1
|
Asiimwe IG, Blockman M, Cavallari LH, Cohen K, Cupido C, Dandara C, Davis BH, Jacobson B, Johnson JA, Lamorde M, Limdi NA, Morgan J, Mouton JP, Muyambo S, Nakagaayi D, Ndadza A, Okello E, Perera MA, Schapkaitz E, Sekaggya-Wiltshire C, Semakula JR, Tatz G, Waitt C, Yang G, Zhang EJ, Jorgensen AL, Pirmohamed M. Meta-analysis of genome-wide association studies of stable warfarin dose in patients of African ancestry. Blood Adv 2024; 8:5248-5261. [PMID: 39163621 PMCID: PMC11493193 DOI: 10.1182/bloodadvances.2024014227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024] Open
Abstract
ABSTRACT Warfarin dose requirements are highly variable because of clinical and genetic factors. Although genetic variants influencing warfarin dose have been identified in European and East Asian populations, more work is needed to identify African-specific genetic variants to help optimize warfarin dosing. We performed genome-wide association studies (GWASs) in 4 African cohorts from Uganda, South Africa, and Zimbabwe, totaling 989 warfarin-treated participants who reached stable dose and had international normalized ratios within therapeutic ranges. We also included 2 African American cohorts recruited by the International Warfarin Pharmacogenetics Consortium (n = 316) and the University of Alabama at Birmingham (n = 199). After the GWAS, we performed standard error-weighted meta-analyses and then conducted stepwise conditional analyses to account for known loci in chromosomes 10 and 16. The genome-wide significance threshold was set at P < 5 × 10-8. The meta-analysis, comprising 1504 participants, identified 242 significant SNPs across 3 genomic loci, with 99.6% of these located within known loci on chromosomes 10 (top SNP: rs58800757, P = 4.27 × 10-13) and 16 (top SNP: rs9925964, P = 9.97 × 10-16). Adjustment for the VKORC1 SNP -1639G>A revealed an additional locus on chromosome 2 (top SNPs rs116057875/rs115254730/rs115240773, P = 3.64 × 10-8), implicating the MALL gene, that could indirectly influence warfarin response through interactions with caveolin-1. In conclusion, we reaffirmed the importance of CYP2C9 and VKORC1 in influencing warfarin dose requirements, and identified a new locus (MALL), that still requires direct evidence of biological plausibility.
Collapse
Affiliation(s)
- Innocent G. Asiimwe
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Marc Blockman
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Larisa H. Cavallari
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, University of Florida College of Pharmacy, Gainesville, FL
| | - Karen Cohen
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Clint Cupido
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Victoria Hospital Internal Medicine Research Initiative, Victoria Hospital Wynberg, Cape Town, South Africa
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology, Pharmacogenomics and Drug Metabolism Research Group, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Brittney H. Davis
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL
| | - Barry Jacobson
- Department of Molecular Medicine and Haematology, University of the Witwatersrand, Johannesburg, South Africa
| | - Julie A. Johnson
- Division of Pharmaceutics and Pharmacology, Center for Clinical and Translational Science, College of Medicine, The Ohio State University, Columbus, OH
| | - Mohammed Lamorde
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Nita A. Limdi
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL
| | - Jennie Morgan
- Metro Health Services, Western Cape Department of Health and Wellness, Cape Town, South Africa
- Division of Family Medicine, Department of Family, Community and Emergency Care, University of Cape Town, Cape Town, South Africa
| | - Johannes P. Mouton
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Sarudzai Muyambo
- Department of Biological Sciences and Ecology, Faculty of Science, University of Zimbabwe, Harare, Zimbabwe
| | - Doreen Nakagaayi
- Department of Adult Cardiology, Uganda Heart Institute, Kampala, Uganda
| | - Arinao Ndadza
- Division of Human Genetics, Department of Pathology, Pharmacogenomics and Drug Metabolism Research Group, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Emmy Okello
- Department of Adult Cardiology, Uganda Heart Institute, Kampala, Uganda
| | - Minoli A. Perera
- Department of Pharmacology, Center for Pharmacogenomics, Northwestern University, Chicago, IL
| | - Elise Schapkaitz
- Department of Molecular Medicine and Hematology, Charlotte Maxeke Johannesburg Academic Hospital National Health Laboratory System Complex and University of Witwatersrand, Johannesburg, South Africa
| | | | - Jerome R. Semakula
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Gayle Tatz
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Catriona Waitt
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Guang Yang
- Department of Pharmacology, Center for Pharmacogenomics, Northwestern University, Chicago, IL
- Genetics Group, Center for Applied Bioinfomatics, St. Jude Children's Research Hospital, Memphis, TN
| | - Eunice J. Zhang
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Andrea L. Jorgensen
- Department of Health Data Science, Institute of Population Health Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Munir Pirmohamed
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
2
|
Delabays B, Trajanoska K, Walonoski J, Mooser V. Cardiovascular Pharmacogenetics: From Discovery of Genetic Association to Clinical Adoption of Derived Test. Pharmacol Rev 2024; 76:791-827. [PMID: 39122647 DOI: 10.1124/pharmrev.123.000750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 04/24/2024] [Accepted: 05/28/2024] [Indexed: 08/12/2024] Open
Abstract
Recent breakthroughs in human genetics and in information technologies have markedly expanded our understanding at the molecular level of the response to drugs, i.e., pharmacogenetics (PGx), across therapy areas. This review is restricted to PGx for cardiovascular (CV) drugs. First, we examined the PGx information in the labels approved by regulatory agencies in Europe, Japan, and North America and related recommendations from expert panels. Out of 221 marketed CV drugs, 36 had PGx information in their labels approved by one or more agencies. The level of annotations and recommendations varied markedly between agencies and expert panels. Clopidogrel is the only CV drug with consistent PGx recommendation (i.e., "actionable"). This situation prompted us to dissect the steps from discovery of a PGx association to clinical translation. We found 101 genome-wide association studies that investigated the response to CV drugs or drug classes. These studies reported significant associations for 48 PGx traits mapping to 306 genes. Six of these 306 genes are mentioned in the corresponding PGx labels or recommendations for CV drugs. Genomic analyses also highlighted the wide between-population differences in risk allele frequencies and the individual load of actionable PGx variants. Given the high attrition rate and the long road to clinical translation, additional work is warranted to identify and validate PGx variants for more CV drugs across diverse populations and to demonstrate the utility of PGx testing. To that end, pre-emptive PGx combining genomic profiling with electronic medical records opens unprecedented opportunities to improve healthcare, for CV diseases and beyond. SIGNIFICANCE STATEMENT: Despite spectacular breakthroughs in human molecular genetics and information technologies, consistent evidence supporting PGx testing in the cardiovascular area is limited to a few drugs. Additional work is warranted to discover and validate new PGx markers and demonstrate their utility. Pre-emptive PGx combining genomic profiling with electronic medical records opens unprecedented opportunities to improve healthcare, for CV diseases and beyond.
Collapse
Affiliation(s)
- Benoît Delabays
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada (B.D., K.T., V.M.); and Medeloop Inc., Palo Alto, California, and Montreal, QC, Canada (J.W.)
| | - Katerina Trajanoska
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada (B.D., K.T., V.M.); and Medeloop Inc., Palo Alto, California, and Montreal, QC, Canada (J.W.)
| | - Joshua Walonoski
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada (B.D., K.T., V.M.); and Medeloop Inc., Palo Alto, California, and Montreal, QC, Canada (J.W.)
| | - Vincent Mooser
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada (B.D., K.T., V.M.); and Medeloop Inc., Palo Alto, California, and Montreal, QC, Canada (J.W.)
| |
Collapse
|
3
|
Friedman JM, Bombard Y, Carleton B, Issa AM, Knoppers B, Plon SE, Rahimzadeh V, Relling MV, Williams MS, van Karnebeek C, Vears D, Cornel MC. Should secondary pharmacogenomic variants be actively screened and reported when diagnostic genome-wide sequencing is performed in a child? Genet Med 2024; 26:101033. [PMID: 38007624 DOI: 10.1016/j.gim.2023.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023] Open
Abstract
This white paper was prepared by the Global Alliance for Genomics and Health Regulatory and Ethics Work Stream's Pediatric Task Team to review and provide perspective with respect to ethical, legal, and social issues regarding the return of secondary pharmacogenomic variants in children who have a serious disease or developmental disorder and are undergoing exome or genome sequencing to identify a genetic cause of their condition. We discuss actively searching for and reporting pharmacogenetic/genomic variants in pediatric patients, different methods of returning secondary pharmacogenomic findings to the patient/parents and/or treating clinicians, maintaining these data in the patient's health record over time, decision supports to assist using pharmacogenetic results in future treatment decisions, and sharing information in public databases to improve the clinical interpretation of pharmacogenetic variants identified in other children. We conclude by presenting a series of points to consider for clinicians and policymakers regarding whether, and under what circumstances, routine screening and return of pharmacogenomic variants unrelated to the indications for testing is appropriate in children who are undergoing genome-wide sequencing to assist in the diagnosis of a suspected genetic disease.
Collapse
Affiliation(s)
- Jan M Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Yvonne Bombard
- Genomics Health Services Research Program, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Bruce Carleton
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada; Division of Translational Therapeutics, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Pharmaceutical Outcomes Programme, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Amalia M Issa
- Personalized Precision Medicine & Targeted Therapeutics, Springfield, MA; Health Policy, University of the Sciences, Philadelphia, PA; Pharmaceutical Sciences, University of the Sciences, Philadelphia, PA; Family Medicine, McGill University, Montreal, Quebec, Canada
| | - Bartha Knoppers
- Centre of Genomics and Policy, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Sharon E Plon
- Department of Pediatrics, Texas Children's Cancer and Hematology Center, Baylor College of Medicine, Houston, TX; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Vasiliki Rahimzadeh
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX
| | - Mary V Relling
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | | | - Clara van Karnebeek
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, The Netherlands; Departments of Pediatrics and Human Genetics, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands; United for Metabolic Diseases, The Netherlands; Radboud Center for Mitochondrial and Metabolic Medicine, Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Danya Vears
- University of Melbourne, Carlton, Melbourne, Australia; Biomedical Ethics Research Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Martina C Cornel
- Department of Human Genetics and Amsterdam Public Health Research Institute, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Corpas M, Siddiqui MK, Soremekun O, Mathur R, Gill D, Fatumo S. Addressing Ancestry and Sex Bias in Pharmacogenomics. Annu Rev Pharmacol Toxicol 2024; 64:53-64. [PMID: 37450899 DOI: 10.1146/annurev-pharmtox-030823-111731] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The association of an individual's genetic makeup with their response to drugs is referred to as pharmacogenomics. By understanding the relationship between genetic variants and drug efficacy or toxicity, we are able to optimize pharmacological therapy according to an individual's genotype. Pharmacogenomics research has historically suffered from bias and underrepresentation of people from certain ancestry groups and of the female sex. These biases can arise from factors such as drugs and indications studied, selection of study participants, and methods used to collect and analyze data. To examine the representation of biogeographical populations in pharmacogenomic data sets, we describe individuals involved in gene-drug response studies from PharmGKB, a leading repository of drug-gene annotations, and showcaseCYP2D6, a gene that metabolizes approximately 25% of all prescribed drugs. We also show how the historical underrepresentation of females in clinical trials has led to significantly more adverse drug reactions in females than in males.
Collapse
Affiliation(s)
- Manuel Corpas
- School of Life Sciences, University of Westminster, London, United Kingdom
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, United Kingdom
| | - Moneeza K Siddiqui
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Opeyemi Soremekun
- African Computational Genomics (TACG) Research Group, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Rohini Mathur
- Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Segun Fatumo
- African Computational Genomics (TACG) Research Group, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom;
| |
Collapse
|
5
|
Rodríguez-Fernández K, Reynaldo-Fernández G, Reyes-González S, de Las Barreras C, Rodríguez-Vera L, Vlaar C, Monbaliu JCM, Stelzer T, Duconge J, Mangas-Sanjuan V. New insights into the role of VKORC1 polymorphisms for optimal warfarin dose selection in Caribbean Hispanic patients through an external validation of a population PK/PD model. Biomed Pharmacother 2024; 170:115977. [PMID: 38056237 PMCID: PMC10853672 DOI: 10.1016/j.biopha.2023.115977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023] Open
Abstract
Warfarin, an oral anticoagulant, has been used for decades to prevent thromboembolic events. The complex interplay between CYP2C9 and VKORC1 genotypes on warfarin PK and PD properties is not fully understood in special sub-groups of patients. This study aimed to externally validate a population pharmacokinetic/pharmacodynamic (PK/PD) model for the effect of warfarin on international normalized ratio (INR) and to evaluate optimal dosing strategies based on the selected covariates in Caribbean Hispanic patients. INR, and CYP2C9 and VKORC1 genotypes from 138 patients were used to develop a population PK/PD model in NONMEM. The structural definition of a previously published PD model for INR was implemented. A numerical evaluation of the parameter-covariate relationship was performed. Simulations were conducted to determine optimal dosing strategies for each genotype combinations, focusing on achieving therapeutic INR levels. Findings revealed elevated IC50 for G/G, G/A, and A/A VKORC1 haplotypes (11.76, 10.49, and 9.22 mg/L, respectively), in this population compared to previous reports. The model-guided dosing analysis recommended daily warfarin doses of 3-5 mg for most genotypes to maintain desired INR levels, although subjects with combination of CYP2C9 and VKORC1 genotypes * 2/* 2-, * 2/* 3- and * 2/* 5-A/A would require only 1 mg daily. This research underscores the potential of population PK/PD modeling to inform personalized warfarin dosing in populations typically underrepresented in clinical studies, potentially leading to improved treatment outcomes and patient safety. By integrating genetic factors and clinical data, this approach could pave the way for more effective and tailored anticoagulation therapy in diverse patient groups.
Collapse
Affiliation(s)
- Karine Rodríguez-Fernández
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain
| | | | - Stephanie Reyes-González
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico - Medical Sciences Campus, San Juan 00936, PR, USA
| | | | - Leyanis Rodríguez-Vera
- Center for Pharmacometrics and System Pharmacology at Lake Nona (Orlando), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA
| | - Cornelis Vlaar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico - Medical Sciences Campus, San Juan 00936, PR, USA
| | - Jean-Christophe M Monbaliu
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B-4000 Liège (Sart Tilman), Liège, Belgium
| | - Torsten Stelzer
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico - Medical Sciences Campus, San Juan 00936, PR, USA; Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan 00926, PR, USA
| | - Jorge Duconge
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico - Medical Sciences Campus, San Juan 00936, PR, USA.
| | - Victor Mangas-Sanjuan
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain; Interuniversity Research Institute for Molecular Recognition and Technological Development, Polytechnic University of Valencia-University of Valencia, Valencia, Spain
| |
Collapse
|
6
|
Masimirembwa C, Ramsay M, Botha J, Ellis E, Etheredge H, Hurrell T, Kanji CR, Kapungu NN, Maher H, Mthembu B, Naidoo J, Scholefield J, Rambarran S, van der Schyff F, Smyth N, Strobele B, Thelingwani RS, Loveland J, Fabian J. The African Liver Tissue Biorepository Consortium: Capacitating Population-Appropriate Drug Metabolism, Pharmacokinetics, and Pharmacogenetics Research in Drug Discovery and Development. Drug Metab Dispos 2023; 51:1551-1560. [PMID: 37751997 DOI: 10.1124/dmd.123.001400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/21/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
Pharmaceutical companies subject all new molecular entities to a series of in vitro metabolic characterizations that guide the selection and/or design of compounds predicted to have favorable pharmacokinetic properties in humans. Current drug metabolism research is based on liver tissue predominantly obtained from people of European origin, with limited access to tissue from people of African origin. Given the interindividual and interpopulation genomic variability in genes encoding drug-metabolizing enzymes, efficacy and safety of some drugs are poorly predicted for African populations. To address this gap, we have established the first comprehensive liver tissue biorepository inclusive of people of African origin. The African Liver Tissue Biorepository Consortium currently includes three institutions in South Africa and one in Zimbabwe, with plans to expand to other African countries. The program has collected 67 liver samples as of July 2023. DNA from the donors was genotyped for 120 variants in 46 pharmacogenes and revealed variants that are uniquely found in African populations, including the low-activity, African-specific CYP2C9*5 and *8 variants relevant to the metabolism of diclofenac. Larger liver tissue samples were used to isolate primary human hepatocytes. Viability of the hepatocytes and microsomal fractions was demonstrated by the activity of selected cytochrome P450s. This resource will be used to ensure the safety and efficacy of existing and new drugs in African populations. This will be done by characterizing compounds for properties such as drug clearance, metabolite and enzyme identification, and drug-drug and drug-gene interactions. SIGNIFICANCE STATEMENT: Standard optimization of the drug metabolism of new molecular entities in the pharmaceutical industry uses subcellular fractions such as microsomes and isolated primary hepatocytes, being done mainly with tissue from donors of European origin. Pharmacogenetics research has shown that variants in genes coding for drug-metabolizing enzymes have interindividual and interpopulation differences. We established an African liver tissue biorepository that will be useful in ensuring drug discovery and development research takes into account drug responses in people of African origin.
Collapse
Affiliation(s)
- Collen Masimirembwa
- African institute of biomedical Science and Technology (AiBST), Harare, Zimbabwe (C.M., C.R.K., N.N.K., R.S.T.); Sydney Brenner Institute of Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (C.M., M.R., B.M., N.S.); Wits Donald Gordon Medical Centre (WDGMC), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (H.E., H.M., S.R., B.S., F.V.S., J.L., J.F.); Karolinska Institute, Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Transplantation Surgery, Karolinska University Hospital Huddinge, Sweden (E.E.); Bioengineering and Integrated Genomics Group, Next Generation Health Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa (T.H., J.N., J.S.); and Transplant Services, Intermountain Medical Center, Salt Lake City, Utah (J.B.)
| | - Michele Ramsay
- African institute of biomedical Science and Technology (AiBST), Harare, Zimbabwe (C.M., C.R.K., N.N.K., R.S.T.); Sydney Brenner Institute of Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (C.M., M.R., B.M., N.S.); Wits Donald Gordon Medical Centre (WDGMC), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (H.E., H.M., S.R., B.S., F.V.S., J.L., J.F.); Karolinska Institute, Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Transplantation Surgery, Karolinska University Hospital Huddinge, Sweden (E.E.); Bioengineering and Integrated Genomics Group, Next Generation Health Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa (T.H., J.N., J.S.); and Transplant Services, Intermountain Medical Center, Salt Lake City, Utah (J.B.)
| | - Jean Botha
- African institute of biomedical Science and Technology (AiBST), Harare, Zimbabwe (C.M., C.R.K., N.N.K., R.S.T.); Sydney Brenner Institute of Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (C.M., M.R., B.M., N.S.); Wits Donald Gordon Medical Centre (WDGMC), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (H.E., H.M., S.R., B.S., F.V.S., J.L., J.F.); Karolinska Institute, Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Transplantation Surgery, Karolinska University Hospital Huddinge, Sweden (E.E.); Bioengineering and Integrated Genomics Group, Next Generation Health Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa (T.H., J.N., J.S.); and Transplant Services, Intermountain Medical Center, Salt Lake City, Utah (J.B.)
| | - Ewa Ellis
- African institute of biomedical Science and Technology (AiBST), Harare, Zimbabwe (C.M., C.R.K., N.N.K., R.S.T.); Sydney Brenner Institute of Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (C.M., M.R., B.M., N.S.); Wits Donald Gordon Medical Centre (WDGMC), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (H.E., H.M., S.R., B.S., F.V.S., J.L., J.F.); Karolinska Institute, Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Transplantation Surgery, Karolinska University Hospital Huddinge, Sweden (E.E.); Bioengineering and Integrated Genomics Group, Next Generation Health Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa (T.H., J.N., J.S.); and Transplant Services, Intermountain Medical Center, Salt Lake City, Utah (J.B.)
| | - Harriet Etheredge
- African institute of biomedical Science and Technology (AiBST), Harare, Zimbabwe (C.M., C.R.K., N.N.K., R.S.T.); Sydney Brenner Institute of Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (C.M., M.R., B.M., N.S.); Wits Donald Gordon Medical Centre (WDGMC), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (H.E., H.M., S.R., B.S., F.V.S., J.L., J.F.); Karolinska Institute, Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Transplantation Surgery, Karolinska University Hospital Huddinge, Sweden (E.E.); Bioengineering and Integrated Genomics Group, Next Generation Health Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa (T.H., J.N., J.S.); and Transplant Services, Intermountain Medical Center, Salt Lake City, Utah (J.B.)
| | - Tracey Hurrell
- African institute of biomedical Science and Technology (AiBST), Harare, Zimbabwe (C.M., C.R.K., N.N.K., R.S.T.); Sydney Brenner Institute of Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (C.M., M.R., B.M., N.S.); Wits Donald Gordon Medical Centre (WDGMC), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (H.E., H.M., S.R., B.S., F.V.S., J.L., J.F.); Karolinska Institute, Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Transplantation Surgery, Karolinska University Hospital Huddinge, Sweden (E.E.); Bioengineering and Integrated Genomics Group, Next Generation Health Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa (T.H., J.N., J.S.); and Transplant Services, Intermountain Medical Center, Salt Lake City, Utah (J.B.)
| | - Comfort Ropafadzo Kanji
- African institute of biomedical Science and Technology (AiBST), Harare, Zimbabwe (C.M., C.R.K., N.N.K., R.S.T.); Sydney Brenner Institute of Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (C.M., M.R., B.M., N.S.); Wits Donald Gordon Medical Centre (WDGMC), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (H.E., H.M., S.R., B.S., F.V.S., J.L., J.F.); Karolinska Institute, Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Transplantation Surgery, Karolinska University Hospital Huddinge, Sweden (E.E.); Bioengineering and Integrated Genomics Group, Next Generation Health Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa (T.H., J.N., J.S.); and Transplant Services, Intermountain Medical Center, Salt Lake City, Utah (J.B.)
| | - Nyasha Nicole Kapungu
- African institute of biomedical Science and Technology (AiBST), Harare, Zimbabwe (C.M., C.R.K., N.N.K., R.S.T.); Sydney Brenner Institute of Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (C.M., M.R., B.M., N.S.); Wits Donald Gordon Medical Centre (WDGMC), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (H.E., H.M., S.R., B.S., F.V.S., J.L., J.F.); Karolinska Institute, Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Transplantation Surgery, Karolinska University Hospital Huddinge, Sweden (E.E.); Bioengineering and Integrated Genomics Group, Next Generation Health Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa (T.H., J.N., J.S.); and Transplant Services, Intermountain Medical Center, Salt Lake City, Utah (J.B.)
| | - Heather Maher
- African institute of biomedical Science and Technology (AiBST), Harare, Zimbabwe (C.M., C.R.K., N.N.K., R.S.T.); Sydney Brenner Institute of Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (C.M., M.R., B.M., N.S.); Wits Donald Gordon Medical Centre (WDGMC), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (H.E., H.M., S.R., B.S., F.V.S., J.L., J.F.); Karolinska Institute, Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Transplantation Surgery, Karolinska University Hospital Huddinge, Sweden (E.E.); Bioengineering and Integrated Genomics Group, Next Generation Health Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa (T.H., J.N., J.S.); and Transplant Services, Intermountain Medical Center, Salt Lake City, Utah (J.B.)
| | - Busisiwe Mthembu
- African institute of biomedical Science and Technology (AiBST), Harare, Zimbabwe (C.M., C.R.K., N.N.K., R.S.T.); Sydney Brenner Institute of Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (C.M., M.R., B.M., N.S.); Wits Donald Gordon Medical Centre (WDGMC), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (H.E., H.M., S.R., B.S., F.V.S., J.L., J.F.); Karolinska Institute, Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Transplantation Surgery, Karolinska University Hospital Huddinge, Sweden (E.E.); Bioengineering and Integrated Genomics Group, Next Generation Health Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa (T.H., J.N., J.S.); and Transplant Services, Intermountain Medical Center, Salt Lake City, Utah (J.B.)
| | - Jerolen Naidoo
- African institute of biomedical Science and Technology (AiBST), Harare, Zimbabwe (C.M., C.R.K., N.N.K., R.S.T.); Sydney Brenner Institute of Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (C.M., M.R., B.M., N.S.); Wits Donald Gordon Medical Centre (WDGMC), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (H.E., H.M., S.R., B.S., F.V.S., J.L., J.F.); Karolinska Institute, Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Transplantation Surgery, Karolinska University Hospital Huddinge, Sweden (E.E.); Bioengineering and Integrated Genomics Group, Next Generation Health Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa (T.H., J.N., J.S.); and Transplant Services, Intermountain Medical Center, Salt Lake City, Utah (J.B.)
| | - Janine Scholefield
- African institute of biomedical Science and Technology (AiBST), Harare, Zimbabwe (C.M., C.R.K., N.N.K., R.S.T.); Sydney Brenner Institute of Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (C.M., M.R., B.M., N.S.); Wits Donald Gordon Medical Centre (WDGMC), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (H.E., H.M., S.R., B.S., F.V.S., J.L., J.F.); Karolinska Institute, Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Transplantation Surgery, Karolinska University Hospital Huddinge, Sweden (E.E.); Bioengineering and Integrated Genomics Group, Next Generation Health Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa (T.H., J.N., J.S.); and Transplant Services, Intermountain Medical Center, Salt Lake City, Utah (J.B.)
| | - Sharan Rambarran
- African institute of biomedical Science and Technology (AiBST), Harare, Zimbabwe (C.M., C.R.K., N.N.K., R.S.T.); Sydney Brenner Institute of Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (C.M., M.R., B.M., N.S.); Wits Donald Gordon Medical Centre (WDGMC), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (H.E., H.M., S.R., B.S., F.V.S., J.L., J.F.); Karolinska Institute, Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Transplantation Surgery, Karolinska University Hospital Huddinge, Sweden (E.E.); Bioengineering and Integrated Genomics Group, Next Generation Health Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa (T.H., J.N., J.S.); and Transplant Services, Intermountain Medical Center, Salt Lake City, Utah (J.B.)
| | - Francisca van der Schyff
- African institute of biomedical Science and Technology (AiBST), Harare, Zimbabwe (C.M., C.R.K., N.N.K., R.S.T.); Sydney Brenner Institute of Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (C.M., M.R., B.M., N.S.); Wits Donald Gordon Medical Centre (WDGMC), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (H.E., H.M., S.R., B.S., F.V.S., J.L., J.F.); Karolinska Institute, Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Transplantation Surgery, Karolinska University Hospital Huddinge, Sweden (E.E.); Bioengineering and Integrated Genomics Group, Next Generation Health Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa (T.H., J.N., J.S.); and Transplant Services, Intermountain Medical Center, Salt Lake City, Utah (J.B.)
| | - Natalie Smyth
- African institute of biomedical Science and Technology (AiBST), Harare, Zimbabwe (C.M., C.R.K., N.N.K., R.S.T.); Sydney Brenner Institute of Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (C.M., M.R., B.M., N.S.); Wits Donald Gordon Medical Centre (WDGMC), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (H.E., H.M., S.R., B.S., F.V.S., J.L., J.F.); Karolinska Institute, Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Transplantation Surgery, Karolinska University Hospital Huddinge, Sweden (E.E.); Bioengineering and Integrated Genomics Group, Next Generation Health Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa (T.H., J.N., J.S.); and Transplant Services, Intermountain Medical Center, Salt Lake City, Utah (J.B.)
| | - Bernd Strobele
- African institute of biomedical Science and Technology (AiBST), Harare, Zimbabwe (C.M., C.R.K., N.N.K., R.S.T.); Sydney Brenner Institute of Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (C.M., M.R., B.M., N.S.); Wits Donald Gordon Medical Centre (WDGMC), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (H.E., H.M., S.R., B.S., F.V.S., J.L., J.F.); Karolinska Institute, Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Transplantation Surgery, Karolinska University Hospital Huddinge, Sweden (E.E.); Bioengineering and Integrated Genomics Group, Next Generation Health Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa (T.H., J.N., J.S.); and Transplant Services, Intermountain Medical Center, Salt Lake City, Utah (J.B.)
| | - Roslyn Stella Thelingwani
- African institute of biomedical Science and Technology (AiBST), Harare, Zimbabwe (C.M., C.R.K., N.N.K., R.S.T.); Sydney Brenner Institute of Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (C.M., M.R., B.M., N.S.); Wits Donald Gordon Medical Centre (WDGMC), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (H.E., H.M., S.R., B.S., F.V.S., J.L., J.F.); Karolinska Institute, Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Transplantation Surgery, Karolinska University Hospital Huddinge, Sweden (E.E.); Bioengineering and Integrated Genomics Group, Next Generation Health Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa (T.H., J.N., J.S.); and Transplant Services, Intermountain Medical Center, Salt Lake City, Utah (J.B.)
| | - Jerome Loveland
- African institute of biomedical Science and Technology (AiBST), Harare, Zimbabwe (C.M., C.R.K., N.N.K., R.S.T.); Sydney Brenner Institute of Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (C.M., M.R., B.M., N.S.); Wits Donald Gordon Medical Centre (WDGMC), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (H.E., H.M., S.R., B.S., F.V.S., J.L., J.F.); Karolinska Institute, Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Transplantation Surgery, Karolinska University Hospital Huddinge, Sweden (E.E.); Bioengineering and Integrated Genomics Group, Next Generation Health Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa (T.H., J.N., J.S.); and Transplant Services, Intermountain Medical Center, Salt Lake City, Utah (J.B.)
| | - June Fabian
- African institute of biomedical Science and Technology (AiBST), Harare, Zimbabwe (C.M., C.R.K., N.N.K., R.S.T.); Sydney Brenner Institute of Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (C.M., M.R., B.M., N.S.); Wits Donald Gordon Medical Centre (WDGMC), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (H.E., H.M., S.R., B.S., F.V.S., J.L., J.F.); Karolinska Institute, Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Transplantation Surgery, Karolinska University Hospital Huddinge, Sweden (E.E.); Bioengineering and Integrated Genomics Group, Next Generation Health Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa (T.H., J.N., J.S.); and Transplant Services, Intermountain Medical Center, Salt Lake City, Utah (J.B.)
| |
Collapse
|
7
|
Peruzzi E, Roncato R, De Mattia E, Bignucolo A, Swen JJ, Guchelaar HJ, Toffoli G, Cecchin E. Implementation of pre-emptive testing of a pharmacogenomic panel in clinical practice: Where do we stand? Br J Clin Pharmacol 2023. [PMID: 37926674 DOI: 10.1111/bcp.15956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023] Open
Abstract
Adverse drug reactions (ADRs) account for a large proportion of hospitalizations among adults and are more common in multimorbid patients, worsening clinical outcomes and burdening healthcare resources. Over the past decade, pharmacogenomics has been developed as a practical tool for optimizing treatment outcomes by mitigating the risk of ADRs. Some single-gene reactive tests are already used in clinical practice, including the DPYD test for fluoropyrimidines, which demonstrates how integrating pharmacogenomic data into routine care can improve patient safety in a cost-effective manner. The evolution from reactive single-gene testing to comprehensive pre-emptive genotyping panels holds great potential for refining drug prescribing practices. Several implementation projects have been conducted to test the feasibility of applying different genetic panels in clinical practice. Recently, the results of a large prospective randomized trial in Europe (the PREPARE study by Ubiquitous Pharmacogenomics consortium) have provided the first evidence that prospective application of a pre-emptive pharmacogenomic test panel in clinical practice, in seven European healthcare systems, is feasible and yielded a 30% reduction in the risk of developing clinically relevant toxicities. Nevertheless, some important questions remain unanswered and will hopefully be addressed by future dedicated studies. These issues include the cost-effectiveness of applying a pre-emptive genotyping panel, the role of multiple co-medications, the transferability of currently tested pharmacogenetic guidelines among patients of non-European origin and the impact of rare pharmacogenetic variants that are not detected by currently used genotyping approaches.
Collapse
Affiliation(s)
- Elena Peruzzi
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano, Istituti di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | - Rossana Roncato
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano, Istituti di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
- Department of Medicine, University of Udine, Udine, Italy
| | - Elena De Mattia
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano, Istituti di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | - Alessia Bignucolo
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano, Istituti di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | - Jesse J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano, Istituti di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | - Erika Cecchin
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano, Istituti di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| |
Collapse
|
8
|
Luo W, Luo X, Chen S, Li J, Huang X, Rao Y, Xu W. Chinese stroke patients with atrial fibrillation used Robert's age-adjusted warfarin loading protocol obtained good INR results within therapeutic range. Sci Rep 2023; 13:18230. [PMID: 37880296 PMCID: PMC10600158 DOI: 10.1038/s41598-023-45379-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023] Open
Abstract
To assess whether Roberts' age-adjusted warfarin loading protocol is effective in Chinese patients and whether the SAMeTT2R2 score can predict international normalized ratio (INR) control. Roberts' protocol for warfarin titration was applied to patients with non-valvular atrial fibrillation (NVAF) complicated with ischemic stroke at the Department of Neurology between 2014 and 2019. Clinical and sociodemographic variables were recorded. A minimum of 1-year follow-up was used to calculate the time in therapeutic range (TTR) of the INR. A total of 94 acute ischemic stroke patients with NVAF were included in the study. Seventy-seven (81.9%) of the patients had attained stable INR (2.0-3.0) at the fifth dose, and 90.0% of the patients had achieved stable INR on the ninth day. Seventeen (18.1%) of the patients had an INR > 4 during dose-adjustment period. Patients with INR > 4 had significantly lower body weight (53.8 vs. 63.1 kg, P = 0.014), lower rate of achievement of stable INR (35.3% vs. 92.2%, P = 0.000), and lower rate of TTR ≥ 65% (23.5% vs. 70.1%, P = 0.001), but with no significant increase in bleeding risk. A total of 89 patients underwent long-term INR follow-up, of which 58 (65.2%) patients achieved TTR ≥ 65%. Patients with poor TTR had significantly lower body weight (56.3 vs. 63.7 kg, P = 0.020) and lower rate of stable INR achievement (64.5% vs. 89.7%, P = 0.002). All 94 patients had SAMeTT2R2 score ≥ 2. There was no linear association between SAMeTT2R2 score and the rate of TTR ≥ 65% (Ptrend = 0.095). Chinese ischemic stroke patients with NVAF on warfarin can safely and quickly achieve therapeutic INR using Roberts' age-adjusted protocol and can obtain a good TTR. Lower body weight may be a predictor of poor TTR and INR > 4. Patients who have not attained stable INR after adjusting the dose five times are at high risk for poor TTR. SAMeTT2R2 score may not predict TTR in Chinese ischemic stroke patients with NVAF.
Collapse
Affiliation(s)
- Weiliang Luo
- Department of Neurology, Huizhou Central People's Hospital, No. 41, Eling North Road, Huizhou, 516001, Guangdong, China
| | - Xuanwen Luo
- Department of Neurology, Huizhou Central People's Hospital, No. 41, Eling North Road, Huizhou, 516001, Guangdong, China
| | - Suqin Chen
- Department of Neurology, Huizhou Central People's Hospital, No. 41, Eling North Road, Huizhou, 516001, Guangdong, China
| | - Jiming Li
- Department of Neurology, Huizhou Central People's Hospital, No. 41, Eling North Road, Huizhou, 516001, Guangdong, China.
| | - Xiaodong Huang
- Department of Neurology, Huizhou Central People's Hospital, No. 41, Eling North Road, Huizhou, 516001, Guangdong, China
| | - Yu Rao
- Department of Neurology, Huizhou Central People's Hospital, No. 41, Eling North Road, Huizhou, 516001, Guangdong, China
| | - Wengsheng Xu
- Department of Neurology, Huizhou Central People's Hospital, No. 41, Eling North Road, Huizhou, 516001, Guangdong, China
| |
Collapse
|
9
|
Mohan SV, Freedman J. A Review of the Evolving Landscape of Inclusive Research and Improved Clinical Trial Access. Clin Pharmacol Ther 2023; 113:518-527. [PMID: 36536992 DOI: 10.1002/cpt.2832] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
Current clinical research does not reflect the diversity of patient populations, despite continued recommendations to increase enrollment of under-represented racial and ethnic groups. The ramifications of this lack of trial diversity are important because of potential differences between races and ethnicities in response to therapies, which have been observed for drugs across indications. Nonrepresentative research populations limit the generalizability of study results, which may lead to questions about safety and efficacy in certain subgroups of patients and hinder regulators, healthcare providers, and patients in their ability to adequately consider the benefits and risks of a therapeutic treatment across all populations. Renewed efforts to address healthcare disparities and increase diversity in clinical trials have demonstrated that inclusive trials are achievable and can provide scientifically rigorous results, and, thus, should stimulate greater action across all stakeholders. Ensuring that studies throughout the clinical development process include representative populations is a scientific imperative to advance health equity, racial justice, and trust in the safety and efficacy of medical therapies. This article reviews the long-standing lack of diversity and barriers to enrollment of diverse and representative populations in clinical trials, outlines the current evolving trial landscape and the efforts of stakeholders, and provides examples from scientifically rigorous inclusive trials. The goal is to share learnings in a wider context of opportunities to enhance diversity, equity, and inclusion in clinical development while ensuring the safety and efficacy of medical therapies in all populations of patients, and in doing so, provide wider patient access to therapeutic treatments.
Collapse
|
10
|
Abstract
Inter-individual variability in drug response, be it efficacy or safety, is common and likely to become an increasing problem globally given the growing elderly population requiring treatment. Reasons for this inter-individual variability include genomic factors, an area of study called pharmacogenomics. With genotyping technologies now widely available and decreasing in cost, implementing pharmacogenomics into clinical practice - widely regarded as one of the initial steps in mainstreaming genomic medicine - is currently a focus in many countries worldwide. However, major challenges of implementation lie at the point of delivery into health-care systems, including the modification of current clinical pathways coupled with a massive knowledge gap in pharmacogenomics in the health-care workforce. Pharmacogenomics can also be used in a broader sense for drug discovery and development, with increasing evidence suggesting that genomically defined targets have an increased success rate during clinical development.
Collapse
|
11
|
Application of Pharmacogenetics for the Use of Antiplatelet and Anticoagulant Drugs. CURRENT CARDIOVASCULAR RISK REPORTS 2023. [DOI: 10.1007/s12170-022-00713-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Asiimwe IG, Pirmohamed M. Drug-Drug-Gene Interactions in Cardiovascular Medicine. Pharmgenomics Pers Med 2022; 15:879-911. [PMID: 36353710 PMCID: PMC9639705 DOI: 10.2147/pgpm.s338601] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/21/2022] [Indexed: 11/18/2022] Open
Abstract
Cardiovascular disease remains a leading cause of both morbidity and mortality worldwide. It is widely accepted that both concomitant medications (drug-drug interactions, DDIs) and genomic factors (drug-gene interactions, DGIs) can influence cardiovascular drug-related efficacy and safety outcomes. Although thousands of DDI and DGI (aka pharmacogenomic) studies have been published to date, the literature on drug-drug-gene interactions (DDGIs, cumulative effects of DDIs and DGIs) remains scarce. Moreover, multimorbidity is common in cardiovascular disease patients and is often associated with polypharmacy, which increases the likelihood of clinically relevant drug-related interactions. These, in turn, can lead to reduced drug efficacy, medication-related harm (adverse drug reactions, longer hospitalizations, mortality) and increased healthcare costs. To examine the extent to which DDGIs and other interactions influence efficacy and safety outcomes in the field of cardiovascular medicine, we review current evidence in the field. We describe the different categories of DDIs and DGIs before illustrating how these two interact to produce DDGIs and other complex interactions. We provide examples of studies that have reported the prevalence of clinically relevant interactions and the most implicated cardiovascular medicines before outlining the challenges associated with dealing with these interactions in clinical practice. Finally, we provide recommendations on how to manage the challenges including but not limited to expanding the scope of drug information compendia, interaction databases and clinical implementation guidelines (to include clinically relevant DDGIs and other complex interactions) and work towards their harmonization; better use of electronic decision support tools; using big data and novel computational techniques; using clinically relevant endpoints, preemptive genotyping; ensuring ethnic diversity; and upskilling of clinicians in pharmacogenomics and personalized medicine.
Collapse
Affiliation(s)
- Innocent G Asiimwe
- The Wolfson Centre for Personalized Medicine, MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Munir Pirmohamed
- The Wolfson Centre for Personalized Medicine, MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
13
|
Al-Mahayri ZN, Khasawneh LQ, Alqasrawi MN, Altoum SM, Jamil G, Badawi S, Hamza D, George L, AlZaabi A, Ouda H, Al-Maskari F, AlKaabi J, Patrinos GP, Ali BR. Pharmacogenomics implementation in cardiovascular disease in a highly diverse population: initial findings and lessons learned from a pilot study in United Arab Emirates. Hum Genomics 2022; 16:42. [PMID: 36154845 PMCID: PMC9509637 DOI: 10.1186/s40246-022-00417-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Background Pharmacogenomic (PGx) testing has proved its utility and cost-effectiveness for some commonly prescribed cardiovascular disease (CVD) medications. In addition, PGx-guided dosing guidelines are now available for multiple CVD drugs, including clopidogrel, warfarin, and statins. The United Arab Emirates (UAE) population is diverse and multiethnic, with over 150 nationalities residing in the country. PGx-testing is not part of the standard of care in most global healthcare settings, including the UAE healthcare system. The first pharmacogenomic implementation clinical study in CVD has been approved recently, but multiple considerations needed evaluation before commencing. The current report appraises the PGx-clinical implementation procedure and the potential benefits of pursuing PGx-implementation initiatives in the UAE with global implications. Methods Patients prescribed one or more of the following drugs: clopidogrel, atorvastatin, rosuvastatin, and warfarin, were recruited. Genotyping selected genetic variants at genes interacting with the study drugs was performed by real-time PCR. Results For the current pilot study, 160 patients were recruited. The genotypes and inferred haplotypes, diplotypes, and predicted phenotypes revealed that 11.9% of the participants were poor CYP2C19 metabolizers, 35% intermediate metabolizers, 28.1% normal metabolizers, and 25% rapid or ultrarapid metabolizers. Notably, 46.9% of our cohort should receive a recommendation to avoid using clopidogrel or consider an alternative medication. Regarding warfarin, only 20% of the participants exhibited reference alleles at VKORC1-1639G > A, CYP2C9*2, and CYP2C9*3, leaving 80% with alternative genotypes at any of the two genes that can be integrated into the warfarin dosing algorithms and can be used whenever the patient receives a warfarin prescription. For statins, 31.5% of patients carried at least one allele at the genotyped SLCO1B1 variant (rs4149056), increasing their risk of developing myopathy. 96% of our cohort received at least one PGx-generated clinical recommendation for the studied drugs. Conclusion The current pilot analysis verified the feasibility of PGx-testing and the unforeseen high frequencies of patients currently treated with suboptimal drug regimens, which may potentially benefit from PGx testing.
Collapse
|
14
|
Asiimwe IG, Blockman M, Cohen K, Cupido C, Hutchinson C, Jacobson B, Lamorde M, Morgan J, Mouton JP, Nakagaayi D, Okello E, Schapkaitz E, Sekaggya-Wiltshire C, Semakula JR, Waitt C, Zhang EJ, Jorgensen AL, Pirmohamed M. A genome-wide association study of plasma concentrations of warfarin enantiomers and metabolites in sub-Saharan black-African patients. Front Pharmacol 2022; 13:967082. [PMID: 36210801 PMCID: PMC9537548 DOI: 10.3389/fphar.2022.967082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022] Open
Abstract
Diversity in pharmacogenomic studies is poor, especially in relation to the inclusion of black African patients. Lack of funding and difficulties in recruitment, together with the requirement for large sample sizes because of the extensive genetic diversity in Africa, are amongst the factors which have hampered pharmacogenomic studies in Africa. Warfarin is widely used in sub-Saharan Africa, but as in other populations, dosing is highly variable due to genetic and non-genetic factors. In order to identify genetic factors determining warfarin response variability, we have conducted a genome-wide association study (GWAS) of plasma concentrations of warfarin enantiomers/metabolites in sub-Saharan black-Africans. This overcomes the issue of non-adherence and may have greater sensitivity at genome-wide level, to identify pharmacokinetic gene variants than focusing on mean weekly dose, the usual end-point used in previous studies. Participants recruited at 12 outpatient sites in Uganda and South Africa on stable warfarin dose were genotyped using the Illumina Infinium H3Africa Consortium Array v2. Imputation was conducted using the 1,000 Genomes Project phase III reference panel. Warfarin/metabolite plasma concentrations were determined by high-performance liquid chromatography with tandem mass spectrometry. Multivariable linear regression was undertaken, with adjustment made for five non-genetic covariates and ten principal components of genetic ancestry. After quality control procedures, 548 participants and 17,268,054 SNPs were retained. CYP2C9*8, CYP2C9*9, CYP2C9*11, and the CYP2C cluster SNP rs12777823 passed the Bonferroni-adjusted replication significance threshold (p < 3.21E-04) for warfarin/metabolite ratios. In an exploratory GWAS analysis, 373 unique SNPs in 13 genes, including CYP2C9*8, passed the Bonferroni-adjusted genome-wide significance threshold (p < 3.846E-9), with 325 (87%, all located on chromosome 10) SNPs being associated with the S-warfarin/R-warfarin outcome (top SNP rs11188082, CYP2C19 intron variant, p = 1.55E-17). Approximately 69% of these SNPs were in linkage disequilibrium (r2 > 0.8) with CYP2C9*8 (n = 216) and rs12777823 (n = 8). Using a pharmacokinetic approach, we have shown that variants other than CYP2C9*2 and CYP2C9*3 are more important in sub-Saharan black-Africans, mainly due to the allele frequencies. In exploratory work, we conducted the first warfarin pharmacokinetics-related GWAS in sub-Saharan Africans and identified novel SNPs that will require external replication and functional characterization before they can be considered for inclusion in warfarin dosing algorithms.
Collapse
Affiliation(s)
- Innocent G. Asiimwe
- The Wolfson Centre for Personalized Medicine, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- *Correspondence: Innocent G. Asiimwe, ; Munir Pirmohamed,
| | - Marc Blockman
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Karen Cohen
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Clint Cupido
- Victoria Hospital Internal Medicine Research Initiative, Victoria Hospital Wynberg and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Claire Hutchinson
- The Wolfson Centre for Personalized Medicine, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Barry Jacobson
- Department of Molecular Medicine and Haematology, University of the Witwatersrand, Johannesburg, South Africa
| | - Mohammed Lamorde
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Jennie Morgan
- Metro District Health Services, Western Cape Department of Health, Cape Town, South Africa
| | - Johannes P. Mouton
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | | | | | - Elise Schapkaitz
- Department of Molecular Medicine and Hematology, Charlotte Maxeke Johannesburg Academic Hospital National Health Laboratory System Complex and University of Witwatersrand, Johannesburg, South Africa
| | | | - Jerome R. Semakula
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Catriona Waitt
- The Wolfson Centre for Personalized Medicine, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Eunice J. Zhang
- The Wolfson Centre for Personalized Medicine, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Andrea L. Jorgensen
- Department of Health Data Science, Institute of Population Health Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Munir Pirmohamed
- The Wolfson Centre for Personalized Medicine, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- *Correspondence: Innocent G. Asiimwe, ; Munir Pirmohamed,
| |
Collapse
|
15
|
Qian M, Zhao H, Lou Y, Wang J, Wang S, Wang Z, Ou H, Li J, Yang F, Bai L, Lv H, Peng X, Chen X, Yang X. Establishment of prediction algorithm for the Honghe minority group based on warfarin maintenance dose. Pharmacogenomics 2022; 23:619-626. [PMID: 35880564 DOI: 10.2217/pgs-2022-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: CYP2C9 and VKORC1 are important factors in warfarin metabolism. The authors explored the effects of these genetic polymorphisms and clinical factors on a warfarin maintenance dose and then established the prediction algorithm for Honghe minorities in China. Materials & methods: Quantitative fluorescence PCR determined the mutation frequency of CYP2C9 and VKORC1-1639 G>A alleles. The authors collected the relevant clinical factors, including age, gender, body surface area (BSA), international normalized ratio value, daily warfarin dose, comorbidity and concomitant prescriptions. Results: The mean values of BSA and international normalized ratio in Honghe minorities were lower than in Han Chinese (p = 0.00). The genotype of CYP2C9*1/*1 and VKORC1-1639 AA was the main allele, the mutationfrequency of VKORC1-1639 AA and the number of male of Honghe minorities were lower than that of Han Chinese (p = 0.013 and p = 0.04). The significances of the effect on actual warfarin dose value were gender, VKORC1 AA mutant, CYP2C9*1/*1, age, hypertension and BSA sequentially. Conclusion: By multiple linear regression analysis with genetic and clinical factors, the authors determined a prediction algorithm for adjusting individual dosing of warfarin in this population. Clinical trial registration number: ChiCTR2100051778.
Collapse
Affiliation(s)
- Mengjiao Qian
- Department of Cardiothoracic Surgery, The Yunnan South Central Hospital (The First People's Hospital of Honghe Prefecture), Mengzi, Yunnan, 661100, PR China
| | - Huan Zhao
- Department of Neurology, The Yunnan South Central Hospital (The First People's Hospital of Honghe Prefecture), Mengzi, Yunnan, 661100, PR China
| | - Yunli Lou
- Department of Medical Records & Statistics, The Yunnan South Central Hospital (The First People's Hospital of Honghe Prefecture), Mengzi, Yunnan, 661100, PR China
| | - Jing Wang
- Department of Cardiothoracic Surgery, The Yunnan South Central Hospital (The First People's Hospital of Honghe Prefecture), Mengzi, Yunnan, 661100, PR China
| | - Sibo Wang
- Department of Cardiothoracic Surgery, The Yunnan South Central Hospital (The First People's Hospital of Honghe Prefecture), Mengzi, Yunnan, 661100, PR China
| | - Zhongyin Wang
- Department of Cardiothoracic Surgery, The Yunnan South Central Hospital (The First People's Hospital of Honghe Prefecture), Mengzi, Yunnan, 661100, PR China
| | - Haibo Ou
- Department of Cardiothoracic Surgery, The Yunnan South Central Hospital (The First People's Hospital of Honghe Prefecture), Mengzi, Yunnan, 661100, PR China
| | - Jun Li
- Department of Cardiothoracic Surgery, The Yunnan South Central Hospital (The First People's Hospital of Honghe Prefecture), Mengzi, Yunnan, 661100, PR China
| | - Fajian Yang
- Clinical Pharmacy Laboratory, Department of Pharmacy, The Yunnan South Central Hospital (The First People's Hospital of Honghe Prefecture), Mengzi, Yunnan, 661100, PR China
| | - Lingying Bai
- Clinical Pharmacy Laboratory, Department of Pharmacy, The Yunnan South Central Hospital (The First People's Hospital of Honghe Prefecture), Mengzi, Yunnan, 661100, PR China
| | - Hong Lv
- Clinical Pharmacy Laboratory, Department of Pharmacy, The Yunnan South Central Hospital (The First People's Hospital of Honghe Prefecture), Mengzi, Yunnan, 661100, PR China
| | - Xuguan Peng
- Department of Cardiothoracic Surgery, The Yunnan South Central Hospital (The First People's Hospital of Honghe Prefecture), Mengzi, Yunnan, 661100, PR China
| | - Xiao Chen
- Department of Cardiothoracic Surgery, The Yunnan South Central Hospital (The First People's Hospital of Honghe Prefecture), Mengzi, Yunnan, 661100, PR China
| | - Xiubing Yang
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Bejing, 100029, PR China
| |
Collapse
|