1
|
Jiang M, Yang L, Zou L, Zhang L, Wang S, Zhong Z, Wang Y, Li P. A comprehensive quality evaluation for Huangqi Guizhi Wuwu decoction by integrating UPLC-DAD/MS chemical profile and pharmacodynamics combined with chemometric analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117325. [PMID: 37852340 DOI: 10.1016/j.jep.2023.117325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/30/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huangqi Guizhi Wuwu Decoction (HGWD), a classical Chinese formula originally recorded in Jin Kui Yao Lue, was used for the treatment of human "blood impediment" (a type of "Bi" syndrome). In clinical practice, HGWD has been applied to treat rheumatoid arthritis (RA). AIM OF THE STUDY The characterization of chemical markers reflecting both efficacy and chemical characteristics is of great significance for TCM quality control. With the anti-RA effects of HGWD as an example, the aim of this study was to develop a comprehensive strategy combining the overall chemical profile and biological activity data to identify chemical markers. MATERIALS AND METHODS First, an ultra-performance liquid chromatography-diode array detector (UPLC-DAD) fingerprint was established and validated to evaluate the holistic quality of HGWD of different origins. Characteristic markers associated with HGWD from different geographical origins were screened by a combination of UPLC-DAD fingerprint and chemometrics methods. Second, the chemical profiles of the 15 batches of HGWD samples were characterized by UPLC coupled tohybrid linear ion trap-Orbitrap mass spectrometry (UPLC-HRMS). The in vitro anti-RA activities of the 15 HGWD samples were then evaluated. Third, spectrum-effect relationship analysis was performed to identify bioactive compounds that could potentially be used as quality markers. Finally, a UPLC-triple quadrupole tandem mass spectrometry approach was optimized and established for quantitative analysis of the characteristic and quality markers in 15 batches of HGWD. RESULTS In total, 30 common peaks were assigned in the UPLC-DAD fingerprint. Nine peaks were recognized and considered characteristic markers: protocatechuic acid, coumarin, cinnamic acid, oxypaeoniflorin, paeoniflorin, calycosin, formononetin, catechin, and albiflorin. Furthermore, ninety-five common compounds were identified in the UPLC-HRMS chemical profile. The pharmacological analysis indicated that the anti-RA activities of the 15 HGWD samples were vastly different. The spectrum-effect relationship analysis revealed 30 potential bioactive constituents positively correlated with anti-RA activity. Among them, five compounds with relative amounts >1%, paeoniflorin, astragaloside IV, hexahydrocurcumin, formononetin and calycosin-7-glucoside, were selected as quality markers, and their activity was verified in LPS-induced RAW264.7 macrophages. Finally, the above 12 representative components were simultaneously quantified in the 15 batches of HGWD samples. CONCLUSION Combining a holistic chemical profile with representative component evaluation, this systematic strategy could be a reliable and effective method to improve quality evaluations of HGWD.
Collapse
Affiliation(s)
- Maoyuan Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Lele Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Lei Zhang
- Laboratory Animal Center, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China.
| |
Collapse
|
2
|
Fan Z, Guan J, Li L, Cui Y, Tang X, Lin X, Shen G, Feng B, Zhu H. Characterization of chemical constituents in Huangqi Guizhi Wuwu decoction using ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J Sep Sci 2023; 46:e2300337. [PMID: 37654058 DOI: 10.1002/jssc.202300337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023]
Abstract
Huangqi Guizhi Wuwu decoction (HGWWD) is a classic traditional Chinese medicine prescription for the treatment of ischemic stroke, etc. However, the material basis of its efficacy remains unclear, seriously affecting drug development and clinical applications. In the present study, an ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry method was developed to separate and identify the chemical components of HGWWD. A total of 81 compounds were identified and tentatively characterized. Eight compounds were accurately identified by comparing the retention time and mass spectrometry data with those of reference substances, the remaining compounds were characterized by comparing the mass spectrometry data and reference information. Based on the results of compound attribution, 35 compounds were from Astragali Radix, six compounds were from Cinnamomi Ramulus, 23 compounds were from Paeoniae Radix Alba, eight compounds were from Zingiberis Rhizoma Recens and nine compounds were from Jujubae Fructus. The results showed that monoterpenoids, flavonoids, organic acids, triterpenes, amino acids, gingerols, alkaloids, and glycosides were the main chemical components of HGWWD. This analytical method is suitable for characterizing the chemical constituents of HGWWD, and the results provide important information for elucidating its pharmacodynamic material basis and mechanism of action.
Collapse
Affiliation(s)
- Zhuoyu Fan
- School of Pharmacy, Jilin Medical University, Jilin City, P. R. China
- School of Pharmacy, Yanbian University, Yanji, P. R. China
| | - Jiao Guan
- School of Pharmacy, Jilin Medical University, Jilin City, P. R. China
| | - Lele Li
- School of Pharmacy, Jilin Medical University, Jilin City, P. R. China
| | - Yue Cui
- School of Pharmacy, Jilin Medical University, Jilin City, P. R. China
| | - Xinmiao Tang
- School of Pharmacy, Jilin Medical University, Jilin City, P. R. China
- School of Pharmacy, Yanbian University, Yanji, P. R. China
| | - Xiaoying Lin
- School of Pharmacy, Jilin Medical University, Jilin City, P. R. China
| | - Guanghai Shen
- School of Pharmacy, Yanbian University, Yanji, P. R. China
| | - Bo Feng
- School of Pharmacy, Jilin Medical University, Jilin City, P. R. China
| | - Heyun Zhu
- School of Pharmacy, Jilin Medical University, Jilin City, P. R. China
| |
Collapse
|
3
|
Li X, Wang Y, Chen Z, Ruan M, Yang C, Zhou M, Li N, Xing L, Xu H, Yang L, Shi Q, Wang Y, Chen J, Liang Q. Hepatorenal pathologies in TNF-transgenic mouse model of rheumatoid arthritis are alleviated by anti-TNF treatment. Arthritis Res Ther 2023; 25:188. [PMID: 37784156 PMCID: PMC10544221 DOI: 10.1186/s13075-023-03178-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023] Open
Abstract
OBJECTIVE To examine and quantify liver and kidney lesions and their response to anti-tumor necrosis factor (TNF) therapy in a TNF-Tg mouse model of rheumatoid arthritis (RA). METHODS Female TNF-Tg (Tg3647) mice were used as the animal model for chronic RA. Ultrasound, immunofluorescence, histological staining, serology tests, and real-time RT-PCR were used to examine the pathological changes in the liver and kidney. RESULTS TNF-Tg mice showed a significant decrease in the body weight and a dramatic increase in the volumes of the gallbladder, knee cavity, and popliteal lymph nodes. The liver and kidneys of TNF-Tg mice showed increased chronic inflammation and accumulation of immune cells and fibrosis, compared to wild-type (WT) mice. Moreover, upregulation of inflammatory factors and impaired normal function were observed in the liver and kidneys of TNF-Tg mice. Inflammatory infiltration and fibrosis of the liver and kidneys of female TNF-Tg mice were improved after anti-TNF treatment, and better treatment effects were achieved at 4.5-month-old mice when they were received 8 weeks of intervention. CONCLUSIONS We found that TNF drives the development of liver and kidney pathology in female TNF-Tg mice and that there are limitations to the loss of utility of anti-TNF for the prolonged treatment of RA-associated hepatic and renal injury. This study provides a reliable and clinically relevant animal model for further studies exploring the molecular mechanisms and drug discovery for hepatorenal pathologies in RA.
Collapse
Affiliation(s)
- Xuefei Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China
| | - Yi Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
| | - Ziqiang Chen
- Center for Systems Pharmacokinetics, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ming Ruan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China
| | - Can Yang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China
| | - Maolin Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
| | - Ning Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China
| | - Lianping Xing
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Hao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China
| | - Ling Yang
- Center for Systems Pharmacokinetics, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China
| | - Jinman Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China.
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China.
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China.
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China.
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China.
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
4
|
Li L, Chang Z, Wei K, Tang Y, Chen Z, Zhang H, Wang Y, Zhu H, Feng B. Chemical Differentiation and Quantitative Analysis of Black Ginseng Based on an LC-MS Combined with Multivariate Statistical Analysis Approach. Molecules 2023; 28:5251. [PMID: 37446911 DOI: 10.3390/molecules28135251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Black ginseng is a new type of processed ginseng that is traditionally used in herbal medicine in East Asian countries. It is prepared from fresh, white, or red ginseng by undergoing a process of steaming and drying several times. However, the chemical differentiation of black ginseng with different processing levels is not well understood. The aim of this study was to propose a new method for discriminating and quantifying black ginseng. Six ginsenosides from black ginseng were accurately quantified, and based on this, the black ginseng samples were divided into incomplete and complete black ginseng. Ultrahigh-performance liquid chromatography-quadrupole-time of flight/mass spectrometry (UPLC-Q-TOF/MS) combined with a multivariate statistical analysis strategy was then employed to differentiate the two groups. A total of 141 ions were selected as analytical markers of black ginseng, with 45 of these markers being annotated by matching precise m/z and MS/MS data from prior studies.
Collapse
Affiliation(s)
- Lele Li
- School of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Zhixia Chang
- School of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Keyu Wei
- School of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Yi Tang
- School of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Zhao Chen
- School of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Hongli Zhang
- School of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Yang Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Heyun Zhu
- School of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Bo Feng
- School of Pharmacy, Jilin Medical University, Jilin 132013, China
| |
Collapse
|
5
|
Fan W, Lan S, Yang Y, Liang J. Network pharmacology prediction and molecular docking-based strategy to discover the potential pharmacological mechanism of Huang-Qi-Gui-Zhi-Wu-Wu decoction against deep vein thrombosis. J Orthop Surg Res 2023; 18:475. [PMID: 37391801 DOI: 10.1186/s13018-023-03948-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Huangqi Guizhi Wuwu decoction (HQGZWWD) has been used to treat and prevent deep vein thrombosis (DVT) in China. However, its potential mechanisms of action remain unclear. This study aimed to utilize network pharmacology and molecular docking technology to elucidate the molecular mechanisms of action of HQGZWWD in DVT. METHODS We identified the main chemical components of HQGZWWD by reviewing the literature and using a Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. We used GeneCards and Online Mendelian Inheritance in Man databases to identify the targets of DVT. Herb-disease-gene-target networks using Cytascape 3.8.2 software; a protein-protein interaction (PPI) network was constructed by combining drug and disease targets on the STRING platform. Additionally, we conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Finally, molecular docking verification of active components and core protein targets was conducted. RESULTS A total of 64 potential targets related to DVT were identified in HQGZWWD, with 41 active components; quercetin, kaempferol, and beta-sitosterol were the most effective compounds. The PPI network analysis revealed that AKT1, IL1B, and IL6 were the most abundant proteins with the highest degree. GO analysis indicated that DVT treatment with HQGZWWD could involve the response to inorganic substances, positive regulation of phosphorylation, plasma membrane protein complexes, and signaling receptor regulator activity. KEGG analysis revealed that the signaling pathways included pathways in cancer, lipid and atherosclerosis, fluid shear stress and atherosclerosis, and the phosphatidylinositol 3-kinases/protein kinase B(PI3K-Akt) and mitogen-activated protein kinase (MAPK) signaling pathways. The molecular docking results indicated that quercetin, kaempferol, and beta-sitosterol exhibited strong binding affinities for AKT1, IL1B, and IL6. CONCLUSION Our study suggests that AKT1, IL1B, and IL6 are promising targets for treating DVT with HQGZWWD. The active components of HQGZWWD likely responsible for its effectiveness against DVT are quercetin, kaempferol, and beta-sitosterol, they may inhibit platelet activation and endothelial cell apoptosis by regulating the PI3K/Akt and MAPK signaling pathways, slowing the progression of DVT.
Collapse
Affiliation(s)
- Wei Fan
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou, China
| | - Shuangli Lan
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yunkang Yang
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou, China.
| | - Jie Liang
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou, China.
| |
Collapse
|
6
|
Dang M, Zhao X, Cao Y, Guan X, Liu Y. Huangqi Guizhi Wuwu decoction improves hemorheology and inhibits inflammatory response after PCI for acute myocardial infarction. Am J Transl Res 2023; 15:3686-3696. [PMID: 37303648 PMCID: PMC10250998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/28/2023] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To determine the impact of Huangqi Guizhi decoction of five ingredients on hemorheology and inflammatory factors in patients with acute myocardial infarction (AMI) after percutaneous coronary intervention (PCI). METHODS A total of 111 cases of AMI treated in Tongchuan Hospital of Traditional Chinese Medicine from February 2019 to February 2022 were analyzed retrospectively. Among them, 47 patients who received routine treatment were assigned to the control group, while those who received Huangqi Guizhi decoction of five ingredients in addition to the treatment of the control group were assigned to the study group. The clinical efficacy in the two groups was evaluated after therapy. The two groups were compared as to changes in serum inflammatory factors [tumor necrosis factor-α (TNF-α), high-sensitivity C-reactive protein (hs-CRP), and interleukin-6 (IL-6)] before and after therapy. The two groups were also compared as to differences in fibrinogen, plasma viscosity, whole blood low-shear viscosity (WBLSV), and whole blood high-shear viscosity (WBHSV) before and after therapy. Left ventricular end-diastolic dimension (LVEDD), left ventricular end-systolic diameter (LVESD), and left ventricular ejection fraction (LVEF) in the two groups were evaluated. In addition, the two groups were compared as to incidence of major adverse cardiovascular events (MACE) in 6 months. Logistic regression analysis was conducted to analyze the risk factors for MACE. RESULTS The study group showed a significantly higher treatment efficacy than the control group (P < 0.05). After therapy, the study group had significantly lower levels of TNF-α, hs-CRP, IL-6, fibrinogen, plasma viscosity, WBLSV, and WBHSV than the control group (all P < 0.05), and showed lower LVEDD and LVESD levels and a higher LVEF level than the control group. According to logistic regression analysis, age, history of diabetes mellitus (TM), New York Heart Association (NYHA) classification, hsCPR, and LVEF were independent risk factors for MACE (all P < 0.05). CONCLUSION Huangqi Guizhi decoction of five ingredients contributes to higher efficacy in AMI and has the effects of inhibiting the inflammation and hemorheology of patients. In addition, age, history of TM, NYHA classification, hsCPR, and LVEF were independent risk factors for MACE.
Collapse
Affiliation(s)
- Meili Dang
- Department of Encephalopathy, SUN Simiao Hospital of Beijing University of Chinese Medicine (Tongchuan Hospital of Traditional Chinese Medicine)Tongchuan 727100, Shaanxi, China
| | - Xiaorui Zhao
- Department of Traditional Chinese Medicine, SUN Simiao Hospital of Beijing University of Chinese Medicine (Tongchuan Hospital of Traditional Chinese Medicine)Tongchuan 727100, Shaanxi, China
| | - Yu Cao
- Department of Cardiovascular, SUN Simiao Hospital of Beijing University of Chinese Medicine (Tongchuan Hospital of Traditional Chinese Medicine)Tongchuan 727100, Shaanxi, China
| | - Xin Guan
- Internal Medicine-Cardiovascular Department I, Xixian New District Central Hospital (The Second Affiliated Hospital of Shaanxi University of Chinese Medicine)Xianyang 712000, Shaanxi, China
| | - Yuxia Liu
- Department of Cardiovascular, SUN Simiao Hospital of Beijing University of Chinese Medicine (Tongchuan Hospital of Traditional Chinese Medicine)Tongchuan 727100, Shaanxi, China
| |
Collapse
|
7
|
Wang S, Ji T, Wang L, Qu Y, Wang X, Wang W, Lv M, Wang Y, Li X, Jiang P. Exploration of the mechanism by which Huangqi Guizhi Wuwu decoction inhibits Lps-induced inflammation by regulating macrophage polarization based on network pharmacology. BMC Complement Med Ther 2023; 23:8. [PMID: 36624435 PMCID: PMC9830836 DOI: 10.1186/s12906-022-03826-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Huangqi Guizhi Wuwu decoction (HQGZWWD) is a traditional Chinese herbal medicine formulation with significant anti-inflammatory activity. However, its underlying mechanism remains unknown. Through network pharmacology and experimental validation, this study aimed to examine the potential mechanism of HQGZWWD in regulating macrophage polarization and inflammation. METHODS The active components were obtained from the Traditional Chinese Medicine Systems Pharmacology database and Analysis Platform (TCMSP), whereas the corresponding targets were obtained from the TCMSP and Swiss Target Prediction database. The GeneCards database identified targets associated with macrophage polarization and inflammation. Multiple networks were developed to identify the key compounds, principal biological processes, and pathways of HQGZWWD that regulate macrophage polarization and inflammation. Autodock Vina is utilized to assess the binding ability between targets and active compounds. Finally, confirm the experiment's central hypothesis. Human histiocytic lymphoma (U-937) cells were transformed into M1 macrophages following stimulation with Lipopolysaccharide (LPS) to evaluate the effect of HQGZWWD drug-containing mouse serum (HQGZWWD serum) on regulating macrophage polarization and inflammation. RESULTS A total of 54 active components and 859 HQGZWWD targets were obtained. There were 9972 targets associated with macrophage polarization and 11,109 targets associated with inflammation. After screening, 34 overlapping targets were identified, of which 5 were identified as central targets confirmed by experiments, including the α7 nicotinic acetylcholine receptor (α7 nAchR), interleukin 6 (IL-6), Interleukin-1 beta (IL-1β), interleukin 10 (IL-10) and growth factor beta (TGF-β1). Pathway enrichment analysis revealed that 34 overlapping targets were enriched in multiple pathways associated with macrophage polarization and inflammation, including the TGF beta signaling pathway, NF-kappa B signaling pathway, JAK-STAT signaling pathway, and TNF signaling pathway. Molecular docking confirmed that the majority of HQGZWWD's compounds can bind to the target. In vitro experiments, HQGZWWD serum was shown to up-regulate the expression of α7 nAchR, reduce the number of M1 macrophages, stimulate the production of M2 macrophages, inhibit the expression of pro-inflammatory cytokines IL-6 and IL1-β, and increase the expression of anti-inflammatory cytokines IL-10 and TGF-β1. CONCLUSION HQGZWWD can regulate the number of M1/M2 macrophages and the level of inflammatory cytokines, and the underlying mechanism may be related to the up-regulation of α7 nAchR expression.
Collapse
Affiliation(s)
- Sutong Wang
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Tianshu Ji
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Lin Wang
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Yiwei Qu
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Xinhui Wang
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Wenting Wang
- grid.464481.b0000 0004 4687 044XNational Clincial Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091 China
| | - Mujie Lv
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Yongcheng Wang
- grid.479672.9Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011 China
| | - Xiao Li
- grid.479672.9Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011 China
| | - Ping Jiang
- grid.479672.9Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011 China
| |
Collapse
|