the Treatment of Infectious Diseases by Local Communities in Traditional Authority (T/A) Mbelwa, Mzimba District, Northern Region, Malawi. J 2023. [DOI: 10.3390/j6010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
Local communities in Mzimba District, Malawi, have limited access to healthcare services and often rely on traditional medical practice and medicinal plants (MPs) for most of their medical care. However, phytomedicines’ use has not been well documented. This study aimed to identify and document medicinal plants and the associated ethnobotanical knowledge. Ethnobotanical data were collected in seven localities (19 villages) in the T/A Mbelwa, Mzimba, from May to June 2021. Forty traditional healers, herbalists, and farmers selected purposively and by snowball sampling were interviewed through semi-structured interviews, field observations, group discussions, and guided field walks. Quantitative indices, viz. relative frequency of citation (RFC), use value (UV), relative importance (RI) values, informant consensus factors (ICFs), and fidelity levels (FLs), were used to analyze the data. Eighty MPs belonging to 43 families and 77 genera were recorded. The Leguminosae family showed the highest number of species (16), followed by Solanaceae, Rubiaceae, and Phyllanthaceae. Trees (35 species) and roots (62%) accounted for the most significant habit and part, respectively. Washing (29%) was the most common preparation method. The most cited plant was Zanthoxylum chalybeum (RFC = 0.80, UV = 0.28, RI = 1.66), followed by Cassia abbreviata (RFC = 0.68, UV = 0.35, RI = 1.50). Respiratory disorders showed the highest ICF (0.53), followed by general and unspecified disorders (0.31). Z. chalybeum, C. abbreviata, and Oldfieldia dactylophylla showed maximum FLs (100%) for treating malaria and dysentery. Phytochemical, bioassay, toxicity, and conservation studies are needed to assess medicinal plants’ safety, efficacy, and quality as steps toward discovering new promising therapeutic leads without neglecting conservation programs for their sustainable utilization.
Collapse
|
13
|
Xu S, Yu L, Hou Y, Huang B, Wang H, Li D, Wang D. Chemical composition, chemotypic characterization, and histochemical localization of volatile components in different cultivars of Zanthoxylum bungeanum Maxim. leaves. J Food Sci 2023; 88:1336-1348. [PMID: 36786362 DOI: 10.1111/1750-3841.16490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/29/2022] [Accepted: 01/19/2023] [Indexed: 02/15/2023]
Abstract
Zanthoxylum bungeanum Maxim., an important spice plant, is rich in volatile components and has formed several cultivars in China. Genetic variation among different cultivars has significant effects on volatile components. In this study, a total of 52 volatile compounds were detected from 11 cultivars of Z. bungeanum, among which palmitic acid, (+)-limonene, phytol, β-caryophyllene, and terpinyl acetate were screened as characteristic compounds, with palmitic acid and phytol contributing the most to the volatile composition. Combined with the results of chemometric and content analyses, three Z. bungeanum chemotypes were identified: (+)-limonene, β-caryophyllene + terpinyl acetate, and palmitic acid + phytol. In addition, the dynamics of the accumulation of its main components were explored, and the optimal harvest period for Z. bungeanum leaves (late July or early August) was clarified. Moreover, histochemical analysis results showed that terpenoids were mainly accumulated in the oil cells of Z. bungeanum leaves, and there were some differences in the number of oil cells in different chemotypes of Z. bungeanum, which might affect the yield and quality of volatile components. The results showed that the differences of chemical composition among diverse chemotypes of Z. bungeanum might be an important factor leading to the quality differences of the same planting resources. Accordingly, the study on the classification of Z. bungeanum chemotypes and the accumulation patterns of major chemical components is of great theoretical significance and practical value as a favorable guarantee for the development and utilization of Z. bungeanum resources and quality control.
Collapse
Affiliation(s)
- Shengnan Xu
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - Li Yu
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - Yuping Hou
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - Bo Huang
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - Hong Wang
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - Dengwu Li
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, China.,Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization relies on the College of Forestry of Northwest A & F University, Yangling, Shaanxi, China
| | - Dongmei Wang
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, China.,Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization relies on the College of Forestry of Northwest A & F University, Yangling, Shaanxi, China
| |
Collapse
|
14
|
Hu Y, Chen X, Hu M, Zhang D, Yuan S, Li P, Feng L. Medicinal and edible plants in the treatment of dyslipidemia: advances and prospects. Chin Med 2022; 17:113. [PMID: 36175900 PMCID: PMC9522446 DOI: 10.1186/s13020-022-00666-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
Abstract
Dyslipidemia is an independent risk factor of cardiovascular diseases (CVDs), which lead to the high mortality, disability, and medical expenses in the worldwide. Based on the previous researches, the improvement of dyslipidemia could efficiently prevent the occurrence and progress of cardiovascular diseases. Medicinal and edible plants (MEPs) are the characteristics of Chinese medicine, and could be employed for the disease treatment and health care mostly due to their homology of medicine and food. Compared to the lipid-lowering drugs with many adverse effects, such as rhabdomyolysis and impaired liver function, MEPs exhibit the great potential in the treatment of dyslipidemia with high efficiency, good tolerance and commercial value. In this review, we would like to introduce 20 kinds of MEPs with lipid-lowering effect in the following aspects, including the source, function, active component, target and underlying mechanism, which may provide inspiration for the development of new prescription, functional food and complementary therapy for dyslipidemia.
Collapse
Affiliation(s)
- Ying Hu
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, 100053, China
- China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xingjuan Chen
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, 100053, China
| | - Mu Hu
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, 100053, China
- China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Dongwei Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Shuo Yuan
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China.
| | - Ping Li
- Beijing University of Chinese Medicine, Beijing, 100029, China.
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China.
| | - Ling Feng
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, 100053, China.
- China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
15
|
Hu H, He B, Ma L, Chen X, Han P, Luo Y, Liu Y, Fei X, Wei A. Physiological and transcriptome analyses reveal the photosynthetic response to drought stress in drought-sensitive (Fengjiao) and drought-tolerant (Hanjiao) Zanthoxylum bungeanum cultivars. FRONTIERS IN PLANT SCIENCE 2022; 13:968714. [PMID: 36186061 PMCID: PMC9524374 DOI: 10.3389/fpls.2022.968714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/12/2022] [Indexed: 06/16/2023]
Abstract
As an important economical plant, Zanthoxylum bungeanum is widely cultivated in arid and semi-arid areas. The studies associated with photosynthesis under drought stress were widely carried out, but not yet in Z. bungeanum. Here, the photosynthesis of two Z. bungeanum cultivars (FJ, Z. bungeanum cv. "Fengjiao"; HJ, Z. bungeanum cv. "Hanjiao") was analyzed under drought stress using physiological indicators and transcriptome data. Drought decreased stomatal aperture and stomatal conductance (Gsw), reduced transpiration rate (E) and sub-stomatal CO2 concentration (Ci), and lowered chlorophyll and carotenoid content, which reduced the net photosynthetic rate (Pn) of Z. bungeanum. The higher photosynthetic rate in HJ stemmed from its higher chlorophyll content, larger stomatal aperture and Gsw, and higher Ci. Weighted gene co-expression network analysis (WGCNA) identified several ABA signal transduction genes (PYL4, PYL9, and PYR1), LCH-encoding genes (LHCB4.3), and chlorophyll metabolism genes (CRD1, PORA, and CHLH). Additionally, seven transcription factor genes were identified as important factors regulating photosynthesis under drought conditions. In general, a photosynthetic response model under drought stress was built firstly in Z. bungeanum, and the key genes involved in photosynthesis under drought stress were identified. Therefore, the results in our research provide important information for photosynthesis under drought and provided key clues for future molecular breeding in Z. bungeanum.
Collapse
Affiliation(s)
- Haichao Hu
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, Shaanxi, China
| | - Beibei He
- College of Horticulture, Northwest Agriculture and Forestry University, Xianyang, Shaanxi, China
| | - Lei Ma
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, Shaanxi, China
| | - Xin Chen
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, Shaanxi, China
| | - Peilin Han
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, Shaanxi, China
| | - Yingli Luo
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, Shaanxi, China
| | - Yonghong Liu
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, Shaanxi, China
| | - Xitong Fei
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, Shaanxi, China
| | - Anzhi Wei
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, Shaanxi, China
| |
Collapse
|
16
|
Wang Z, Belecciu T, Eaves J, Reimers M, Bachmann MH, Woldring D. Phytochemical drug discovery for COVID-19 using high-resolution computational docking and machine learning assisted binder prediction. J Biomol Struct Dyn 2022:1-21. [PMID: 35993534 DOI: 10.1080/07391102.2022.2112976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The COVID-19 pandemic has resulted in millions of deaths around the world. Multiple vaccines are in use, but there are many underserved locations that do not have adequate access to them. Variants may emerge that are highly resistant to existing vaccines, and therefore cheap and readily obtainable therapeutics are needed. Phytochemicals, or plant chemicals, can possibly be such therapeutics. Phytochemicals can be used in a polypharmacological approach, where multiple viral proteins are inhibited and escape mutations are made less likely. Finding the right phytochemicals for viral protein inhibition is challenging, but in-silico screening methods can make this a more tractable problem. In this study, we screen a wide range of natural drug products against a comprehensive set of SARS-CoV-2 proteins using a high-resolution computational workflow. This workflow consists of a structure-based virtual screening (SBVS), where an initial phytochemical library was docked against all selected protein structures. Subsequently, ligand-based virtual screening (LBVS) was employed, where chemical features of 34 lead compounds obtained from the SBVS were used to predict 53 lead compounds from a larger phytochemical library via supervised learning. A computational docking validation of the 53 predicted leads obtained from LBVS revealed that 28 of them elicit strong binding interactions with SARS-CoV-2 proteins. Thus, the inclusion of LBVS resulted in a 4-fold increase in the lead discovery rate. Of the total 62 leads, 18 showed promising pharmacokinetic properties in a computational ADME screening. Collectively, this study demonstrates the advantage of incorporating machine learning elements into a virtual screening workflow.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zirui Wang
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Theodore Belecciu
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Joelle Eaves
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Mark Reimers
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.,Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Michael H Bachmann
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Daniel Woldring
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
17
|
Okagu IU, Ezeorba TPC, Aguchem RN, Ohanenye IC, Aham EC, Okafor SN, Bollati C, Lammi C. A Review on the Molecular Mechanisms of Action of Natural Products in Preventing Bone Diseases. Int J Mol Sci 2022; 23:ijms23158468. [PMID: 35955603 PMCID: PMC9368769 DOI: 10.3390/ijms23158468] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
The drugs used for treating bone diseases (BDs), at present, elicit hazardous side effects that include certain types of cancers and strokes, hence the ongoing quest for the discovery of alternatives with little or no side effects. Natural products (NPs), mainly of plant origin, have shown compelling promise in the treatments of BDs, with little or no side effects. However, the paucity in knowledge of the mechanisms behind their activities on bone remodeling has remained a hindrance to NPs’ adoption. This review discusses the pathological development of some BDs, the NP-targeted components, and the actions exerted on bone remodeling signaling pathways (e.g., Receptor Activator of Nuclear Factor κ B-ligand (RANKL)/monocyte/macrophage colony-stimulating factor (M-CSF)/osteoprotegerin (OPG), mitogen-activated protein kinase (MAPK)s/c-Jun N-terminal kinase (JNK)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), Kelch-like ECH-associated protein 1 (Keap-1)/nuclear factor erythroid 2–related factor 2 (Nrf2)/Heme Oxygenase-1 (HO-1), Bone Morphogenetic Protein 2 (BMP2)-Wnt/β-catenin, PhosphatidylInositol 3-Kinase (PI3K)/protein kinase B (Akt)/Glycogen Synthase Kinase 3 Beta (GSK3β), and other signaling pathways). Although majority of the studies on the osteoprotective properties of NPs against BDs were conducted ex vivo and mostly on animals, the use of NPs for treating human BDs and the prospects for future development remain promising.
Collapse
Affiliation(s)
- Innocent U. Okagu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (T.P.C.E.); (R.N.A.); (E.C.A.)
| | - Timothy P. C. Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (T.P.C.E.); (R.N.A.); (E.C.A.)
| | - Rita N. Aguchem
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (T.P.C.E.); (R.N.A.); (E.C.A.)
| | - Ikenna C. Ohanenye
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Emmanuel C. Aham
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (T.P.C.E.); (R.N.A.); (E.C.A.)
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka 410001, Nigeria
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sunday N. Okafor
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka 410001, Nigeria;
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milano, Italy;
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milano, Italy;
- Correspondence: ; Tel.: +39-02-5031-9372
| |
Collapse
|
18
|
Hu H, Fei X, He B, Chen X, Ma L, Han P, Luo Y, Liu Y, Wei A. UPLC-MS/MS Profile Combined With RNA-Seq Reveals the Amino Acid Metabolism in Zanthoxylum bungeanum Leaves Under Drought Stress. Front Nutr 2022; 9:921742. [PMID: 35873434 PMCID: PMC9301252 DOI: 10.3389/fnut.2022.921742] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Zanthoxylum bungeanum leaves have a unique taste and incomparable nutritional value and hence are popular as a food item and traditional medicine in China. However, the studies on the metabolites in Z. bungeanum leaves are quite limited, especially for amino acids. Therefore, this study explored the amino acid component in Z. bungeanum leaves and also the accumulation mechanism under drought stress in two Z. bungeanum cultivars using the widely targeted metabolome combined with transcriptome analysis. A total of 56 amino acids and their derivatives were identified in Z. bungeanum leaves, including eight essential amino acids. The total amino acid content with most individual amino acids increased under progressive drought stress. More differentially accumulated amino acids (DAAs) and differentially expressed genes (DEGs) were found in FJ (Z. bungeanum cv. ‘Fengjiao’) than in HJ (Z. bungeanum cv. ‘Hanjiao’). The orthogonal projections to latent structures discriminant analysis identified nine and seven indicator DAAs in FJ and HJ leaves, respectively. The weighted gene co-expression network analysis (WGCNA) showed that the green module was significantly correlated with most indicator DAAs and revealed the important role of FBA3, DELTA-OAT, PROC, and 15 transcription factor genes in regulating the amino acid synthesis. Furthermore, the correlation analysis and redundancy analysis (RDA) identified four candidate synthesis genes (ASNS, AK, ASPS, and PK) in amino acid biosynthesis pathway. This study provided useful information for the development of Z. bungeanum leaves in food and nutrition industry and also laid the foundations for future molecular breeding.
Collapse
Affiliation(s)
- Haichao Hu
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, China
| | - Xitong Fei
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, China
| | - Beibei He
- College of Horticulture, Northwest Agriculture and Forestry University, Xianyang, China
| | - Xin Chen
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, China
| | - Lei Ma
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, China
| | - Peilin Han
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, China
| | - Yingli Luo
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, China
| | - Yonghong Liu
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, China
| | - Anzhi Wei
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, China
- *Correspondence: Anzhi Wei,
| |
Collapse
|
19
|
Di Pietro M, Filardo S, Mattioli R, Francioso A, Raponi G, Mosca L, Sessa R. Extra Virgin Olive Oil-Based Green Formulations With Promising Antimicrobial Activity Against Drug-Resistant Isolates. Front Pharmacol 2022; 13:885735. [PMID: 35548334 PMCID: PMC9082028 DOI: 10.3389/fphar.2022.885735] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Extra virgin olive oil (EVOO) from Olea europaea L. drupes, a cornerstone in the Mediterranean diet, is well known for its nutritional and health properties, especially for prevention of cardiovascular diseases and metabolic disorders. Traditionally, beneficial health effects have been largely attributed to the high concentration of monounsaturated fatty acids, and in recent years, these have also been related to other components including oleacein and oleocanthal. Here, we evaluated, for the first time, the antimicrobial activity of different green extra virgin olive oil-based formulations in natural deep eutectic solvents (NaDESs) emerging as powerful and biocompatible solvents. Specifically, the antimicrobial activity of the EVOO extract, as well as purified oleocanthal and oleacein in two NaDESs (choline/glycerol and choline/propylene glycol), against several drug-resistant clinical isolates and standard microbial strains has been evaluated. The main result was the inhibitory activity of the EVOO extract in choline/glycerol as well as oleacein in choline/propylene glycol toward drug-resistant Gram-positive and -negative strains. Specifically, the EVOO extract in choline/glycerol showed the highest antibacterial activity against several clinical strains of Staphylococcus aureus, whereas oleacein in choline/propylene glycol was the most effective toward various clinical strains of Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. In addition, all the formulations tested were effective against Candida spp. In conclusion, our results suggest EVOO-based formulations in NaDESs as an interesting strategy that may help in reducing the risk of development of drug resistance. Under this perspective, the usage of NaDESs for the preparation of new antimicrobial formulations may represent a promising approach.
Collapse
Affiliation(s)
- Marisa Di Pietro
- Department of Public Health and Infectious Diseases, Faculty of Pharmacy and Medicine, “Sapienza” University of Rome, Roma, Italy
| | - Simone Filardo
- Department of Public Health and Infectious Diseases, Faculty of Pharmacy and Medicine, “Sapienza” University of Rome, Roma, Italy
| | - Roberto Mattioli
- Department of Biochemical Sciences, Faculty of Pharmacy and Medicine, “Sapienza” University of Rome, Roma, Italy
| | - Antonio Francioso
- Department of Biochemical Sciences, Faculty of Pharmacy and Medicine, “Sapienza” University of Rome, Roma, Italy
| | - Giammarco Raponi
- Department of Public Health and Infectious Diseases, Faculty of Pharmacy and Medicine, “Sapienza” University of Rome, Roma, Italy
| | - Luciana Mosca
- Department of Biochemical Sciences, Faculty of Pharmacy and Medicine, “Sapienza” University of Rome, Roma, Italy
| | - Rosa Sessa
- Department of Public Health and Infectious Diseases, Faculty of Pharmacy and Medicine, “Sapienza” University of Rome, Roma, Italy
| |
Collapse
|
20
|
Simanullang RH, Situmorang PC, Herlina M, Noradina, Silalahi B, Manurung SS. Histological changes of cervical tumours following Zanthoxylum acanthopodium DC treatment, and its impact on cytokine expression. Saudi J Biol Sci 2022; 29:2706-2718. [PMID: 35531208 PMCID: PMC9073070 DOI: 10.1016/j.sjbs.2021.12.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/09/2021] [Accepted: 12/28/2021] [Indexed: 11/29/2022] Open
Abstract
ZAM administration had no effect on the bodyweight of cervical cancer rats. Antioxidants found in andaliman can lower levels of MDA and serum NGAL, thereby increasing SOD activity. ZAM treatment can suppress the production of IL1β and TGFβ1 which promotes cancer cell growth in rats. ZAM administration can increase IL-10 expression in cervical cancer rats, thereby suppressing the growth of cervical cancer. ZAM decrease VEGFR1 serum expression and improve histology in cervical cancer rats.
Cervical cancer is the second most lethal cancer in Indonesia, behind breast cancer. One of the reasons cancer cells are difficult to treat is that the immune system is sometimes unable to recognise them as foreign. Cytokinin therapy is carried out so that the immune system can strengthen its response to cancer cells, with the aim of slowing or stopping the development of malignant cells. Zanthoxylum acanthopodium DC, also known as andaliman, is an Indonesian herb and a member of the Rutaceae family. It is rich in antioxidants and has anti-inflammatory and anti-cancer properties. The current study aimed to investigate the histological changes and changes in the expression of cytokines, such as IL-10, IL1β, VEGFR1, and TGFβ1, associated with andaliman treatment. Sample tissues and serums extracted from cervical cancer rat models were used. Rats were divided into five groups: a control group (C−), cancer model group (C+), cancer with a dose of Z. acanthopodium methanolic extract (ZAM) 100 mg/body weight (BW) ZAM (ZAM100), cancer with a dose of ZAM 200 mg/BW ZAM (ZAM200), and cancer with a dose of ZAM 400 mg/BW ZAM (ZAM400). Treatment lasted for 1 month. Blood samples were prepared for ELISA analysis, and cervical tissue was stained for immunohistochemistry using antibodies against IL-10, IL-1β, VEGFR1, and TGFβ1. Administration of ZAM had no significant effect on rat body weight and cervical organs (p > 0.05). However, it impacted haematological parameters in rats with cervical cancer (p < 0.05). Elevated malondialdehyde levels may be linked to superoxide dismutase deficiency in tumour tissue. ZAM significantly decreased the expression of IL1β, TGFβ1, and VEGFR1 (p < 0.01), while it increased the expression of IL-10. Therefore, ZAM may be a potential target for molecular cytokine therapy for cervical cancer.
Collapse
|