1
|
Taylor ZL, Green FG, Hossain N, Burckart GJ, Pacanowski M, Schuck RN. Assessment of Dosing Strategies for Pediatric Drug Products. Clin Pharmacol Ther 2024; 116:716-723. [PMID: 38493367 PMCID: PMC11338733 DOI: 10.1002/cpt.3250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/02/2024] [Indexed: 03/18/2024]
Abstract
Pediatric drug dosing is challenged by the heterogeneity of developing physiology and ethical considerations surrounding a vulnerable population. Often, pediatric drug dosing leverages findings from the adult population; however, recent regulatory efforts have motivated drug sponsors to pursue pediatric-specific programs to meet an unmet medical need and improve pediatric drug labeling. This paradigm is further complicated by the pathophysiological implications of obesity on drug distribution and metabolism and the roles that body composition and body size play in drug dosing. Therefore, we sought to understand the landscape of pediatric drug dosing by characterizing the dosing strategies from drug products recently approved for pediatric indications identified using FDA Drug Databases and analyze the impact of body size descriptors (age, body surface area, weight) on drug pharmacokinetics for several selected antipsychotics approved in pediatric patients. Our review of these pediatric databases revealed a dependence on body size-guided dosing, with 68% of dosing in pediatric drug labelings being dependent on knowing either the age, body surface area, or weight of the patient to guide dosing for pediatric patients. This dependence on body size-guided dosing drives the need for special consideration when dosing a drug in overweight and obese patients. Exploratory pharmacokinetic analyses in antipsychotics illustrate possible effects of drug exposure when applying different dosing strategies for this class of drugs. Future efforts should aim to further understand the pediatric drug dosing and obesity paradigm across pediatric age ranges and drug classes to optimize drug development and clinical care for this patient population.
Collapse
Affiliation(s)
- Zachary L. Taylor
- Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Francis G. Green
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Nayeem Hossain
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Gilbert J. Burckart
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Michael Pacanowski
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Robert N. Schuck
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
2
|
Yang R, Ding Q, Ding J, Zhu L, Pei Q. Physiologically based pharmacokinetic modeling in obesity: applications and challenges. Expert Opin Drug Metab Toxicol 2024:1-12. [PMID: 39101366 DOI: 10.1080/17425255.2024.2388690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/11/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
INTRODUCTION Rising global obesity rates pose a threat to people's health. Obesity causes a series of pathophysiologic changes, making the response of patients with obesity to drugs different from that of nonobese, thus affecting the treatment efficacy and even leading to adverse events. Therefore, understanding obesity's effects on pharmacokinetics is essential for the rational use of drugs in patients with obesity. AREAS COVERED Articles related to physiologically based pharmacokinetic (PBPK) modeling in patients with obesity from inception to October 2023 were searched in PubMed, Embase, Web of Science and the Cochrane Library. This review outlines PBPK modeling applications in exploring factors influencing obesity's effects on pharmacokinetics, guiding clinical drug development and evaluating and optimizing clinical use of drugs in patients with obesity. EXPERT OPINION Obesity-induced pathophysiologic alterations impact drug pharmacokinetics and drug-drug interactions (DDIs), altering drug exposure. However, there is a lack of universal body size indices or quantitative pharmacology models to predict the optimal for the patients with obesity. Therefore, dosage regimens for patients with obesity must consider individual physiological and biochemical information, and clinically individualize therapeutic drug monitoring for highly variable drugs to ensure effective drug dosing and avoid adverse effects.
Collapse
Affiliation(s)
- Ruwei Yang
- Department of Pharmacy, The Third XiangyHospital, Central South University, Changsha, Hunan, China
| | - Qin Ding
- Department of Pharmacy, The Third XiangyHospital, Central South University, Changsha, Hunan, China
| | - Junjie Ding
- Center for Tropical Medicine and Global Health, Oxford Medical School, Oxford, UK
| | - Liyong Zhu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qi Pei
- Department of Pharmacy, The Third XiangyHospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Wen J, McCann S, Balevic SJ, Muller WJ, Hornik CD, Autmizguine J, Anderson SG, Payne EH, Turdalieva S, Gonzalez D. Pharmacokinetics of Dexamethasone in Children and Adolescents with Obesity. J Clin Pharmacol 2024. [PMID: 39120865 DOI: 10.1002/jcph.6108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
Dexamethasone is a synthetic glucocorticoid approved for treating disorders of various organ systems in both adult and pediatric populations. Currently, approved pediatric dosing recommendations are weight-based, but it is unknown whether differences in dexamethasone drug disposition and exposure exist for children with obesity. This study aimed to develop a population pharmacokinetic (PopPK) model for dexamethasone with data collected from children with obesity. Dexamethasone was given as either IV or oral/enteral administration, and a salt factor correction was used for dexamethasone sodium phosphate injection. A PopPK analysis using dexamethasone plasma concentration versus time was performed using the software NONMEM. A virtual population of 1000 children with obesity across three age groups was generated for dosing simulations. Data from 59 study participants with 82 PK plasma samples were used in the PopPK analysis. A one-compartment model with first-order absorption and the inclusion of total body weight as a covariate characterized the data. No other covariates were included in the PopPK model. Single and multiple IV dose(s) of 0.5 and 1 mg/kg every 8 h resulted in 68% or more of virtual children with obesity attaining simulated exposures that were within exposure ranges previously reported in adult studies. In conclusion, this was the first study to characterize dexamethasone's PopPK in children with obesity. Simulation results suggest that virtual children with obesity receiving oral doses of 0.5 and 1 mg/kg had generally comparable dexamethasone exposures as adult estimates. Additional studies are needed to characterize the dexamethasone's target exposure in children.
Collapse
Affiliation(s)
- Jiali Wen
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sean McCann
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - William J Muller
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Chi D Hornik
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Julie Autmizguine
- Department of Pediatrics, Center Hospitalier Universitaire Sainte-Justine, Monetreal, Quebec, Canada
| | | | | | | | - Daniel Gonzalez
- Duke Clinical Research Institute, Durham, NC, USA
- Division of Clinical Pharmacology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
4
|
Boonrit N, Klaidokchan N, Niyomdecha A, Noppamas J, Suknuntha K, Prasertsan P, Thaworncheep S, Ruanglertboon W. Development and Evaluation of a Prototype Mobile Application for Intravenous Drug Dose Calculation in Overweight and Obese Thai Children: Precision Dosing in Practice. Hosp Pharm 2024; 59:453-459. [PMID: 38919757 PMCID: PMC11195842 DOI: 10.1177/00185787241229141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Background: Medication dosing in overweight and obese children often involves complex weight-based calculations, leading to higher dosing errors, particularly with intravenous drugs. Currently, tools to aid in dosage calculations are lacking for these patients, especially in Thai population. Objective: This study aimed to develop a mobile application with the intent of utilizing it as a tool to enhance the efficiency and accuracy of dosing calculations required for obese and overweight Thai children. Methods: The performance of the application was assessed in 3 key aspects using a sample of 30 healthcare professionals. These key aspects included: 1) the accuracy of dosage calculations, assessed through pre- and posttests comparing manual calculations to app-based calculations using a 10-item questionnaire, 2) the time taken for calculations before and after app usage, 3) user satisfaction, which was measured through a questionnaire. Results: The integration of applications into the calculation demonstrated a significant improvement when compared to the manual calculation in both accuracy (6.10 vs 9.33 out of 10, P < .001) and efficiency (10.40 vs 8.53 minutes per 10 questions, P = .008). Also, the application elicited high levels of satisfaction among users, as reflected by an overall mean satisfaction score of 4.57 on a 5-point scale. Conclusion: The integration of this application to assist in dosage calculations for overweight and obese pediatric Thai patients has yielded favorable outcomes concerning accuracy, efficiency, and user satisfaction. Further development should be pursued within a larger cohort, with an emphasis on real-world implementation in clinical settings.
Collapse
Affiliation(s)
| | | | | | | | - Krit Suknuntha
- Prince of Songkla University, Hatyai, Songkhla, Thailand
| | | | | | | |
Collapse
|
5
|
Thompson EJ, Jeong A, Helfer VE, Shakhnovich V, Edginton A, Balevic SJ, James LP, Collier DN, Anand R, Gonzalez D. Physiologically-based pharmacokinetic modeling of pantoprazole to evaluate the role of CYP2C19 genetic variation and obesity in the pediatric population. CPT Pharmacometrics Syst Pharmacol 2024; 13:1394-1408. [PMID: 38837864 PMCID: PMC11330186 DOI: 10.1002/psp4.13167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/11/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024] Open
Abstract
Pantoprazole is a proton pump inhibitor indicated for the treatment of gastroesophageal reflux disease, a condition that disproportionately affects children with obesity. Appropriately dosing pantoprazole in children with obesity requires understanding the body size metric that best guides dosing, but pharmacokinetic (PK) trials using traditional techniques are limited by the need for larger sample sizes and frequent blood sampling. Physiologically-based PK (PBPK) models are an attractive alternative that can account for physiologic-, genetic-, and drug-specific changes without the need for extensive clinical trial data. In this study, we explored the effect of obesity on pantoprazole PK and evaluated label-suggested dosing in this population. An adult PBPK model for pantoprazole was developed using data from the literature and accounting for genetic variation in CYP2C19. The adult PBPK model was scaled to children without obesity using age-associated changes in anatomical and physiological parameters. Lastly, the pediatric PBPK model was expanded to children with obesity. Three pantoprazole dosing strategies were evaluated: 1 mg/kg total body weight, 1.2 mg/kg lean body weight, and US Food and Drug Administration-recommended weight-tiered dosing. Simulated concentration-time profiles from our model were compared with data from a prospective cohort study (PAN01; NCT02186652). Weight-tiered dosing resulted in the most (>90%) children with pantoprazole exposures in the reference range, regardless of obesity status or CYP2C19 phenotype, confirming results from previously published population PK models. PBPK models may allow for the efficient study of physiologic and developmental effects of obesity on PK in special populations where clinical trial data may be limited.
Collapse
Affiliation(s)
- Elizabeth J. Thompson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of PediatricsDuke University Medical CenterDurhamNorth CarolinaUSA
- Duke Clinical Research InstituteDurhamNorth CarolinaUSA
| | - Angela Jeong
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Victória E. Helfer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Valentina Shakhnovich
- University of Missouri‐Kansas City School of MedicineKansas CityMissouriUSA
- Divisions of Gastroenterology, Hepatology and Nutrition & Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas CityKansas CityMissouriUSA
- Ironwood PharmaceuticalsBostonMassachusettsUSA
| | - Andrea Edginton
- School of PharmacyUniversity of WaterlooWaterlooOntarioCanada
| | - Stephen J. Balevic
- Department of PediatricsDuke University Medical CenterDurhamNorth CarolinaUSA
- Duke Clinical Research InstituteDurhamNorth CarolinaUSA
| | - Laura P. James
- Department of PediatricsUniversity of Arkansas for Medical Sciences, Section of Clinical Pharmacology and Toxicology, Arkansas Children's HospitalLittle RockArkansasUSA
| | - David N. Collier
- Department of Pediatrics and Center for Health Disparities, Division of General PediatricsEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | | | - Daniel Gonzalez
- Duke Clinical Research InstituteDurhamNorth CarolinaUSA
- Division of Clinical Pharmacology, Department of MedicineDuke University School of MedicineDurhamNorth CarolinaUSA
| |
Collapse
|
6
|
Jiang Y, Zhang S, Pan L, Leng J, Zhou T, Liu M, Li L, Zhao W. β-Glucan-based superabsorbent hydrogel acts as a gastrointestinal exoskeleton enhancing satiety and interfering fat hydrolysis. Int J Biol Macromol 2024; 275:133333. [PMID: 38945724 DOI: 10.1016/j.ijbiomac.2024.133333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/02/2024]
Abstract
Fat and its hydrolysis products, fatty acids, are indispensable nutritional components; however, prolonged excessive fat consumption, particularly in western diets, contributes to the onset of obesity and multiple metabolic disorders. In this study, we propose a daily-ingestible hydrogel (denoted as βC-MA hydrogel) composed of natural β-glucan and sodium carboxymethylcellulose crosslinked by malic acid at 120 °C. This hydrogel exhibits rapid swelling performance, up to 24-fold within 1 min and 176-fold after 1 h in deionized water. It also lengthens gastric retention and increases endogenous satiety signal levels, potentially controlling appetite and reducing food intake. Furthermore, βC-MA hydrogels that enter the small intestine can effectively inhibit fat hydrolysis and decrease triglyceride synthesis and transport. Specifically, the hydrogels inhibit the release of free fatty acids (FFAs) by approximately 50 % during digestion, influence the translocation of triglycerides and FFAs across the intestinal epithelium, and reduce the serum triglyceride levels by 22.2 %. These findings suggest that βC-MA hydrogels could serve as a noninvasive gastrointestinal device for weight control, with the advantage of reducing food intake and restoring lipid metabolism homeostasis.
Collapse
Affiliation(s)
- Yiming Jiang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Shiqi Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Linfan Pan
- School of Design, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Juncai Leng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Tingyi Zhou
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Mingxuan Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Li Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Wei Zhao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
7
|
Ramírez Medina CR, Feng M, Huang YT, Jenkins DA, Jani M. Machine learning identifies risk factors associated with long-term opioid use in fibromyalgia patients newly initiated on an opioid. RMD Open 2024; 10:e004232. [PMID: 38772680 PMCID: PMC11308899 DOI: 10.1136/rmdopen-2024-004232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/29/2024] [Indexed: 05/23/2024] Open
Abstract
OBJECTIVES Fibromyalgia is frequently treated with opioids due to limited therapeutic options. Long-term opioid use is associated with several adverse outcomes. Identifying factors associated with long-term opioid use is the first step in developing targeted interventions. The aim of this study was to evaluate risk factors in fibromyalgia patients newly initiated on opioids using machine learning. METHODS A retrospective cohort study was conducted using a nationally representative primary care dataset from the UK, from the Clinical Research Practice Datalink. Fibromyalgia patients without prior cancer who were new opioid users were included. Logistic regression, a random forest model and Boruta feature selection were used to identify risk factors related to long-term opioid use. Adjusted ORs (aORs) and feature importance scores were calculated to gauge the strength of these associations. RESULTS In this study, 28 552 fibromyalgia patients initiating opioids were identified of which 7369 patients (26%) had long-term opioid use. High initial opioid dose (aOR: 31.96, mean decrease accuracy (MDA) 135), history of self-harm (aOR: 2.01, MDA 44), obesity (aOR: 2.43, MDA 36), high deprivation (aOR: 2.00, MDA 31) and substance use disorder (aOR: 2.08, MDA 25) were the factors most strongly associated with long-term use. CONCLUSIONS High dose of initial opioid prescription, a history of self-harm, obesity, high deprivation, substance use disorder and age were associated with long-term opioid use. This study underscores the importance of recognising these individual risk factors in fibromyalgia patients to better navigate the complexities of opioid use and facilitate patient-centred care.
Collapse
Affiliation(s)
- Carlos Raúl Ramírez Medina
- Centre for Epidemiology Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
| | - Mengyu Feng
- Centre for Epidemiology Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
| | - Yun-Ting Huang
- Centre for Epidemiology Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
| | - David A Jenkins
- Division of Informatics, Imaging and Data Science, The University of Manchester, Manchester, UK
| | - Meghna Jani
- Centre for Epidemiology Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Department of Rheumatology, Salford Royal Hospital, Northern Care Alliance, Salford, UK
| |
Collapse
|
8
|
Burhanuddin K, Mohammed A, Badhan RKS. The Impact of Paediatric Obesity on Drug Pharmacokinetics: A Virtual Clinical Trials Case Study with Amlodipine. Pharmaceutics 2024; 16:489. [PMID: 38675150 PMCID: PMC11053426 DOI: 10.3390/pharmaceutics16040489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
The incidence of paediatric obesity continues to rise worldwide and contributes to a range of diseases including cardiovascular disease. Obesity in children has been shown to impact upon the plasma concentrations of various compounds, including amlodipine. Nonetheless, information on the influence of obesity on amlodipine pharmacokinetics and the need for dose adjustment has not been studied previously. This study applied the physiologically based pharmacokinetic modelling and established a paediatric obesity population to assess the impact of obesity on amlodipine pharmacokinetics in children and explore the possible dose adjustments required to reach the same plasma concentration as non-obese paediatrics. The difference in predicted maximum concentration (Cmax) and area under the curve (AUC) were significant between children with and without obesity across the age group 2 to 18 years old when a fixed-dose regimen was used. On the contrary, a weight-based dose regimen showed no difference in Cmax between obese and non-obese from 2 to 9 years old. Thus, when a fixed-dose regimen is to be administered, a 1.25- to 1.5-fold increase in dose is required in obese children to achieve the same Cmax concentration as non-obese children, specifically for children aged 5 years and above.
Collapse
Affiliation(s)
| | | | - Raj K. S. Badhan
- School of Pharmacy, College of Health and Life Science, Aston University, Birmingham B4 7ET, UK; (K.B.); (A.M.)
| |
Collapse
|
9
|
Maglalang PD, Wen J, Hornik CP, Gonzalez D. Sources of pharmacokinetic and pharmacodynamic variability and clinical pharmacology studies of antiseizure medications in the pediatric population. Clin Transl Sci 2024; 17:e13793. [PMID: 38618871 PMCID: PMC11017206 DOI: 10.1111/cts.13793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 04/16/2024] Open
Abstract
Multiple treatment options exist for children with epilepsy, including surgery, dietary therapies, neurostimulation, and antiseizure medications (ASMs). ASMs are the first line of therapy, and more than 30 ASMs have U.S. Food and Drug Administration (FDA) approval for the treatment of various epilepsy and seizure types in children. Given the extensive FDA approval of ASMs in children, it is crucial to consider how the physiological and developmental changes throughout childhood may impact drug disposition. Various sources of pharmacokinetic (PK) variability from different extrinsic and intrinsic factors such as patients' size, age, drug-drug interactions, and drug formulation could result in suboptimal dosing of ASMs. Barriers exist to conducting clinical pharmacological studies in neonates, infants, and children due to ethical and practical reasons, limiting available data to fully characterize these drugs' disposition and better elucidate sources of PK variability. Modeling and simulation offer ways to circumvent traditional and intensive clinical pharmacology methods to address gaps in epilepsy and seizure management in children. This review discusses various physiological and developmental changes that influence the PK and pharmacodynamic (PD) variability of ASMs in children, and several key ASMs will be discussed in detail. We will also review novel trial designs in younger pediatric populations, highlight the role of extrapolation of efficacy in epilepsy, and the use of physiologically based PK modeling as a tool to investigate sources of PK/PD variability in children. Finally, we will conclude with current challenges and future directions for optimizing the efficacy and safety of these drugs across the pediatric age spectrum.
Collapse
Affiliation(s)
- Patricia D. Maglalang
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Jiali Wen
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Christoph P. Hornik
- Duke Clinical Research InstituteDurhamNorth CarolinaUSA
- Department of PediatricsDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Daniel Gonzalez
- Duke Clinical Research InstituteDurhamNorth CarolinaUSA
- Division of Clinical Pharmacology, Department of MedicineDuke University School of MedicineDurhamNorth CarolinaUSA
| |
Collapse
|
10
|
Watanabe H, Nagano N, Tsuji Y, Noto N, Ayusawa M, Morioka I. Challenges of pediatric pharmacotherapy: A narrative review of pharmacokinetics, pharmacodynamics, and pharmacogenetics. Eur J Clin Pharmacol 2024; 80:203-221. [PMID: 38078929 DOI: 10.1007/s00228-023-03598-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/20/2023] [Indexed: 02/07/2024]
Abstract
PURPOSE Personalized pharmacotherapy, including for the pediatric population, provides optimal treatment and has emerged as a major trend owing to advanced drug therapeutics and diversified drug selection. However, it is essential to understand the growth and developmental characteristics of this population to provide appropriate drug therapy. In recent years, clinical pharmacogenetics has accumulated knowledge in pediatric pharmacotherapy, and guidelines from professional organizations, such as the Clinical Pharmacogenetics Implementation Consortium, can be consulted to determine the efficacy of specific drugs and the risk of adverse effects. However, the existence of a large knowledge gap hinders the use of these findings in clinical practice. METHODS We provide a narrative review of the knowledge gaps in pharmacokinetics (PK) and pharmacodynamics (PD) in the pediatric population, focusing on the differences from the perspective of growth and developmental characteristics. In addition, we explored PK/PD in relation to pediatric clinical pharmacogenetics. RESULTS The lack of direct and indirect biomarkers for more accurate assessment of the effects of drug administration limits the current knowledge of PD. In addition, incorporating pharmacogenetic insights as pivotal covariates is indispensable in this comprehensive synthesis for precision therapy; therefore, we have provided recommendations regarding the current status and challenges of personalized pediatric pharmacotherapy. The integration of clinical pharmacogenetics with the health care system and institution of educational programs for health care providers is necessary for its safe and effective implementation. A comprehensive understanding of the physiological and genetic complexities of the pediatric population will facilitate the development of effective and personalized pharmacotherapeutic strategies.
Collapse
Affiliation(s)
- Hirofumi Watanabe
- Department of Pediatrics and Child Health, Nihon University School of Medicine, 30-1 Kami-cho Ooyaguchi, Itabashi-ku, Tokyo, 173-8610, Japan.
| | - Nobuhiko Nagano
- Department of Pediatrics and Child Health, Nihon University School of Medicine, 30-1 Kami-cho Ooyaguchi, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Yasuhiro Tsuji
- Laboratory of Clinical Pharmacometrics, School of Pharmacy, Nihon University, Chiba, Japan
| | - Nobutaka Noto
- Department of Pediatrics and Child Health, Nihon University School of Medicine, 30-1 Kami-cho Ooyaguchi, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Mamoru Ayusawa
- Department of Pediatrics and Child Health, Nihon University School of Medicine, 30-1 Kami-cho Ooyaguchi, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, 30-1 Kami-cho Ooyaguchi, Itabashi-ku, Tokyo, 173-8610, Japan
| |
Collapse
|
11
|
Shen J, Moore KT, Shukla S, Yeo KR, Venkatakrishnan K. Inclusion of Obese Participants in Drug Development: Reflections on the Current Landscape and a Call for Action. J Clin Pharmacol 2024; 64:13-18. [PMID: 37888612 DOI: 10.1002/jcph.2377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
|
12
|
Hodel K, Fonseca A, Barbosa I, Medina C, Alves B, Maciel C, Nascimento D, Oliveira-Junior G, Pedreira L, de Souza M, Godoy AL. Obesity and its Relationship with Covid-19: A Review of the Main Pharmaceutical Aspects. Curr Pharm Biotechnol 2024; 25:1651-1663. [PMID: 38258769 DOI: 10.2174/0113892010264503231108070917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 01/24/2024]
Abstract
Important physiological changes are observed in patients with obesity, such as intestinal permeability, gastric emptying, cardiac output, and hepatic and renal function. These differences can determine variations in the pharmacokinetics of different drugs and can generate different concentrations at the site of action, which can lead to sub therapeutic or toxic concentrations. Understanding the physiological and immunological processes that lead to the clinical manifestations of COVID-19 is essential to correlate obesity as a risk factor for increasing the prevalence, severity, and lethality of the disease. Several drugs have been suggested to control COVID- 19 like Lopinavir, Ritonavir, Ribavirin, Sofosbuvir, Remdesivir, Oseltamivir, Oseltamivir phosphate, Oseltamivir carboxylate, Hydroxychloroquine, Chloroquine, Azithromycin, Teicoplanin, Tocilizumab, Anakinra, Methylprednisolone, Prednisolone, Ciclesonide and Ivermectin. Similarly, these differences between healthy people and obese people can be correlated to mechanical factors, such as insufficient doses of the vaccine for high body mass, impairing the absorption and distribution of the vaccine that will be lower than desired or can be linked to the inflammatory state in obese patients, which can influence the humoral immune response. Additionally, different aspects make the obese population more prone to persistent symptoms of the disease (long COVID), which makes understanding these mechanisms fundamental to addressing the implications of the disease. Thus, this review provides an overview of the relationship between COVID-19 and obesity, considering aspects related to pharmacokinetics, immunosuppression, immunization, and possible implications of long COVID in these individuals.
Collapse
Affiliation(s)
- Katharine Hodel
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Bahia, Salvador, Brazil
| | - Ananda Fonseca
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Bahia, Salvador, Brazil
| | - Islania Barbosa
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Bahia, Salvador, Brazil
| | - Caio Medina
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Bahia, Salvador, Brazil
| | - Brenda Alves
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Bahia, Salvador, Brazil
| | - Carine Maciel
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Bahia, Salvador, Brazil
| | - Daniel Nascimento
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Bahia, Salvador, Brazil
| | - Gessualdo Oliveira-Junior
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Bahia, Salvador, Brazil
| | - Lorena Pedreira
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Bahia, Salvador, Brazil
| | - Monielly de Souza
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Bahia, Salvador, Brazil
| | - Ana Leonor Godoy
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
13
|
Langevin B, Gobburu JVS, Gopalakrishnan M. Is There a Need for a Dedicated Pharmacokinetic Trial for a Drug in Obese Populations? A Drug Prioritization Decision Tree Framework. J Clin Pharmacol 2023; 63 Suppl 2:S48-S64. [PMID: 37942905 DOI: 10.1002/jcph.2304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/22/2023] [Indexed: 11/10/2023]
Abstract
Obesity is a growing global health concern associated with high comorbidity rates, leading to an increasing number of patients who are obese requiring medication. However, clinical trials often exclude or under-represent individuals who are obese, creating the need for a methodology to adjust labeling to ensure safe and effective dosing for all patients. To address this, we developed a 2-part decision tree framework to prioritize drugs for dedicated pharmacokinetic studies in obese subjects. Leveraging current drug knowledge and modeling techniques, the decision tree system predicts expected exposure changes and recommends labeling strategies, allowing stakeholders to prioritize resources toward the drugs most in need. In a case study evaluating 30 drugs from literature across different therapeutic areas, our first decision tree predicted the expected direction of exposure change accurately in 73% of cases. We conclude that this decision tree system offers a valuable tool to advance research in obesity pharmacology and personalize drug development for patients who are obese, ensuring safe and effective medication.
Collapse
Affiliation(s)
- Brooke Langevin
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Jogarao V S Gobburu
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Mathangi Gopalakrishnan
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, MD, USA
| |
Collapse
|
14
|
Samuels S, Bhatt-Mehta V, Park K, Burckart GJ. Obesity Considerations in Pediatric Drug Development, 2016-2021. J Clin Pharmacol 2023; 63 Suppl 2:S18-S24. [PMID: 37942908 DOI: 10.1002/jcph.2305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/06/2023] [Indexed: 11/10/2023]
Abstract
Pediatric obesity is a global public health concern. Obesity-related physiological changes may affect the pharmacokinetics of drugs and lead to therapeutic failure or toxicities. An earlier review of pediatric drug development programs from 2007 to 2016 found that, of 89 programs listing obesity-related terms, only 4 (4%) products described pharmacokinetic changes associated with obesity. This review examined obesity considerations for 185 drug products for which pediatric drug development programs were submitted to the US Food and Drug Administration (FDA) between 2016 and 2021. The FDA-authored review documents and drug product labeling were queried for obesity-related terms and the review found 97/185 (52%) drug products had obesity-related terms in these sources. Of the 97 drug products, 55/97 (57%) had obesity-related terms in the FDA-authored reviews only, 13/97 (13%) had obesity-related terms in the drug product labeling only, and 29/97 (30%) had obesity-related terms in both FDA-authored reviews and drug product labeling. Most of the obesity-related information in the drug product labeling originated from data collected from adults. Only 13/185 (7%) drug product labeling contained obesity-related terms in reference to drug pharmacokinetics. Specific dosage recommendations for the use of the drug products in pediatric patients who are obese remain lacking. The dearth of available information to guide drug dosages in the obese pediatric population suggests that further research, innovative approaches, and evidence-based guidelines are needed to inform the optimal therapeutic use of drugs in this population.
Collapse
Affiliation(s)
- Sherbet Samuels
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Varsha Bhatt-Mehta
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Kyunghun Park
- Office of Pharmaceutical Quality, Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Gilbert J Burckart
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
15
|
Samuels S, Vaidyanathan J, Fletcher EP, Ramamoorthy A, Madabushi R, Burckart GJ. Need for Representation of Pediatric Patients with Obesity in Clinical Trials. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1640. [PMID: 37892303 PMCID: PMC10605874 DOI: 10.3390/children10101640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023]
Abstract
Clinical trials are an integral aspect of drug development. Tremendous progress has been made in ensuring drug products are effective and safe for use in the intended pediatric population, but there remains a paucity of information to guide drug dosages in pediatric patients with obesity. This is concerning because obesity may influence the disposition of drug products. When pediatric patients with obesity are not enrolled in clinical trials, dosing options for use in this subpopulation may be suboptimal. Reliance on physiological-based dosing strategies that are not informed by evaluation of the pharmacokinetics of the drug product could lead to under- or over-dosing with ensuing therapeutic failure or toxicity consequences. Thus, representation of pediatric patients with obesity in clinical trials is crucial to understand the benefit-risk profile of drug products in this subpopulation. It is important to acknowledge that this is a challenging endeavor, but not one that is insurmountable. Collective efforts from multiple stakeholders including drug developers and regulators to enhance diversity in clinical trials can help fill critical gaps in knowledge related to the influence of obesity on drug disposition.
Collapse
Affiliation(s)
| | | | | | | | | | - Gilbert J. Burckart
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA (E.P.F.); (A.R.); (R.M.)
| |
Collapse
|
16
|
Besci Ö, Deveci Sevim R, Yüksek Acinikli K, Akın Kağızmanlı G, Ersoy S, Demir K, Ünüvar T, Böber E, Anık A, Abacı A. Growth Hormone Dosing Estimations Based on Body Weight Versus Body Surface Area. J Clin Res Pediatr Endocrinol 2023; 15:268-275. [PMID: 36974729 PMCID: PMC10448558 DOI: 10.4274/jcrpe.galenos.2023.2022-12-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/27/2023] [Indexed: 03/29/2023] Open
Abstract
Objective Both body weight (BW)- and body surface area (BSA)-based dosing regimens have been recommended for growth hormone (rhGH) replacement. The aim was to compare the two regimens to determine if either resulted in inadequate treatment depending on anthropometric factors. Methods The retrospective study included children diagnosed with idiopathic isolated growth hormone deficiency. BW-based dosing in mcg/kg/day was converted to BSA in mg/m2/day to determine the equivalent amounts of the given rhGH. Those with a BW-to-BSA ratio of more than 1 were allocated to the “relatively over-dosed group”, while the remaining patients with a ratio of less than 1 were assigned to the “relatively under-dosed” group. Patients with a height gain greater than 0.5 standard deviation score (SDS) at the end of one year were classified as the height gain at goal (HAG), whereas those with a height gain of less than 0.5 SDS were assigned as the height gain not at goal (NHAG). Results The study included 60 patients (18 girls, 30%). Thirty-six (60%) patients were classified as HAG. The ratio of dosing based on BW-to-BSA was positively correlated both with the ages and body mass index (BMI) levels of the patients, leveling off at the age of 11 at a BMI of 18 kg/m2. The relative dose estimations (over- and under-dosed groups) differed significantly between the patients classified as HAG or NHAG. Fifty-six percent of NHAG compared to 44% of HAG patients received relatively higher doses, while 79% of HAG compared to 21% of NHAG received relatively lower doses (p=0.006). When the patients were subdivided according to their pubertal status, higher doses were administrated mostly to the pubertal patients in both the NHAG and HAG groups. In the pre-pubertal age group, 73% of NHAG compared to 27% of HAG received relatively higher doses, while 25% of NHAG compared to 75% of HAG received relatively lower doses (p=0.01). Conclusion Dosing based on BW may be preferable in both prepubertal and pubertal children who do not show adequate growth responses. In prepubertal children, relatively lower doses calculated based on BW rather than BSA provide similar efficacy at lower costs.
Collapse
Affiliation(s)
- Özge Besci
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, İzmir, Turkey
| | - Reyhan Deveci Sevim
- Aydın Adnan Menderes University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, Aydın, Turkey
| | - Kübra Yüksek Acinikli
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, İzmir, Turkey
| | - Gözde Akın Kağızmanlı
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, İzmir, Turkey
| | - Sezen Ersoy
- Dokuz Eylül University Faculty of Medicine, Department of Pediatrics, İzmir, Turkey
| | - Korcan Demir
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, İzmir, Turkey
| | - Tolga Ünüvar
- Aydın Adnan Menderes University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, Aydın, Turkey
| | - Ece Böber
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, İzmir, Turkey
| | - Ahmet Anık
- Aydın Adnan Menderes University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, Aydın, Turkey
| | - Ayhan Abacı
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, İzmir, Turkey
| |
Collapse
|
17
|
Anderson BJ, Cortinez LI. Perioperative Acetaminophen Dosing in Obese Children. CHILDREN 2023; 10:children10040625. [PMID: 37189874 DOI: 10.3390/children10040625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/14/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Acetaminophen is a commonly used perioperative analgesic drug in children. The use of a preoperative loading dose achieves a target concentration of 10 mg/L associated with a target analgesic effect that is 2.6 pain units (visual analogue scale 1–10). Postoperative maintenance dosing is used to keep this effect at a steady-state concentration. The loading dose in children is commonly prescribed per kilogram. That dose is consistent with the linear relationship between the volume of distribution and total body weight. Total body weight is made up of both fat and fat-free mass. The fat mass has little influence on the volume of distribution of acetaminophen but fat mass should be considered for maintenance dosing that is determined by clearance. The relationship between the pharmacokinetic parameter, clearance, and size is not linear. A number of size metrics (e.g., fat-free and normal fat mass, ideal body weight and lean body weight) have been proposed to scale clearance and all consequent dosing schedules recognize curvilinear relationships between clearance and size. This relationship can be described using allometric theory. Fat mass also has an indirect influence on clearance that is independent of its effects due to increased body mass. Normal fat mass, used in conjunction with allometry, has proven a useful size metric for acetaminophen; it is calculated using fat-free mass and a fraction (Ffat) of the additional mass contributing to total body weight. However, the Ffat for acetaminophen is large (Ffat = 0.82), pharmacokinetic and pharmacodynamic parameter variability high, and the concentration–response slope gentle at the target concentration. Consequently, total body weight with allometry is acceptable for the calculation of maintenance dose. The dose of acetaminophen is tempered by concerns about adverse effects, notably hepatotoxicity associated with use after 2–3 days at doses greater than 90 mg/kg/day.
Collapse
|
18
|
Melatonin Prescription in Children and Adolescents in Relation to Body Weight and Age. Pharmaceuticals (Basel) 2023; 16:ph16030396. [PMID: 36986495 PMCID: PMC10058986 DOI: 10.3390/ph16030396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
The prescription of melatonin to children and adolescents has increased dramatically in Sweden and internationally during the last ten years. In the present study we aimed to evaluate the prescribed melatonin dose in relation to body weight and age in children. The population-based BMI Epidemiology Study Gothenburg cohort has weight available from school health care records, and information on melatonin prescription through linkage with high-quality national registers. We included prescriptions of melatonin to individuals below 18 years of age where a weight measurement not earlier than three months before, or later than six months after the dispensing date, was available (n = 1554). Similar maximum doses were prescribed to individuals with overweight orobesity as to individuals with normal weight, and to individuals below and above 9 years of age. Age and weight only explained a marginal part of the variance in maximum dose, but were inversely associated and explained a substantial part of the variance in maximum dose per kg. As a result, individuals overweight or with obesity, or age above 9 years, received lower maximum dose per kg of body weight, compared with individuals with normal weight or below 9 years of age. Thus, the prescribed melatonin dose to individuals under 18 years of age is not primarily informed by body weight or age, resulting in substantial differences in prescribed dose per kg of body weight across BMI and age distribution.
Collapse
|
19
|
Wu N, Yu H, Xu M. Alteration of brain nuclei in obese children with and without Prader-Willi syndrome. Front Neuroinform 2022; 16:1032636. [PMID: 36465689 PMCID: PMC9716021 DOI: 10.3389/fninf.2022.1032636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/31/2022] [Indexed: 09/10/2024] Open
Abstract
Introduction: Prader-Willi syndrome (PWS) is a multisystem genetic imprinting disorder mainly characterized by hyperphagia and childhood obesity. Extensive structural alterations are expected in PWS patients, and their influence on brain nuclei should be early and profound. To date, few studies have investigated brain nuclei in children with PWS, although functional and structural alterations of the cortex have been reported widely. Methods: In the current study, we used T1-weighted magnetic resonance imaging to investigate alterations in brain nuclei by three automated analysis methods: shape analysis to evaluate the shape of 14 cerebral nuclei (bilateral thalamus, caudate, putamen, globus pallidus, hippocampus, amygdala, and nucleus accumbens), automated segmentation methods integrated in Freesurfer 7.2.0 to investigate the volume of hypothalamic subregions, and region of interest-based analysis to investigate the volume of deep cerebellar nuclei (DCN). Twelve age- and sex-matched children with PWS, 18 obese children without PWS (OB) and 18 healthy controls participated in this study. Results: Compared with control and OB individuals, the PWS group exhibited significant atrophy in the bilateral thalamus, pallidum, hippocampus, amygdala, nucleus accumbens, right caudate, bilateral hypothalamus (left anterior-inferior, bilateral posterior, and bilateral tubular inferior subunits) and bilateral DCN (dentate, interposed, and fastigial nuclei), whereas no significant difference was found between the OB and control groups. Discussion: Based on our evidence, we suggested that alterations in brain nuclei influenced by imprinted genes were associated with clinical manifestations of PWS, such as eating disorders, cognitive disability and endocrine abnormalities, which were distinct from the neural mechanisms of obese children.
Collapse
Affiliation(s)
- Ning Wu
- Department of Medical Imaging, Yanjing Medical College, Capital Medical University, Beijing, China
| | - Huan Yu
- Department of Radiology, Liangxiang Hospital, Beijing, China
| | - Mingze Xu
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
20
|
Gaeta F, Conti V, Pepe A, Vajro P, Filippelli A, Mandato C. Drug dosing in children with obesity: a narrative updated review. Ital J Pediatr 2022; 48:168. [PMID: 36076248 PMCID: PMC9454408 DOI: 10.1186/s13052-022-01361-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Childhood obesity and its associated comorbidities are highly prevalent diseases that may add to any other possible health problem commonly affecting the pediatric age. Uncertainties may arise concerning drug dosing when children with obesity need pharmacologic therapies. In general, in pediatric practice, there is a tendency to adapt drug doses to a child's total body weight. However, this method does not consider the pharmacological impact that a specific drug can have under a two-fold point of view, that is, across various age and size groups as well. Moreover, there is a need for a therapeutic approach, as much as possible tailored considering relevant interacting aspects, such as modification in metabolomic profile, drug pharmacokinetics and pharmacodynamics. Taking into account the peculiar differences between children with overweight/obesity and those who are normal weight, the drug dosage in the case of obesity, cannot be empirically determined solely by the per kg criterion. In this narrative review, we examine the pros and cons of several drug dosing methods used when dealing with children who are affected also by obesity, focusing on specific aspects of some of the drugs most frequently prescribed in real-world practice by general pediatricians and pediatric subspecialists.
Collapse
Affiliation(s)
- Francesca Gaeta
- Pediatrics Section, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, Salerno, Italy
| | - Valeria Conti
- Pharmacology Section, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, Salerno, Italy
| | - Angela Pepe
- Pediatrics Section, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, Salerno, Italy
| | - Pietro Vajro
- Pediatrics Section, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, Salerno, Italy
| | - Amelia Filippelli
- Pharmacology Section, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, Salerno, Italy
| | - Claudia Mandato
- Pediatrics Section, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, Salerno, Italy.
| |
Collapse
|