1
|
Wang Q, He Z, Zhu J, Hu M, Yang L, Yang H. Polyphyllin B inhibited STAT3/NCOA4 pathway and restored gut microbiota to ameliorate lung tissue injury in cigarette smoke-induced mice. BMC Biotechnol 2024; 24:13. [PMID: 38459479 PMCID: PMC10921762 DOI: 10.1186/s12896-024-00837-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/15/2024] [Indexed: 03/10/2024] Open
Abstract
OBJECTIVE Smoking was a major risk factor for chronic obstructive pulmonary disease (COPD). This study plan to explore the mechanism of Polyphyllin B in lung injury induced by cigarette smoke (CSE) in COPD. METHODS Network pharmacology and molecular docking were applied to analyze the potential binding targets for Polyphyllin B and COPD. Commercial unfiltered CSE and LPS were used to construct BEAS-2B cell injury in vitro and COPD mouse models in vivo, respectively, which were treated with Polyphyllin B or fecal microbiota transplantation (FMT). CCK8, LDH and calcein-AM were used to detect the cell proliferation, LDH level and labile iron pool. Lung histopathology, Fe3+ deposition and mitochondrial morphology were observed by hematoxylin-eosin, Prussian blue staining and transmission electron microscope, respectively. ELISA was used to measure inflammation and oxidative stress levels in cells and lung tissues. Immunohistochemistry and immunofluorescence were applied to analyze the 4-HNE, LC3 and Ferritin expression. RT-qPCR was used to detect the expression of FcRn, pIgR, STAT3 and NCOA4. Western blot was used to detect the expression of Ferritin, p-STAT3/STAT3, NCOA4, GPX4, TLR2, TLR4 and P65 proteins. 16S rRNA gene sequencing was applied to detect the gut microbiota. RESULTS Polyphyllin B had a good binding affinity with STAT3 protein, which as a target gene in COPD. Polyphyllin B inhibited CS-induced oxidative stress, inflammation, mitochondrial damage, and ferritinophagy in COPD mice. 16S rRNA sequencing and FMT confirmed that Akkermansia and Escherichia_Shigella might be the potential microbiota for Polyphyllin B and FMT to improve CSE and LPS-induced COPD, which were exhausted by the antibiotics in C + L and C + L + P mice. CSE and LPS induced the decrease of cell viability and the ferritin and LC3 expression, and the increase of NCOA4 and p-STAT3 expression in BEAS-2B cells, which were inhibited by Polyphyllin B. Polyphyllin B promoted ferritin and LC3II/I expression, and inhibited p-STAT3 and NCOA4 expression in CSE + LPS-induced BEAS-2B cells. CONCLUSION Polyphyllin B improved gut microbiota disorder and inhibited STAT3/NCOA4 pathway to ameliorate lung tissue injury in CSE and LPS-induced mice.
Collapse
Affiliation(s)
- Qing Wang
- The Affiliated Changsha Central Hospital, Department of Respiratory and Critical Care Medicine, Hengyang Medical School, University of South China, Changsha, Hunan, 410004, China
| | - Zhiyi He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jinqi Zhu
- The Affiliated Changsha Central Hospital, Department of Respiratory and Critical Care Medicine, Hengyang Medical School, University of South China, Changsha, Hunan, 410004, China
| | - Mengyun Hu
- The Affiliated Changsha Central Hospital, Department of Respiratory and Critical Care Medicine, Hengyang Medical School, University of South China, Changsha, Hunan, 410004, China
| | - Liu Yang
- The Affiliated Changsha Central Hospital, Department of Respiratory and Critical Care Medicine, Hengyang Medical School, University of South China, Changsha, Hunan, 410004, China
| | - Hongzhong Yang
- The Affiliated Changsha Central Hospital, Department of Respiratory and Critical Care Medicine, Hengyang Medical School, University of South China, Changsha, Hunan, 410004, China.
| |
Collapse
|
2
|
Wei K, Zhang X, Yang J, Chen J. Tobacco introduced Perilla frutescens and Ocimum basilicum genes attenuates neutrophilic inflammation in lung tissues of COPD rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115956. [PMID: 38215665 DOI: 10.1016/j.ecoenv.2024.115956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/10/2023] [Accepted: 01/06/2024] [Indexed: 01/14/2024]
Abstract
The new-type tobacco varieties "Zisu" and "Luole" were obtained by distant hybridization between N. tabacum L. var. HHY and Perilla frutescens and Ocimum basilicum, with obviously different chemical composition. Smoking is the major risk factor for COPD, characterized by neutrophil-dominant inflammation. In the present study, rat COPD model was established by cigarette exposure, and the health hazard of three varieties was compared by general condition observation, pathological and morphological evaluation, total and differential cell numeration, and characterization of major inflammatory mediators and MAPK/NF-κB pathway, etc. Rats in "HHY" group developed obvious symptoms such as cough, dyspnea, mental fatigue, etc., but these symptoms were obviously mitigated in "Zisu" and "Luole" groups. H&E staining analysis, including score, MLI, MAN, wt% and WA%, showed that "Zisu" and "Luole" significantly alleviated lung injury and the degree of airway remodeling and emphysema compared to "HHY". In BALF, the number of total leukocyte and the percent neutrophils in "Zisu" and "Luole" groups were evidently lower than "HHY" group. The levels of inflammatory mediators, such as IL-8, MPO, MIP-2, LTB4, TNF-α and neutrophil elastase, in "HHY" group were obviously higher than "Zisu" and "Luole" groups. The ROS-mediated NF-κB p65 and p38MAPK pathways may play an important role. Results indicated that tobacco introduced perilla and basil genes could remarkably attenuate recruitment, infiltration and activation of neutrophils and intervene in airway inflammation, retarding disease progression, especially "Zisu". Changes in chemical composition via breeding techniques may be a novel way for tobacco harm reduction.
Collapse
Affiliation(s)
- Keqiang Wei
- School of Life Science, Shanxi University, Taiyuan 030006, China; Xinghuacun College of Shanxi University (Shanxi Institute of Brewing Technology and Industry), Taiyuan 030006, China.
| | - Xuan Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Jinwen Yang
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Jiayi Chen
- School of Life Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
3
|
Liu L, Zhang Y, Wang L, Liu Y, Chen H, Hu Q, Xie C, Meng X, Shen X. Scutellarein alleviates chronic obstructive pulmonary disease through inhibition of ferroptosis by chelating iron and interacting with arachidonate 15-lipoxygenase. Phytother Res 2023; 37:4587-4606. [PMID: 37353982 DOI: 10.1002/ptr.7928] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/16/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
Ferroptosis, an iron-dependent cell death characterized by lethal lipid peroxidation, is involved in chronic obstructive pulmonary disease (COPD) pathogenesis. Therefore, ferroptosis inhibition represents an attractive strategy for COPD therapy. Herein, we identified natural flavonoid scutellarein as a potent ferroptosis inhibitor for the first time, and characterized its underlying mechanisms for inhibition of ferroptosis and COPD. In vitro, the anti-ferroptotic activity of scutellarein was investigated through CCK8, real-time quantitative polymerase chain reaction (RT-qPCR), Western blotting, flow cytometry, and transmission electron microscope (TEM). In vivo, COPD was induced by lipopolysaccharide (LPS)/cigarette smoke (CS) and assessed by changes in histopathological, inflammatory, and ferroptotic markers. The mechanisms were investigated by RNA-sequencing (RNA-seq), electrospray ionization mass spectra (ESI-MS), local surface plasmon resonance (LSPR), drug affinity responsive target stability (DARTS), cellular thermal shift assay (CETSA), and molecular dynamics. Our results showed that scutellarein significantly inhibited Ras-selective lethal small molecule (RSL)-3-induced ferroptosis and mitochondria injury in BEAS-2B cells, and ameliorated LPS/CS-induced COPD in mice. Furthermore, scutellarein also repressed RSL-3- or LPS/CS-induced lipid peroxidation, GPX4 down-regulation, and overactivation of Nrf2/HO-1 and JNK/p38 pathways. Mechanistically, scutellarein inhibited RSL-3- or LPS/CS-induced Fe2+ elevation through directly chelating Fe2+ . Moreover, scutellarein bound to the lipid peroxidizing enzyme arachidonate 15-lipoxygenase (ALOX15), which resulted in an unstable state of the catalysis-related Fe2+ chelating cluster. Additionally, ALOX15 overexpression partially abolished scutellarein-mediated anti-ferroptotic activity. Our findings revealed that scutellarein alleviated COPD by inhibiting ferroptosis via directly chelating Fe2+ and interacting with ALOX15, and also highlighted scutellarein as a candidate for the treatment of COPD and other ferroptosis-related diseases.
Collapse
Affiliation(s)
- Lu Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunsen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Lun Wang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yue Liu
- College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongqing Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiongying Hu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunguang Xie
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofei Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Wang J, Ren C, Jin L, Batu W. Seabuckthorn Wuwei Pulvis attenuates chronic obstructive pulmonary disease in rat through gut microbiota-short chain fatty acids axis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116591. [PMID: 37146846 DOI: 10.1016/j.jep.2023.116591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/19/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Seabuckthorn Wuwei Pulvis (SWP) is a traditional Mongolian medicine used in China. It is composed of Hippophae rhamnoides (berries, 30 g), Aucklandiae costus Falc. (dry root, 25 g), Vitis vinifera F. Cordifolia (berries, 20 g), Glycyrrhiza uralensis Fisch. (dry root, 15 g), and Gardenia jasminoides J. Ellis (desiccative ripe fruit, 10 g). It is clinically applied in the treatment of chronic cough, shortness of breath and phlegm, and chest distress. Past studies demonstrated that Seabuckthorn Wuwei Pulvis improved lung inflammation and chronic bronchitis in mice. However, the effect of Seabuckthorn Wuwei Pulvis on chronic obstructive pulmonary disease (COPD) in rats and the underlying action mechanism is not fully understood. AIM OF THE STUDY To evaluate the anti-COPD effect of Seabuckthorn Wuwei Pulvis and investigate whether its ameliorative effect is correlated with the composition of gut microbiota and its metabolites. MATERIALS AND METHODS The effects of Seabuckthorn Wuwei Pulvis on a COPD rat model were established by exposure to lipopolysaccharide (LPS) and smoking. These effects were then evaluated by monitoring the animal weight, pulmonary function, lung histological alteration, and the levels of inflammatory factors (tumor necrotic factor [TNF]-α, interleukin [IL]-8, IL-6, and IL-17). Furthermore, the serum LPS and fluorescein isothiocyanate-dextran levels were detected by using an enzyme-linked immunosorbent assay and fluorescence microplate reader, respectively. Tight junction proteins (ZO-1 and occludin-1) in the small intestine were detected by performing real-time quantitative polymerase chain reactions and Western blotting to evaluate the intestinal barrier function. The contents of short-chain fatty acids (SCFAs) in the feces of rats were determined by gas chromatography-mass spectrometry. 16S rDNA high throughput sequencing was used to investigate the effect of SWP on the gut microbiota of COPD rats. RESULTS Treatment with low and median doses of SWP significantly increased the pulmonary function (forced expiratory volume [FEV] 0.3, forced vital capacity [FVC], and FEV0.3/FVC), decreased the levels of TNF-α, IL-8, IL-6, and IL-17 in the lung, and attenuated the infiltration of inflammatory cells into the lung. The low and median doses of SWP shaped the composition of gut microbiota, which increased the abundances of Ruminococcaceae, Christensenellaceae, and Aerococcaceae, increased the productions of acetic acid, propionic acid, and butyric acid, and upregulated the expression of ZO-1 and occludin-1 in the small intestine of COPD rats. CONCLUSION SWP improved pulmonary functions and inhibited the inflammatory response by shaping the gut microbiota, increasing SCFA production, and strengthening the intestinal barrier function in rats with COPD induced by LPS and smoking.
Collapse
Affiliation(s)
- JunMei Wang
- Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Chunxiu Ren
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 017099, China
| | - Lingling Jin
- Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Wuliji Batu
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 017099, China.
| |
Collapse
|
5
|
Kim JH, Kim JW, Kim CY, Jeong JS, Ko JW, Kim TW. Green tea extract ameliorates macrophage-driven emphysematous lesions in chronic obstructive pulmonary disease induced by cigarette smoke condensate. Phytother Res 2023; 37:1366-1376. [PMID: 36729048 DOI: 10.1002/ptr.7745] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/14/2022] [Accepted: 01/21/2023] [Indexed: 02/03/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is an important lung disease characterized by complicated symptoms including emphysema. We aimed to explore the mechanisms underlying the protective effect of green tea extract (GTE) on cigarette smoke condensate (CSC)-induced emphysema by demonstrating the reduction of macrophage-induced protease expression through GTE treatment in vivo and in vitro. Mice were intranasally administered 50 mg/kg CSC once a week for 4 weeks, and doses of 100 or 300 mg/kg GTE were administered orally once daily for 4 weeks. GTE significantly reduced macrophage counts in bronchoalveolar lavage fluid and emphysematous lesions in lung tissues in CSC-exposed mice. In addition, GTE suppressed CSC-induced extracellular signal-regulated kinase (ERK)/activator protein (AP)-1 phosphorylation followed by matrix metalloproteinases (MMP)-9 expression as revealed by western blotting, immunohistochemistry, and zymography in CSC-instilled mice. These underlying mechanisms related to reduced protease expression were confirmed in NCI-H292 cells stimulated by CSC. Taken together, GTE effectively inhibits macrophage-driven emphysematous lesions induced by CSC treatment, and these protective effects of GTE are closely related to the ERK/AP-1 signaling pathway, followed by a reduced protease/antiprotease imbalance. These results suggest that GTE can be used as a supplementary agent for the prevention of emphysema progression in COPD patients.
Collapse
Affiliation(s)
- Jin-Hwa Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, Daejeon, Republic of Korea
| | - Jeong-Won Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, Daejeon, Republic of Korea
| | - Chang-Yeop Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, Daejeon, Republic of Korea
| | - Ji-Soo Jeong
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, Daejeon, Republic of Korea
| | - Je-Won Ko
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, Daejeon, Republic of Korea
| | - Tae-Won Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
6
|
Mitra SS, Ghorai M, Nandy S, Mukherjee N, Kumar M, Radha, Ghosh A, Jha NK, Proćków J, Dey A. Barbaloin: an amazing chemical from the 'wonder plant' with multidimensional pharmacological attributes. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1525-1536. [PMID: 36173445 PMCID: PMC9520999 DOI: 10.1007/s00210-022-02294-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022]
Abstract
Aloe vera (L.) Burm.f. is nicknamed the 'Miracle plant' or sometimes as the 'Wonder plant'. It is a plant that has been used since ancient times for the innumerable health benefits associated with it. It is one of the important plants that has its use in conventional medicinal treatments. It is a perennial succulent, drought-tolerant member of the family Asphodelaceae. There are scores of properties associated with the plant that help in curing various forms of human ailments. Extracts and gels obtained from plants have been shown to be wonderful healers of different conditions, mainly various skin problems. Also, this plant is popular in the cosmetics industry. The underlying properties of the plant are now mainly associated with the natural phytochemicals present in the plant. Diverse groups of phytoingredients are found in the plant, including various phenolics, amino acids, sugars, vitamins, and different other organic compounds, too. One of the primary ingredients found in the plant is the aloin molecule. It is an anthraquinone derivative and exists as an isomer of Aloin A and Aloin B. Barbaloin belonging to the first group is a glucoside of the aloe-emodin anthrone molecule. Various types of pharmacological properties exhibited by the plant can be attributed to this chemical. Few significant ones are antioxidant, anti-inflammatory, anti-diabetic, anti-cancer, anti-microbial, and anti-viral, along with their different immunity-boosting actions. Recently, molecular coupling studies have also found the role of these molecules as a potential cure against the ongoing COVID-19 disease. This study comprehensively focuses on the numerous pharmacological actions of the primary compound barbaloin obtained from the Aloe vera plant along with the mechanism of action and the potent application of these natural molecules under various conditions.
Collapse
Affiliation(s)
- Shreya Sikdar Mitra
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Samapika Nandy
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Nobendu Mukherjee
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, Australia
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research On Cotton Technology, Mumbai, 400019, Maharashtra, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Arabinda Ghosh
- Department of Botany, Gauhati University, 781014, Guwahati, Assam, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, Punjab, India
- Department of Biotechnology, School of Applied & Life Sciences, Uttaranchal University, Dehradun, 248007, Uttarakhand, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631, Wrocław, Poland.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| |
Collapse
|