1
|
Liu J, Ma X, Guo W, Lu B, Yue Y, Yang X, Wang R, Wu C, Zhang B, Li X, Luo X. Deacetylation of HnRNP U mediated by sirtuin1 ameliorates aged rat with liver fibrosis via inhibiting p53-related senescence and NLRP3-related inflammation. Int Immunopharmacol 2024; 141:113026. [PMID: 39216234 DOI: 10.1016/j.intimp.2024.113026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Senescence represents a major risk factor promoting liver fibrosis progression. Sirtuin 1 (SIRT1), an essential regulator of cellular senescence, may be involved in developing liver fibrosis. However, the role and mechanism of SIRT1 in liver fibrosis development were largely unknown. We constructed the liver fibrosis in aged rats induced by carbon tetrachloride (CCl4) and then transfected with GFP-SIRT1 adenoviral vectors. After that, we performed acetylomic analysis of liver tissue in aged rats to identify potential substrates of SIRT1. Furthermore, replicative senescent rat hepatocytes were pretreated with siRNA HnRNP U, SIRT1 adenoviral vectors, resveratrol, and siRNA SIRT1, following stimulation with H2O2. We found that the protein levels of SIRT1 and HnRNP U were down-regulation in aged rat liver fibrotic tissues, with an accumulation of NLRP3 inflammasome and activation of the p53/p21 pathway in liver tissue, as well as an increased level of plasma IL-1β secretion. In comparison, these effects were reversed by overexpressing SIRT1 with adenoviral vectors. Acetylation of HnRNP U and its sites at K28 and K787 might be potential targets for SIRT1-mediated liver fibrosis in aged rats. Silencing HnRNP U reduced H2O2-induced up-regulation expression of p53, p21, and NLRP3 inflammasome at protein levels. Additionally, H2O2 induced high acetylation of HnRNP U in senescent hepatocytes, whereas overexpressing SIRT1 with adenoviral vectors and resveratrol deacetylate HnRNP U to inhibit NLRP3 inflammasome and the p53/p21 pathway. Besides, the silence of SIRT1 aggravated H2O2-induced p53-related senescence and NLRP3-related inflammation in senescent hepatocytes. Our findings suggested that deacetylation of HnRNPU mediated by SIRT1 attenuated liver fibrosis in the elderly by inhibiting p53/p21 pathway and NLRP3-related inflammation.
Collapse
Affiliation(s)
- Jinying Liu
- Department of Gastroenterology, Henan Provincial People's Hospital, Henan University People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou 450003, China; Microbiome Laboratory, Henan Provincial People's Hospital, Henan University People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou 450003, China; Jiaozuo Coal Industry (Group) Co. Ltd. Central Hospital, Jiaozuo 410800, China.
| | - Xiaoli Ma
- Department of Gastroenterology, Henan Provincial People's Hospital, Henan University People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou 450003, China; Microbiome Laboratory, Henan Provincial People's Hospital, Henan University People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou 450003, China.
| | - Wang Guo
- Department of Gastroenterology, Henan Provincial People's Hospital, Henan University People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou 450003, China; Microbiome Laboratory, Henan Provincial People's Hospital, Henan University People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou 450003, China.
| | - Bingxin Lu
- Department of Gastroenterology, Henan Provincial People's Hospital, Henan University People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou 450003, China; Microbiome Laboratory, Henan Provincial People's Hospital, Henan University People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou 450003, China.
| | - Yanqin Yue
- Department of Gastroenterology, Henan Provincial People's Hospital, Henan University People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou 450003, China; Microbiome Laboratory, Henan Provincial People's Hospital, Henan University People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou 450003, China.
| | - Xingyuan Yang
- Department of Gastroenterology, Henan Provincial People's Hospital, Henan University People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou 450003, China; Microbiome Laboratory, Henan Provincial People's Hospital, Henan University People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou 450003, China.
| | - Rui Wang
- Department of Gastroenterology, Henan Provincial People's Hospital, Henan University People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou 450003, China; Microbiome Laboratory, Henan Provincial People's Hospital, Henan University People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou 450003, China.
| | - Caihong Wu
- Department of Clinical Laboratory, Hebei Petro China Central Hospital, Langfang 065000, China.
| | - Bingyong Zhang
- Department of Gastroenterology, Henan Provincial People's Hospital, Henan University People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou 450003, China.
| | - Xiuling Li
- Department of Gastroenterology, Henan Provincial People's Hospital, Henan University People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou 450003, China.
| | - Xiaoying Luo
- Department of Gastroenterology, Henan Provincial People's Hospital, Henan University People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou 450003, China; Microbiome Laboratory, Henan Provincial People's Hospital, Henan University People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou 450003, China.
| |
Collapse
|
2
|
Dong Z, Guan H, Wang L, Liang L, Zang Y, Wu L, Bao L. Carthamus tinctorius L. inhibits hepatic fibrosis and hepatic stellate cell activation by targeting the PI3K/Akt/mTOR pathway. Mol Med Rep 2024; 30:190. [PMID: 39219289 PMCID: PMC11391516 DOI: 10.3892/mmr.2024.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024] Open
Abstract
Hepatic fibrosis (HF) is a process that occurs during the progression of several chronic liver diseases, for which there is a lack of effective treatment options. Carthamus tinctorius L. (CTL) is often used in Chinese or Mongolian medicine to treat liver diseases. However, its mechanism of action remains unclear. In the present study, CTL was used to treat rats with CCl4‑induced HF. The histopathological, biochemical and HF markers of the livers of the rats were analyzed, and CTL‑infused serum was used to treat hepatic stellate cells (HSCs) in order to detect the relevant markers of HSC activation. Protein expression pathways were detected both in vitro and in vivo. Histopathological results showed that CTL significantly improved CCl4‑induced liver injury, reduced aspartate aminotransferase and alanine aminotransferase levels, promoted E‑cadherin expression, and decreased α‑smooth muscle actin (SMA), SOX9, collagen I and hydroxyproline expression. Moreover, CTL‑infused serum was found to decrease α‑SMA and collagen I expression in HSCs. Further studies showed that CTL inhibited the activity of the PI3K/Akt/mTOR pathway in the rat livers. Following the administration of the PI3K agonist 740Y‑P to HSCs, the inhibitory effect of CTL on the PI3K/Akt//mTOR pathway was blocked. These results suggested that CTL can inhibit HF and HSC activation by inhibiting the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Zhiheng Dong
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010030, P.R. China
| | - Haibin Guan
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010110, P.R. China
| | - Lu Wang
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010110, P.R. China
| | - Lijuan Liang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010110, P.R. China
| | - Yifan Zang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010110, P.R. China
| | - Lan Wu
- Mongolia Medical School, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010110, P.R. China
| | - Lidao Bao
- Department of Pharmacy, Hohhot First Hospital, Hohhot, Inner Mongolia Autonomous Region 010030, P.R. China
| |
Collapse
|
3
|
Liu X, Xia N, Yu Q, Jin M, Wang Z, Fan X, Zhao W, Li A, Jiang Z, Zhang L. Silybin Meglumine Mitigates CCl 4-Induced Liver Fibrosis and Bile Acid Metabolism Alterations. Metabolites 2024; 14:556. [PMID: 39452937 PMCID: PMC11509150 DOI: 10.3390/metabo14100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Altered patterns of bile acids (BAs) are frequently present in liver fibrosis, and BAs function as signaling molecules to initiate inflammatory responses. Silybin meglumine (SLB-M) is widely used in treating various liver diseases including liver fibrosis. However, research on its effects on bile acid (BA) metabolism is limited. This study investigated the therapeutic effects of SLB-M on liver fibrosis and BA metabolism in a CCl4-induced murine model. METHODS A murine liver fibrosis model was induced by CCl4. Fibrosis was evaluated using HE, picrosirius red, and Masson's trichrome staining. Liver function was assessed by serum and hepatic biochemical markers. Bile acid (BA) metabolism was analyzed using LC-MS/MS. Bioinformatics analyses, including PPI network, GO, and KEGG pathway analyses, were employed to explore molecular mechanisms. Gene expression alterations in liver tissue were examined via qRT-PCR. RESULTS SLB-M treatment resulted in significant histological improvements in liver tissue, reducing collagen deposition and restoring liver architecture. Biochemically, SLB-M not only normalized serum liver enzyme levels (ALT, AST, TBA, and GGT) but also mitigated disruptions in both systemic and hepatic BA metabolism by increased unconjugated BAs like cholic acid and chenodeoxycholic acid but decreased conjugated BAs including taurocholic acid and taurodeoxycholic acid, compared to that in CCl4-induced murine model. Notably, SLB-M efficiently improved the imbalance of BA homeostasis in liver caused by CCl4 via activating Farnesoid X receptor. CONCLUSIONS These findings underscore SLB-M decreased inflammatory response, reconstructed BA homeostasis possibly by regulating key pathways, and gene expressions in BA metabolism.
Collapse
Affiliation(s)
- Xiaoxin Liu
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
| | - Ninglin Xia
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
| | - Qinwei Yu
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
| | - Ming Jin
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
| | - Zifan Wang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
| | - Xue Fan
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
| | - Wen Zhao
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
| | - Anqin Li
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
| | - Zhenzhou Jiang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
| | - Luyong Zhang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (N.X.); (Q.Y.); (M.J.); (Z.W.); (X.F.); (W.Z.); (A.L.)
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
4
|
Zhu J, Li B, Fang W, Zhou X, Li D, Jin J, Li W, Su Y, Yuan R, Ye JM, Wu R. Oral matrine alleviates CCl4-induced liver fibrosis via preserved HSP72 from modulated gut microbiota. Biomed Pharmacother 2024; 178:117262. [PMID: 39111080 DOI: 10.1016/j.biopha.2024.117262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/25/2024] Open
Abstract
Hepatic fibrosis is intricately associated with dysregulation of gut microbiota and host metabolomes. Our previous studies have demonstrated that matrine can effectively reduce hepatosteatosis and associated disorders. However, it is poorly understood whether the gut microbiota involved in the attenuation of liver fibrosis by matrine. Herein we explored a novel mechanism of how oral administration of matrine alleviates liver fibrosis by modulating gut microbiota. Administration of matrine not only potently ameliorated liver fibrosis in carbon tetrachloride (CCl4)-induced mice, but also significantly preserved hepatic heat shock protein 72 (HSP72) in vivo and in vitro. Matrine was failed to reduce liver fibrosis when HSP72 upregulation was blocked by the HSP72 antagonist VER-155008. Also, consumption of matrine significantly alleviated gut dysbiosis and fecal metabonomic changes in CCl4-treated mice. Transplanted the faces of matrine-treated mice induced a remarkable upregulation of HSP72 and remission of fibrosis in liver in CCl4-exposed mice and inhibition of TGF-β1-induced inflammatory response and epithelial-mesenchymal transition (EMT) in AML-12 cells. Furthermore, deficiency of HSP72 partly reversed the intestinal microbial composition that prevented matrine from reducing CCl4-induced liver fibrosis in mice. This study reveals the "gut microbiota-hepatic HSP72" axis as a key mechanism of matrine in reducing liver fibrosis and suggest that this axis may be targeted for developing other new therapies for liver fibrosis.
Collapse
Affiliation(s)
- Junye Zhu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Bing Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Weiming Fang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Xiu Zhou
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Dongli Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Jingwei Jin
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Wu Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Yibo Su
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Ruinan Yuan
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Ji-Ming Ye
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.
| | - Rihui Wu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China.
| |
Collapse
|
5
|
Ciceu A, Fenyvesi F, Hermenean A, Ardelean S, Dumitra S, Puticiu M. Advancements in Plant-Based Therapeutics for Hepatic Fibrosis: Molecular Mechanisms and Nanoparticulate Drug Delivery Systems. Int J Mol Sci 2024; 25:9346. [PMID: 39273295 PMCID: PMC11394827 DOI: 10.3390/ijms25179346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Chronic liver injuries often lead to hepatic fibrosis, a condition characterized by excessive extracellular matrix accumulation and abnormal connective tissue hyperplasia. Without effective treatment, hepatic fibrosis can progress to cirrhosis or hepatocellular carcinoma. Current treatments, including liver transplantation, are limited by donor shortages and high costs. As such, there is an urgent need for effective therapeutic strategies. This review focuses on the potential of plant-based therapeutics, particularly polyphenols, phenolic acids, and flavonoids, in treating hepatic fibrosis. These compounds have demonstrated anti-fibrotic activities through various signaling pathways, including TGF-β/Smad, AMPK/mTOR, Wnt/β-catenin, NF-κB, PI3K/AKT/mTOR, and hedgehog pathways. Additionally, this review highlights the advancements in nanoparticulate drug delivery systems that enhance the pharmacokinetics, bioavailability, and therapeutic efficacy of these bioactive compounds. Methodologically, this review synthesizes findings from recent studies, providing a comprehensive analysis of the mechanisms and benefits of these plant-based treatments. The integration of novel drug delivery systems with plant-based therapeutics holds significant promise for developing effective treatments for hepatic fibrosis.
Collapse
Affiliation(s)
- Alina Ciceu
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| | - Ferenc Fenyvesi
- Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Anca Hermenean
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| | - Simona Ardelean
- Faculty of Pharmacy, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| | - Simona Dumitra
- Faculty of Medicine, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| | - Monica Puticiu
- Faculty of Medicine, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| |
Collapse
|
6
|
Wei J, Sun Y, Wang H, Zhu T, Li L, Zhou Y, Liu Q, Dai Z, Li W, Yang T, Wang B, Zhu C, Shen X, Yao Q, Song G, Zhao Y, Pei H. Designer cellular spheroids with DNA origami for drug screening. SCIENCE ADVANCES 2024; 10:eado9880. [PMID: 39028810 PMCID: PMC11259176 DOI: 10.1126/sciadv.ado9880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/14/2024] [Indexed: 07/21/2024]
Abstract
Current in vitro models struggle to balance the complexity of human diseases with suitability for large-scale drug tests. While 3D cultures simulate human tissues, they lack cellular intricacy, and integrating these models with high-throughput drug screening remains a challenge. Here, we introduce a method that uses self-assembling nucleic acid nanostructures decorated living cells, termed NACs, to create spheroids with a customizable 3D layout. To demonstrate its uniqueness, our method effectively creates designer 3D spheroids by combining parenchymal cells, stromal cells, and immune cells, leading to heightened physiological relevance and detailed modeling of complex chronic diseases and immune-stromal interactions. Our approach achieves a high level of biological fidelity while being standardized and straightforward to construct with the potential for large-scale drug discovery applications. By merging the precision of DNA nanotechnology with advanced cell culture techniques, we are streamlining human-centric models, striking a balance between complexity and standardization, to boost drug screening efficiency.
Collapse
Affiliation(s)
- Jiayi Wei
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| | - Yueyang Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai 200241, China
| | - Heming Wang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| | - Tong Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai 200241, China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai 200241, China
| | - Ying Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai 200241, China
| | - Quan Liu
- Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130117, China
| | - Zhen Dai
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Wenjuan Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Taihua Yang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200001, China
| | - Bingmei Wang
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Changfeng Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| | - Xizhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| | - Qunyan Yao
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
- Shanghai Geriatric Medical Center, Shanghai 201104, China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China
| | - Guangqi Song
- Joint Laboratory of Biomaterials and Translational Medicine, Puheng Technology, Suzhou 215000, China
| | - Yicheng Zhao
- Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130117, China
- China-Japan Union Hospital of Jilin University, 130012 Changchun, Jilin, China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai 200241, China
| |
Collapse
|
7
|
Luo K, Dai RJ, Zeng YB, Chang WJ, Deng YL, Lv F. Triterpenoid saponins from Bupleurum marginatum and their anti-liver fibrotic activities. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:858-864. [PMID: 38572987 DOI: 10.1080/10286020.2024.2336150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
A new triterpenoid saponin (1), along with five known compounds (2-6), was isolated from Bupleurum marginatum Wall. ex DC, of which compounds 2-4 were obtained for the first time from this plant. The structures were confirmed by the analysis of 1D, 2D NMR, and HR-ESIMS data, and comparison with previous spectral data. Anti-liver fibrotic activities of the isolates were determined as proliferation inhibition of LPS-induced activation of HSC-T6 in vitro.
Collapse
Affiliation(s)
- Ke Luo
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Rong-Ji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yan-Bo Zeng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Wen-Jun Chang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yu-Lin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Fang Lv
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
8
|
Forte E, Sanders JM, Pla I, Kanchustambham VL, Hollas MAR, Huang CF, Sanchez A, Peterson KN, Melani RD, Huang A, Polineni P, Doll JM, Dietch Z, Kelleher NL, Ladner DP. Top-Down Proteomics Identifies Plasma Proteoform Signatures of Liver Cirrhosis Progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599662. [PMID: 38948836 PMCID: PMC11212939 DOI: 10.1101/2024.06.19.599662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Cirrhosis, advanced liver disease, affects 2-5 million Americans. While most patients have compensated cirrhosis and may be fairly asymptomatic, many decompensate and experience life-threatening complications such as gastrointestinal bleeding, confusion (hepatic encephalopathy), and ascites, reducing life expectancy from 12 to less than 2 years. Among patients with compensated cirrhosis, identifying patients at high risk of decompensation is critical to optimize care and reduce morbidity and mortality. Therefore, it is important to preferentially direct them towards specialty care which cannot be provided to all patients with cirrhosis. We used discovery Top-down Proteomics (TDP) to identify differentially expressed proteoforms (DEPs) in the plasma of patients with progressive stages of liver cirrhosis with the ultimate goal to identify candidate biomarkers of disease progression. In this pilot study, we identified 209 DEPs across three stages of cirrhosis (compensated, compensated with portal hypertension, and decompensated), of which 115 derived from proteins enriched in the liver at a transcriptional level and discriminated the three stages of cirrhosis. Enrichment analyses demonstrated DEPs are involved in several metabolic and immunological processes known to be impacted by cirrhosis progression. We have preliminarily defined the plasma proteoform signatures of cirrhosis patients, setting the stage for ongoing discovery and validation of biomarkers for early diagnosis, risk stratification, and disease monitoring.
Collapse
Affiliation(s)
- Eleonora Forte
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
- Northwestern University Transplant Outcomes Research Collaborative (NUTORC), Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jes M. Sanders
- Northwestern University Transplant Outcomes Research Collaborative (NUTORC), Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Indira Pla
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | | | - Michael A. R. Hollas
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Che-Fan Huang
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Aniel Sanchez
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Katrina N. Peterson
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Rafael D. Melani
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Alexander Huang
- Northwestern University Transplant Outcomes Research Collaborative (NUTORC), Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Praneet Polineni
- Northwestern University Transplant Outcomes Research Collaborative (NUTORC), Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Julianna M. Doll
- Northwestern University Transplant Outcomes Research Collaborative (NUTORC), Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zachary Dietch
- Northwestern University Transplant Outcomes Research Collaborative (NUTORC), Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Neil L. Kelleher
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Daniela P. Ladner
- Northwestern University Transplant Outcomes Research Collaborative (NUTORC), Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
9
|
Liu KX, Wang ZY, Ying YT, Wei RM, Dong DL, Sun ZJ. The antiprotozoal drug nitazoxanide improves experimental liver fibrosis in mice. Biochem Pharmacol 2024; 224:116205. [PMID: 38615918 DOI: 10.1016/j.bcp.2024.116205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/18/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Nitazoxanide is an FDA-approved antiprotozoal drug. Our previous studies find that nitazoxanide and its metabolite tizoxanide affect AMPK, STAT3, and Smad2/3 signals which are involved in the pathogenesis of liver fibrosis, therefore, in the present study, we examined the effect of nitazoxanide on experimental liver fibrosis and elucidated the potential mechanisms. The in vivo experiment results showed that oral nitazoxanide (75, 100 mg·kg-1) significantly improved CCl4- and bile duct ligation-induced liver fibrosis in mice. Oral nitazoxanide activated the inhibited AMPK and inhibited the activated STAT3 in liver tissues from liver fibrosis mice. The in vitro experiment results showed that nitazoxanide and its metabolite tizoxanide activated AMPK and inhibited STAT3 signals in LX-2 cells (human hepatic stellate cells). Nitazoxanide and tizoxanide inhibited cell proliferation and collagen I expression and secretion of LX-2 cells. Nitazoxanide and tizoxanide inhibited transforming growth factor-β1 (TGF-β1)- and IL-6-induced increases of cell proliferation, collagen I expression and secretion, inhibited TGF-β1- and IL-6-induced STAT3 and Smad2/3 activation in LX-2 cells. In mouse primary hepatic stellate cells, nitazoxanide and tizoxanide also activated AMPK, inhibited STAT3 and Smad2/3 activation, inhibited cell proliferation, collagen I expression and secretion. In conclusion, nitazoxanide inhibits liver fibrosis and the underlying mechanisms involve AMPK activation, and STAT3 and Smad2/3 inhibition.
Collapse
Affiliation(s)
- Kai-Xin Liu
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Zeng-Yang Wang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Ya-Ting Ying
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Rui-Miao Wei
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - De-Li Dong
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China.
| | - Zhi-Jie Sun
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China.
| |
Collapse
|
10
|
Pu TY, Chuang KC, Tung MC, Yen CC, Chen YH, Cidem A, Ko CH, Chen W, Chen CM. Lactoferrin as a therapeutic agent for attenuating hepatic stellate cell activation in thioacetamide-induced liver fibrosis. Biomed Pharmacother 2024; 174:116490. [PMID: 38554526 DOI: 10.1016/j.biopha.2024.116490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/01/2024] Open
Abstract
Liver fibrosis is a chronic liver disease caused by prolonged liver injuries. Excessive accumulation of extracellular matrix replaces the damaged hepatocytes, leading to fibrous scar formation and fibrosis induction. Lactoferrin (LF) is a glycoprotein with a conserved, monomeric signal polypeptide chain, exhibiting diverse physiological functions, including antioxidant, anti-inflammatory, antibacterial, antifungal, antiviral, and antitumoral activities. Previous study has shown LF's protective role against chemically-induced liver fibrosis in rats. However, the mechanisms of LF in liver fibrosis are still unclear. In this study, we investigated LF's mechanisms in thioacetamide (TAA)-induced liver fibrosis in rats and TGF-β1-treated HSC-T6 cells. Using ultrasonic imaging, H&E, Masson's, and Sirius Red staining, we demonstrated LF's ability to improve liver tissue damage and fibrosis induced by TAA. LF reduced the levels of ALT, AST, and hydroxyproline in TAA-treated liver tissues, while increasing catalase levels. Additionally, LF treatment decreased mRNA expression of inflammatory factors such as Il-1β and Icam-1, as well as fibrogenic factors including α-Sma, Collagen I, and Ctgf in TAA-treated liver tissues. Furthermore, LF reduced TAA-induced ROS production and cell death in FL83B cells, and decreased α-SMA, Collagen I, and p-Smad2/3 productions in TGF-β1-treated HSC-T6 cells. Our study highlights LF's ability to ameliorate TAA-induced hepatocyte damage, oxidative stress, and liver fibrosis in rats, potentially through its inhibitory effect on HSC activation. These findings suggest LF's potential as a therapeutic agent for protecting against liver injuries and fibrosis.
Collapse
Affiliation(s)
- Tzu-Yu Pu
- Department of Life Sciences, and Doctorial Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Kai-Cheng Chuang
- Department of Life Sciences, and Doctorial Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Min-Che Tung
- Department of Life Sciences, and Doctorial Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; Department of Surgery, Tungs' Taichung Metro Harbor Hospital, Taichung 435, Taiwan
| | - Chih-Ching Yen
- Department of Life Sciences, and Doctorial Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, China Medical University Hospital, and College of Health Care, China Medical University, Taichung 404, Taiwan
| | - Yu-Hsuan Chen
- Department of Life Sciences, and Doctorial Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Abdulkadir Cidem
- Department of Life Sciences, and Doctorial Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum 25250, Turkey
| | - Chu-Hsun Ko
- Department of Life Sciences, and Doctorial Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Wei Chen
- Division of Pulmonary and Critical Care Medicine, Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, and Doctorial Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
11
|
Yang X, Delsante M, Daneshpajouhnejad P, Fenaroli P, Mandell KP, Wang X, Takahashi S, Halushka MK, Kopp JB, Levi M, Rosenberg AZ. Bile Acid Receptor Agonist Reverses Transforming Growth Factor-β1-Mediated Fibrogenesis in Human Induced Pluripotent Stem Cells-Derived Kidney Organoids. J Transl Med 2024; 104:100336. [PMID: 38266922 DOI: 10.1016/j.labinv.2024.100336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/26/2024] Open
Abstract
Chronic kidney disease progresses through the replacement of functional tissue compartments with fibrosis, a maladaptive repair process. Shifting kidney repair toward a physiologically intact architecture, rather than fibrosis, is key to blocking chronic kidney disease progression. Much research into the mechanisms of fibrosis is performed in rodent models with less attention to the human genetic context. Recently, human induced pluripotent stem cell (iPSC)-derived organoids have shown promise in overcoming the limitation. In this study, we developed a fibrosis model that uses human iPSC-based 3-dimensional renal organoids, in which exogenous transforming growth factor-β1 (TGF-β1) induced the production of extracellular matrix. TGF-β1-treated organoids showed tubulocentric collagen 1α1 production by regulating downstream transcriptional regulators, Farnesoid X receptor, phosphorylated mothers against decapentaplegic homolog 3 (p-SMAD3), and transcriptional coactivator with PDZ-binding motif (TAZ). Increased nuclear TAZ expression was confirmed in the tubular epithelium in human kidney biopsies with tubular injury and early fibrosis. A dual bile acid receptor agonist (INT-767) increased Farnesoid X receptor and reduced p-SMAD3 and TAZ, attenuating TGF-β1-induced fibrosis in kidney organoids. Finally, we show that TAZ interacted with TEA-domain transcription factors and p-SMAD3 with TAZ and TEA-domain transcription factor 4 coregulating collagen 1α1 gene transcription. In summary, we establish a novel, readily manipulable fibrogenesis model and posit a role for bile acid receptor agonism early in renal parenchymal fibrosis.
Collapse
Affiliation(s)
- Xiaoping Yang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Marco Delsante
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland; Scuola di Specializione in Nefrologia, University of Parma, Parma, Italy
| | | | - Paride Fenaroli
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland; Scuola di Specializione in Nefrologia, University of Parma, Parma, Italy
| | | | - Xiaoxin Wang
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC
| | - Shogo Takahashi
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Jeffrey B Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Moshe Levi
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
12
|
Lungu GN, Diaconescu GI, Dumitrescu F, Docea OO, Mitrut R, Giubelan L, Zlatian O, Mitrut P. Liver Damage During Treatment with Reverse-Transcriptase Inhibitors in HIV Patients. CURRENT HEALTH SCIENCES JOURNAL 2024; 50:181-197. [PMID: 39371070 PMCID: PMC11447508 DOI: 10.12865/chsj.50.02.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/18/2024] [Indexed: 10/08/2024]
Abstract
The advent of highly active antiretroviral therapy (HAART) in 1996 has markedly enhanced the life expectancy of people living with HIV (PLWH), largely due to the effectiveness of reverse transcriptase inhibitors (RTIs). These drugs target the reverse transcriptase enzyme, crucial for the HIV virus to convert its RNA into DNA within host cells, effectively disrupting the viral replication process. This action reduces the patient's viral load, helping preserve immune function and prevent progression to AIDS. Consequently, the predominant causes of mortality among individuals living with HIV have transitioned from opportunistic infections and AIDS-related cancers to liver disease and cardiovascular complications. Liver damage in PLWH could arise from multiple sources including co-infections, chronic substance use, and notably, antiretroviral therapy itself, which can be hepatotoxic. This review highlights the risks of hepatic damage associated with nucleoside and non-nucleoside RTIs and underscores the variability in hepatotoxicity risks among different drugs. It emphasizes the necessity for regular monitoring of liver health in PLWH and adjusting antiretroviral regimens to minimize liver fibrosis risk. This risk is particularly pronounced in patients who associate the infection with hepatitis B or C virus, where the potential for hepatotoxicity significantly increases.
Collapse
Affiliation(s)
| | - Gheorghe Iulian Diaconescu
- Victor Babes" Infectious Diseases and Pneumophtisiology Clinical Hospital, Craiova, Romania
- VITAPLUS Clinic, 200345 Craiova, Romania
| | - Florentina Dumitrescu
- Victor Babes" Infectious Diseases and Pneumophtisiology Clinical Hospital, Craiova, Romania
- Department of Infectious Diseases, University of Medicine and Pharmacy of Craiova, Romania
| | - Oanca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Romania
| | - Radu Mitrut
- Doctoral School, University of Medicine and Pharmacy of Craiova, Romania
| | - Lucian Giubelan
- Victor Babes" Infectious Diseases and Pneumophtisiology Clinical Hospital, Craiova, Romania
- Department of Infectious Diseases, University of Medicine and Pharmacy of Craiova, Romania
| | - Ovidiu Zlatian
- Microbiology Department, University of Medicine and Pharmacy of Craiova, Romania
- Medical Laboratory, County clinical emergency hospital of Craiova, Romania
| | - Paul Mitrut
- Division of Internal Medicine, University of Medicine and Pharmacy of Craiova, Romania
- Department of Internal Medicine II, County Clinical Emergency Hospital, Craiova, Romania
| |
Collapse
|
13
|
Xiao L, Sunniya H, Li J, Kakar MU, Dai R, Li B. Isolation and purification of polysaccharides from Bupleurum marginatum Wall.ex DC and their anti-liver fibrosis activities. Front Pharmacol 2024; 15:1342638. [PMID: 38576476 PMCID: PMC10991770 DOI: 10.3389/fphar.2024.1342638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/23/2024] [Indexed: 04/06/2024] Open
Abstract
Bupleurum marginatum Wall.ex DC [Apiaceae] (BM)is widely grown in southwestern China, and the whole plant is used as Traditional Chinese Medicine (TCM). Polysaccharides are main natural products in lots of TCM and have been studied for their effects of reducing oxidative stress, anti-inflammation and immune regulation. Herein, we investigated the extraction techniques of Bupleurum marginatum Wall.ex DC polysaccharides (BMP), the identification of their key components, and their ability to inhibit liver fibrosis in both cellular and animal models. Component identification indicated that monosaccharides in BMP mainly consisted of glucose, galactose, mannose, rhamnose, arabinose, and xylose. In vivo analysis revealed that BMP provided significant protective effects on N-Nitroso dimethylamine (NDMA)-induced liver fibrosis rats through reducing hepatomegaly, reducing tissue inflammation, and reducing collagen deposition. BMP also improved the hepatobiliary system and liver metabolism in accord to reduce the serum levels of ALT, AST, ALP, r-GT, and TBIL. In addition, BMP could reduce the level of inflammation and fibrosis through inhibition of IL-1β and TGF-β1. Cellular studies showed that the BMP could provide therapeutic effects on lipopolysaccharide (LPS)-induced cellular fibrosis model, and could reduce the level of inflammation and fibrosis by decreasing the level of TGF-β1, IL-1β, and TNF-α. Our study demonstrated that BMP may provide a new therapy strategy of liver injury and liver fibrosis.
Collapse
Affiliation(s)
- Li Xiao
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, China
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Hafsa Sunniya
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jingyi Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, China
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Mohib Ullah Kakar
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, China
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Bo Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
14
|
Soto A, Spongberg C, Martinino A, Giovinazzo F. Exploring the Multifaceted Landscape of MASLD: A Comprehensive Synthesis of Recent Studies, from Pathophysiology to Organoids and Beyond. Biomedicines 2024; 12:397. [PMID: 38397999 PMCID: PMC10886580 DOI: 10.3390/biomedicines12020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a widespread contributor to chronic liver disease globally. A recent consensus on renaming liver disease was established, and metabolic dysfunction-associated steatotic liver disease, MASLD, was chosen as the replacement for NAFLD. The disease's range extends from the less severe MASLD, previously known as non-alcoholic fatty liver (NAFL), to the more intense metabolic dysfunction-associated steatohepatitis (MASH), previously known as non-alcoholic steatohepatitis (NASH), characterized by inflammation and apoptosis. This research project endeavors to comprehensively synthesize the most recent studies on MASLD, encompassing a wide spectrum of topics such as pathophysiology, risk factors, dietary influences, lifestyle management, genetics, epigenetics, therapeutic approaches, and the prospective trajectory of MASLD, particularly exploring its connection with organoids.
Collapse
Affiliation(s)
- Allison Soto
- Department of Surgery, University of Illinois College of Medicine, Chicago, IL 60607, USA;
| | - Colby Spongberg
- Touro College of Osteopathic Medicine, Great Falls, MT 59405, USA
| | | | - Francesco Giovinazzo
- General Surgery and Liver Transplant Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
15
|
Dan L, Hao Y, Song H, Wang T, Li J, He X, Su Y. Efficacy and potential mechanisms of the main active ingredients of astragalus mongholicus in animal models of liver fibrosis: A systematic review and meta-analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117198. [PMID: 37722514 DOI: 10.1016/j.jep.2023.117198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/14/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragalus mongholicus (AM) is a Qi-tonifying and immune-regulating herb widely used in traditional Chinese medicine (TCM), which is increasingly regarded as a profound complementary medication in the treatment of fibrosis disease. Astragaloside (AS), astragaloside flavonoids (AF) and astragaloside polysaccharides (APS) are the main active ingredients of Astragalus Mongholicus (AM) that have a significant therapeutic effect on liver fibrosis. AIM OF THE STUDY This systematic review and meta-analysis aims to evaluate the effects and possible mechanisms of the main active ingredients of AM including astragaloside (AS), astragalus flavone (AF) and astragalus polysaccharide (APS) in animal models of liver fibrosis. MATERIALS AND METHODS We systematically searched ten databases PubMed, Web of Science, Embase, Scopus, CINAHL, ProQuest database, China National Knowledge Internet (CNKI), VIP Information Chinese Periodical Service Platform (VIP), WangFang database and China Biology Medicine Disc (CBM) to identify relevant animal studies from inception to November 2022. The SYRCLE's risk of bias tool was used to assess the methodological quality. The statistical analysis was performed using RevMan 5.4 software. RESULTS Twenty-three studies involving 482 animals were included. Studies quality scores ranged from 4 to 5. Alanine aminotransferase (ALT) (SMD, -3.87; 95% CI, -5.09 to -2.65; P < 0.00001) aminotransferase (AST) (SMD, -4.43; 95% CI, -5.77 to -3.08; P < 0.00001), hydroxyproline (HYP) (SMD, -2.94; 95% CI, -3.83 to -2.05; P < 0.00001) and transforming growth factor-β1 (TGF-β1) (SMD, -2.82; 95% CI, -3.57 to -2.06; P < 0.00001) were the main outcome measures to be analyzed. The meta-analysis revealed that the main active ingredients of AM lowered the levels of known risk factors including liver index (SMD, -1.25; 95% CI, -1.63 to -0.87; P < 0.00001), degree of liver fibrosis (SMD, -1.93; 95% CI, -2.57 to -1.28; P < 0.00001), collagen α type I (Col)-1 (SMD, -3.71; 95% CI, -5.63 to -1.79; P = 0.0001), hyaluronic acid (HA) (SMD, -2.65; 95% CI, -3.69 to -1.61; P < 0.00001), laminin (LN) (SMD, -2.06; 95% CI, -2.51 to -1.61; P < 0.00001), type IV collagen (CIV) (SMD, -3.04; 95% CI, -4.34 to -1.74; P < 0.00001), procollagen typeIII (PCIII) (SMD, -2.60; 95% CI, -3.15 to -2.05; P < 0.00001), albumin (ALB) (SMD, -1.19; 95% CI, -1.63 to -0.75; P < 0.00001), total bilirubin (TBiL) (SMD, -3.63; 95% CI, -5.39 to -1.88; P < 0.0001), α-smooth muscle actin (α-SMA) (SMD, -5.27; 95% CI, -6.94 to -3.61; P < 0.00001) and Smad3 (SMD, -4.11; 95% CI, -7.17 to -1.05; P = 0.009) level. CONCLUSION Our meta-analysis demonstrates the effective role of the main active ingredients of AM in preclinical studies of liver fibrosis. The underlying mechanisms may be related to attenuation of oxidative stress, modulation of inflammatory response and inhibition of collagen production. However, due to the significant heterogeneity and poor quality of included studies, positive findings should be treated cautiously. REGISTRATION PROSPERO ID CRD42023382282.
Collapse
Affiliation(s)
- Lijuan Dan
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yanwei Hao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hongfei Song
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Tianyuan Wang
- The Affiliated Chengdu 363 Hospital of Southwest Medical University, Chengdu, Sichuan, China
| | - Jia Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoyan He
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yue Su
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
16
|
Vinţeler N, Feurdean CN, Petkes R, Barabas R, Boşca BA, Muntean A, Feștilă D, Ilea A. Biomaterials Functionalized with Inflammasome Inhibitors-Premises and Perspectives. J Funct Biomater 2024; 15:32. [PMID: 38391885 PMCID: PMC10889089 DOI: 10.3390/jfb15020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
This review aimed at searching literature for data regarding the inflammasomes' involvement in the pathogenesis of oral diseases (mainly periodontitis) and general pathologies, including approaches to control inflammasome-related pathogenic mechanisms. The inflammasomes are part of the innate immune response that activates inflammatory caspases by canonical and noncanonical pathways, to control the activity of Gasdermin D. Once an inflammasome is activated, pro-inflammatory cytokines, such as interleukins, are released. Thus, inflammasomes are involved in inflammatory, autoimmune and autoinflammatory diseases. The review also investigated novel therapies based on the use of phytochemicals and pharmaceutical substances for inhibiting inflammasome activity. Pharmaceutical substances can control the inflammasomes by three mechanisms: inhibiting the intracellular signaling pathways (Allopurinol and SS-31), blocking inflammasome components (VX-765, Emricasan and VX-740), and inhibiting cytokines mediated by the inflammasomes (Canakinumab, Anakinra and Rilonacept). Moreover, phytochemicals inhibit the inflammasomes by neutralizing reactive oxygen species. Biomaterials functionalized by the adsorption of therapeutic agents onto different nanomaterials could represent future research directions to facilitate multimodal and sequential treatment in oral pathologies.
Collapse
Affiliation(s)
- Norina Vinţeler
- Department of Oral Rehabilitation, Faculty of Dentistry, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Claudia Nicoleta Feurdean
- Department of Oral Rehabilitation, Faculty of Dentistry, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Regina Petkes
- Department of Chemistry and Chemical Engineering of Hungarian Line of Study, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 400028 Cluj-Napoca, Romania
| | - Reka Barabas
- Department of Chemistry and Chemical Engineering of Hungarian Line of Study, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 400028 Cluj-Napoca, Romania
| | - Bianca Adina Boşca
- Department of Histology, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Alexandrina Muntean
- Department of Paediatric, Faculty of Dentistry, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Dana Feștilă
- Department of Orthodontics, Faculty of Dentistry, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Aranka Ilea
- Department of Oral Rehabilitation, Faculty of Dentistry, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
17
|
Chang J, Huang C, Li S, Jiang X, Chang H, Li M. Research Progress Regarding the Effect and Mechanism of Dietary Polyphenols in Liver Fibrosis. Molecules 2023; 29:127. [PMID: 38202710 PMCID: PMC10779665 DOI: 10.3390/molecules29010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The development of liver fibrosis is a result of chronic liver injuries may progress to liver cirrhosis and liver cancer. In recent years, liver fibrosis has become a major global problem, and the incidence rate and mortality are increasing year by year. However, there are currently no approved treatments. Research on anti-liver-fibrosis drugs is a top priority. Dietary polyphenols, such as plant secondary metabolites, have remarkable abilities to reduce lipid metabolism, insulin resistance and inflammation, and are attracting more and more attention as potential drugs for the treatment of liver diseases. Gradually, dietary polyphenols are becoming the focus for providing an improvement in the treatment of liver fibrosis. The impact of dietary polyphenols on the composition of intestinal microbiota and the subsequent production of intestinal microbial metabolites has been observed to indirectly modulate signaling pathways in the liver, thereby exerting regulatory effects on liver disease. In conclusion, there is evidence that dietary polyphenols can be therapeutically useful in preventing and treating liver fibrosis, and we highlight new perspectives and key questions for future drug development.
Collapse
Affiliation(s)
- Jiayin Chang
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
| | - Congying Huang
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
| | - Siqi Li
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
| | - Xiaolei Jiang
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
| | - Hong Chang
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
| | - Minhui Li
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
- Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot 010020, China
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou 014040, China
| |
Collapse
|
18
|
Chi C, Liang X, Cui T, Gao X, Liu R, Yin C. SKIL/SnoN attenuates TGF-β1/SMAD signaling-dependent collagen synthesis in hepatic fibrosis. BIOMOLECULES & BIOMEDICINE 2023; 23:1014-1025. [PMID: 37389959 PMCID: PMC10655871 DOI: 10.17305/bb.2023.9000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 07/02/2023]
Abstract
The ski-related novel gene (SnoN), encoded by the SKIL gene, has been shown to negatively regulated transforming growth factor-β1 (TGF-β1) signaling pathway. However, the roles of SnoN in hepatic stellate cell (HSC) activation and hepatic fibrosis (HF) are still unclear. To evaluate the role of SnoN in HF, we combined bulk RNA sequencing analysis and single-cell RNA sequencing analysis to analyse patients with HF. The role of SKIL/SnoN was verified using liver samples from rat model transfected HSC-T6 and LX-2 cell lines. Immunohistochemistry, immunofluorescence, PCR, and western blotting techniques were used to demonstrate the expression of SnoN and its regulatory effects on TGF-β1 signaling in fibrotic liver tissues and cells. Furthermore, we constructed competitive endogenous RNA regulatory network and potential drug network associated with the SnoN gene. We identified SKIL gene as a differentially expressed gene in hepatic fibrosis. SnoN protein was found to be widely expressed in the cytoplasm of normal hepatic tissues, whereas it was almost absent in HF tissues. In the rat group subjected to bile duct ligation (BDL), SnoN protein expression decreased, while TGF-β1, collagen III, tissue inhibitor of metalloproteinase 1 (TIMP-1), and fibronectin levels increased. We observed the interaction of SnoN with p-SMAD2 and p-SMAD3 in the cytoplasm. Following SnoN overexpression, apoptosis of HSCs was promoted, and the expression of HF-associated proteins, including collagen I, collagen III, and TIMP-1, was reduced. Conversely, downregulation of SnoN inhibited HSC apoptosis, increased collagen III and TIMP-1 levels, and decreased matrix metalloproteinase 13 (MMP-13) expression. In conclusion, SnoN expression is downregulated in fibrotic livers, and could attenuate TGF-β1/SMADs signaling-dependent de-repression of collagen synthesis.
Collapse
Affiliation(s)
- Cheng Chi
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
- School of Nursing, Jining Medical University, Jining, Shandong, China
| | - Xifeng Liang
- School of Nursing, Jining Medical University, Jining, Shandong, China
- School of Nursing, Weifang Medical University, Weifang, Shandong, China
| | - Tianyu Cui
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Xiao Gao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Ruixia Liu
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Chenghong Yin
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
19
|
Moragrega AB, Gruevska A, Fuster-Martínez I, Benedicto AM, Tosca J, Montón C, Victor VM, Esplugues JV, Blas-García A, Apostolova N. Anti-inflammatory and immunomodulating effects of rilpivirine: Relevance for the therapeutics of chronic liver disease. Biomed Pharmacother 2023; 167:115537. [PMID: 37738799 DOI: 10.1016/j.biopha.2023.115537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease (CLD) worldwide and inflammation is key to its progression/resolution. As we have previously described that rilpivirine (RPV) is hepatoprotective in murine models of CLD, here we determine the molecular mechanisms involved, focusing on its anti-inflammatory and immunomodulating properties. They were evaluated in vitro (human hepatic cell lines of the major hepatic cell types), in vivo (liver samples from a murine nutritional model of NAFLD) and ex vivo (peripheral blood mononuclear cells -PBMC- from patients with CLD). Transcriptomic analysis of liver samples from NAFLD mice showed RPV down-regulated biological processes associated with the inflammatory response (NF-κB/IκB signaling and mitogen-activated protein kinase -MAPK- activity) and leukocyte chemotaxis and migration. We observed a decrease in Adgre1 and Ccr2 expression and in the number of CCR2 + cells in the periportal areas of RPV-treated NAFLD mice. This RPV-induced effect on the CCL2/CCR2 axis was confirmed in vitro. A similar result was also obtained with CXCL10/IP10, one of the main chemokines in the liver. RPV also diminished activation of MAP kinases p38 and JNK. In addition, RPV inhibited the NLRP3 inflammasome pathway in vitro, decreasing NLRP3 protein expression, caspase-1 activation and IL-1β gene expression. RPV was also proven anti-inflammatory in PBMC from patients with CLD treated ex vivo. In conclusion, beyond its well-described role in antiretroviral therapy, RPV manifests anti-inflammatory and immunoregulatory effects, a finding that could be of great relevance for the search of novel targets or repositioning strategies for CLD.
Collapse
Affiliation(s)
- Angela B Moragrega
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; FISABIO-Hospital Universitario Dr. Peset, Valencia, Spain
| | - Aleksandra Gruevska
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; FISABIO-Hospital Universitario Dr. Peset, Valencia, Spain
| | - Isabel Fuster-Martínez
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; FISABIO-Hospital Universitario Dr. Peset, Valencia, Spain
| | - Ana M Benedicto
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; FISABIO-Hospital Universitario Dr. Peset, Valencia, Spain
| | - Joan Tosca
- Departmento de Medicina Digestiva, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Cristina Montón
- Departmento de Medicina Digestiva, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Victor M Victor
- FISABIO-Hospital Universitario Dr. Peset, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain; Fundación para la Investigación del Hospital Clínico de la Comunidad Valenciana (INCLIVA), Valencia, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Juan V Esplugues
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; FISABIO-Hospital Universitario Dr. Peset, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Ana Blas-García
- FISABIO-Hospital Universitario Dr. Peset, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain; Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain.
| | - Nadezda Apostolova
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; FISABIO-Hospital Universitario Dr. Peset, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain.
| |
Collapse
|
20
|
Wang K, Chen H, Qin S, Chen S, Zhang Q, Chen J, Di D, Su G, Yuan Y. Co-delivery of pirfenidone and siRNA in ZIF-based nanoparticles for dual inhibition of hepatic stellate cell activation in liver fibrotic therapy. Colloids Surf B Biointerfaces 2023; 231:113567. [PMID: 37797465 DOI: 10.1016/j.colsurfb.2023.113567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/07/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Hepatic fibrosis, as a destructive liver disease, occurs due to activated hepatic stellate cells (HSCs) producing excessive extracellular matrix deposition. If left untreated, it could further deteriorate into cirrhosis and hepatoma with high morbidity and mortality. Currently, to break the dilemma of poor targeting efficiency on HSCs and limited effect of monotherapy, it is urgent to explore a precise and efficient treatment against liver fibrosis. In the present work, a novel multifunctional nanoplatform based on vitamin A (VA) modified zeolitic imidazolate framework-8 (ZIF-8) nanoparticles was designed for co-delivery of chemical drug (Pirfenidone) and genetic drug (TGF-β1 siRNA) to achieve HSCs targeting mediated synergistic chemo-gene therapy against liver fibrosis. With the large specific surface area and acid-responsive degradation characteristics, ZIF-8 nanoparticles have great advantages to achieve high loading efficiency of Pirfenidone and enable acid-reactive drug release. After complexing siRNA, the prepared chemo-gene drug co-delivered nanocomplex (GP@ZIF-VL) proved excellent serum stability and effectively protected siRNA from degradation. Importantly, in vitro cell uptake and in vivo biodistribution demonstrated that VA functionalization markedly enhanced the delivery efficiency of GP@ZIF-VL nanocomplex into HSCs. As expected, GP@ZIF-VL significantly reduced extracellular matrix deposition and ameliorated hepatic fibrosis, as evidenced by decreased levels of liver enzymes in serum and a reduction in the hydroxyproline content in liver tissue. Therefore, GP@ZIF-VL nanocomplex displayed a bright future on the treatment of liver fibrosis with HSCs-targeting mediated chemo-gene synergetic therapy.
Collapse
Affiliation(s)
- Kaili Wang
- Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Hao Chen
- Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Si Qin
- Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Shuhui Chen
- Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Qian Zhang
- Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Jiali Chen
- Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Donghua Di
- Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Guangyue Su
- Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China.
| | - Yue Yuan
- Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China.
| |
Collapse
|
21
|
Liao YJ, Lee CY, Twu YC, Suk FM, Lai TC, Chang YC, Lai YC, Yuan JW, Jhuang HM, Jian HR, Huang LC, Chen KP, Hsu MH. Isolation and Biological Evaluation of Alfa-Mangostin as Potential Therapeutic Agents against Liver Fibrosis. Bioengineering (Basel) 2023; 10:1075. [PMID: 37760177 PMCID: PMC10526009 DOI: 10.3390/bioengineering10091075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The increased proliferation and activation of hepatic stellate cells (HSCs) are associated with liver fibrosis development. To date, there are no FDA-approved drugs for the treatment of liver cirrhosis. Augmentation of HSCs apoptosis is one of the resolutions for liver fibrosis. In this study, we extracted α-mangostin (1,3,6-trihydroxy-7-methoxy-2,8-bis(3-methyl-2-butenyl)-9H-xanthen-9-one) from the fruit waste components of mangosteen pericarp. The isolated α-mangostin structure was determined and characterized with nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS) and compared with those known compounds. The intracellular signaling pathway activities of α-mangostin on Transforming growth factors-beta 1 (TGF-β1) or Platelet-derived growth factor subunit B (PDGF-BB) induced HSCs activation and were analyzed via Western blot and Real-time Quantitative Polymerase Chain Reaction (Q-PCR). α-Mangostin-induced mitochondrial dysfunction and apoptosis in HSCs were measured by seahorse assay and caspase-dependent cleavage. The in vivo anti-fibrotic effect of α-mangostin was assessed by carbon tetrachloride (CCl4) treatment mouse model. The data showed that α-mangostin treatment inhibited TGF-β1-induced Smad2/3 phosphorylation and alpha-smooth muscle actin (α-SMA) expression in HSCs in a dose-dependent manner. Regarding the PDGF-BB-induced HSCs proliferation signaling pathways, α-mangostin pretreatment suppressed the phosphorylation of extracellular-signal-regulated kinase (ERK) and p38. The activation of caspase-dependent apoptosis and dysfunction of mitochondrial respiration (such as oxygen consumption rate, ATP production, and maximal respiratory capacity) were observed in α-mangostin-treated HSCs. The CCl4-induced liver fibrosis mouse model showed that the administration of α-mangostin significantly decreased the expression of the fibrosis markers (α-SMA, collagen-a2 (col1a2), desmin and matrix metalloproteinase-2 (MMP-2)) as well as attenuated hepatic collagen deposition and liver damage. In conclusion, this study demonstrates that α-mangostin attenuates the progression of liver fibrosis through inhibiting the proliferation of HSCs and triggering apoptosis signals. Thus, α-mangostin may be used as a potential novel therapeutic agent against liver fibrosis.
Collapse
Affiliation(s)
- Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (Y.-J.L.)
| | - Chun-Ya Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (Y.-J.L.)
| | - Yuh-Ching Twu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Fat-Moon Suk
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Tzu-Chieh Lai
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Ya-Ching Chang
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Yi-Cheng Lai
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Jing-Wei Yuan
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Hong-Ming Jhuang
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Huei-Ruei Jian
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Li-Chia Huang
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Kuang-Po Chen
- Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan
| | - Ming-Hua Hsu
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| |
Collapse
|
22
|
Younis MA, Sato Y, Elewa YHA, Harashima H. Reprogramming activated hepatic stellate cells by siRNA-loaded nanocarriers reverses liver fibrosis in mice. J Control Release 2023; 361:592-603. [PMID: 37579975 DOI: 10.1016/j.jconrel.2023.08.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
We report on a novel strategy for treating liver fibrosis through reprogramming activated Hepatic Stellate Cells (aHSCs) into quiescent Hepatic Stellate Cells (qHSCs) using siRNA-loaded lipid nanoparticles (LNPs). The in vivo screening of an array of molecularly-diverse ionizable lipids identified two candidates, CL15A6 and CL15H6, with a high siRNA delivery efficiency to aHSCs. Optimization of the composition and physico-chemical properties of the LNPs enabled the ligand-free, selective, and potent siRNA delivery to aHSCs post intravenous administration, with a median effective siRNA dose (ED50) as low as 0.08 mg/Kg. The biosafety of the LNPs was confirmed by escalating the dose to 50-fold higher than the ED50 or by chronic administration. The recruitment of the novel LNPs for the simultaneous knockdown of Hedgehog (Hh) and Transforming Growth Factor Beta 1 (TGFβ1) signaling pathways using an siRNA cocktail enabled the reversal of liver fibrosis and the restoration of the normal liver function in mice. Analysis of the key transcription factors in aHSCs suggested that the reprogramming of aHSCs into qHSCs mediated the therapeutic outcomes. The scalable ligand-free platform developed in this study as well as the novel therapeutic strategy reported herein are promising for clinical translation.
Collapse
Affiliation(s)
- Mahmoud A Younis
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yaser H A Elewa
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt; Graduate School of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
23
|
Han DW, Xu K, Jin ZL, Xu YN, Li YH, Wang L, Cao Q, Kim KP, Ryu D, Hong K, Kim NH. Customized liver organoids as an advanced in vitro modeling and drug discovery platform for non-alcoholic fatty liver diseases. Int J Biol Sci 2023; 19:3595-3613. [PMID: 37497008 PMCID: PMC10367556 DOI: 10.7150/ijbs.85145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/12/2023] [Indexed: 07/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its progressive form non-alcoholic steatohepatitis (NASH) have presented a major and common health concern worldwide due to their increasing prevalence and progressive development of severe pathological conditions such as cirrhosis and liver cancer. Although a large number of drug candidates for the treatment of NASH have entered clinical trial testing, all have not been released to market due to their limited efficacy, and there remains no approved treatment for NASH available to this day. Recently, organoid technology that produces 3D multicellular aggregates with a liver tissue-like cytoarchitecture and improved functionality has been suggested as a novel platform for modeling the human-specific complex pathophysiology of NAFLD and NASH. In this review, we describe the cellular crosstalk between each cellular compartment in the liver during the pathogenesis of NAFLD and NASH. We also summarize the current state of liver organoid technology, describing the cellular diversity that could be recapitulated in liver organoids and proposing a future direction for liver organoid technology as an in vitro platform for disease modeling and drug discovery for NAFLD and NASH.
Collapse
Affiliation(s)
- Dong Wook Han
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jianghai, Jiangmen, Guangdong Province, China
- Research and Development, Qingdao Haier Biotech Co. Ltd, Qingdao, China
- Guangdong ORGANOID Biotechnology Co. Ltd, Jiangmen, China
| | - KangHe Xu
- Department of Surgery, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Zhe-Long Jin
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jianghai, Jiangmen, Guangdong Province, China
- Guangdong ORGANOID Biotechnology Co. Ltd, Jiangmen, China
| | - Yong-Nan Xu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jianghai, Jiangmen, Guangdong Province, China
| | - Ying-Hua Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jianghai, Jiangmen, Guangdong Province, China
| | - Lin Wang
- Research and Development, Qingdao Haier Biotech Co. Ltd, Qingdao, China
| | - Qilong Cao
- Research and Development, Qingdao Haier Biotech Co. Ltd, Qingdao, China
| | - Kee-Pyo Kim
- Department of Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - DongHee Ryu
- Department of Surgery, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, The institute of advanced regenerative science, Konkuk University, Seoul, Republic of Korea
| | - Nam-Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jianghai, Jiangmen, Guangdong Province, China
- Research and Development, Qingdao Haier Biotech Co. Ltd, Qingdao, China
- Guangdong ORGANOID Biotechnology Co. Ltd, Jiangmen, China
| |
Collapse
|
24
|
Qin S, Du X, Wang K, Wang D, Zheng J, Xu H, Wei X, Yuan Y. Vitamin A-modified ZIF-8 lipid nanoparticles for the therapy of liver fibrosis. Int J Pharm 2023:123167. [PMID: 37356511 DOI: 10.1016/j.ijpharm.2023.123167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
Liver fibrosis (LF) is one of the major diseases that threaten human health. Until now, no effective drugs have been approved for clinical anti-liver fibrosis treatment. In this study, zeolitic imidazolate framework-8 (ZIF-8) lipid nanoparticles loaded with pirfenidone (PFD) and modified with vitamin A (VA) were constructed (VA-PFD@ZIF-8@DMPC NPs). PFD was embedded in ZIF-8 by the "one-pot" method, and the prepared ZIF-8 had a small particle size (84.3 nm) and high drug loading (54.46%). Moreover, the inherent pH sensitivity of ZIF-8 makes it stable in a normal physiological environment and collapsed in an acidic environment, thus controlling drug release and preventing drug leakage. Besides, the phospholipid layer makes the nano-drug delivery system dispersible and improves its biocompatibility. More importantly, VA is modified on the surface of nanoparticles (NPs), which can target the highly expressed retinol-binding protein receptor (RBPR) on the surface of hepatic stellate cells (HSCs), thereby accurately increasing the local drug concentration at the site of LF. In vivo experiments showed that VA-PFD@ZIF-8@DMPC NPs can reduce liver injury, improve the degree of LF, and exert specific therapeutic effects on LF. In conclusion, this nano-delivery system may become a novel and effective anti-liver fibrosis treatment.
Collapse
Affiliation(s)
- Si Qin
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, P. R. China
| | - Xuening Du
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, P. R. China
| | - Kaili Wang
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, P. R. China
| | - Da Wang
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, P. R. China
| | - Jiani Zheng
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, P. R. China
| | - Haiyan Xu
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, P. R. China
| | - Xiuyan Wei
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 103 Wenhua Road, Shenyang, 110016, P. R. China
| | - Yue Yuan
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, P. R. China.
| |
Collapse
|
25
|
Wei L, Liu L, Bai M, Ning X, Sun S. CircRNAs: versatile players and new targets in organ fibrosis. Cell Commun Signal 2023; 21:90. [PMID: 37131173 PMCID: PMC10152639 DOI: 10.1186/s12964-023-01051-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/15/2023] [Indexed: 05/04/2023] Open
Abstract
Organ fibrosis can occur in virtually all major organs with relentlessly progressive and irreversible progress, ultimately resulting in organ dysfunction and potentially death. Unfortunately, current clinical treatments cannot halt or reverse the progression of fibrosis to end-stage organ failure, and thus, advanced antifibrotic therapeutics are urgently needed. In recent years, a growing body of research has revealed that circular RNAs (circRNAs) play pivotal roles in the development and progression of organ fibrosis through highly diverse mechanisms of action. Thus, manipulating circRNAs has emerged as a promising strategy to mitigate fibrosis across different organ types. In this review, we systemically summarize the current state of knowledge about circRNA biological properties and the regulatory mechanisms of circRNAs. A comprehensive overview of major fibrotic signaling pathways and representative circRNAs that are known to modulate fibrotic signals are outlined. Then, we focus on the research progress of the versatile functional roles and underlying molecular mechanisms of circRNAs in various fibrotic diseases in different organs, including the heart, liver, lung, kidney and skin. Finally, we offer a glimpse into the prospects of circRNA-based interference and therapy, as well as their utilization as biomarkers in the diagnosis and prognosis of fibrotic diseases. Video abstract.
Collapse
Affiliation(s)
- Lei Wei
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, No. 127 Changle West Road, Xi'an, Shaanxi, China
| | - Limin Liu
- School of Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710032, Shaanxi, China
| | - Ming Bai
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, No. 127 Changle West Road, Xi'an, Shaanxi, China
| | - Xiaoxuan Ning
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi, China.
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, No. 127 Changle West Road, Xi'an, Shaanxi, China.
| |
Collapse
|
26
|
Abouelezz HM, Shehatou GS, Shebl AM, Salem HA. A standardized pomegranate fruit extract ameliorates thioacetamide-induced liver fibrosis in rats via AGE-RAGE-ROS signaling. Heliyon 2023; 9:e14256. [PMID: 36938469 PMCID: PMC10015255 DOI: 10.1016/j.heliyon.2023.e14256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023] Open
Abstract
This work aimed to investigate a possible mechanism that may mediate the hepatoprotective effects of pomegranate fruit extract (PFE) against thioacetamide (THIO)-induced liver fibrosis in rats. Male Sprague Dawley rats were randomly allocated into four groups (n = 8 each): control; PFE (150 mg/kg/day, orally); THIO (200 mg/kg, i.p, 3 times a week); and THIO and PFE-treated groups. Oral PFE treatment decreased liver/body weight ratio by 12.4%, diminished serum function levels of ALT, AST, ALP, LDH, and total bilirubin, increased serum albumin, boosted hepatic GSH (by 35.6%) and SOD (by 17.5%), and significantly reduced hepatic levels of ROS, MDA, 4-HNE, AGEs, and RAGE in THIO-fibrotic rats relative to untreated THIO group. Moreover, PFE administration downregulated the hepatic levels of profibrotic TGF-β1 (by 23.0%, P < 0.001) and TIMP-1 (by 41.5%, P < 0.001), attenuated α-SMA protein expression, decreased serum HA levels (by 41.3%), and reduced the hepatic levels of the fibrosis markers hydroxyproline (by 26.0%, P < 0.001), collagen type IV (by 44.3%, P < 0.001) and laminin (by 43.4%, P < 0.001) compared to the untreated THIO group. The histopathological examination has corroborated these findings, where PFE decreased hepatic nodule incidence, attenuated portal necroinflammation and reduced extent of fibrosis. These findings may suggest that oral PFE administration could slow the progression of hepatic fibrogenesis via reducing hepatic levels of AGEs, RAGE, ROS, TGF-β1, and TIMP-1.
Collapse
Affiliation(s)
- Hadeer M. Abouelezz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Corresponding author.
| | - George S.G. Shehatou
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City, Egypt
| | - Abdelhadi M. Shebl
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hatem A. Salem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
27
|
Cernea S, Onișor D. Screening and interventions to prevent nonalcoholic fatty liver disease/nonalcoholic steatohepatitis-associated hepatocellular carcinoma. World J Gastroenterol 2023; 29:286-309. [PMID: 36687124 PMCID: PMC9846941 DOI: 10.3748/wjg.v29.i2.286] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/06/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
Liver cancer is the sixth most commonly diagnosed cancer worldwide, with hepatocellular carcinoma (HCC) comprising most cases. Besides hepatitis B and C viral infections, heavy alcohol use, and nonalcoholic steatohepatitis (NASH)-associated advanced fibrosis/cirrhosis, several other risk factors for HCC have been identified (i.e. old age, obesity, insulin resistance, type 2 diabetes). These might in fact partially explain the occurrence of HCC in non-cirrhotic patients without viral infection. HCC surveillance through effective screening programs is still an unmet need for many nonalcoholic fatty liver disease (NAFLD) patients, and identification of pre-cirrhotic individuals who progress to HCC represents a substantial challenge in clinical practice at the moment. Patients with NASH-cirrhosis should undergo systematic HCC surveillance, while this might be considered in patients with advanced fibrosis based on individual risk assessment. In this context, interventions that potentially prevent NAFLD/ NASH-associated HCC are needed. This paper provided an overview of evidence related to lifestyle changes (i.e. weight loss, physical exercise, adherence to healthy dietary patterns, intake of certain dietary components, etc.) and pharmacological interventions that might play a protective role by targeting the underlying causative factors and pathogenetic mechanisms. However, well-designed prospective studies specifically dedicated to NAFLD/NASH patients are still needed to clarify the relationship with HCC risk.
Collapse
Affiliation(s)
- Simona Cernea
- Department M3/Internal Medicine I, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureş 540139, Romania
- Diabetes, Nutrition and Metabolic Diseases Outpatient Unit, Emergency County Clinical Hospital, Târgu Mureş 540136, Romania
| | - Danusia Onișor
- Department ME2/Internal Medicine VII, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, Târgu Mureş 540139, Romania
- Gastroenterology Department, Mureș County Clinical Hospital, Târgu Mureș 540072, Romania
| |
Collapse
|
28
|
The Role of Praziquantel in the Prevention and Treatment of Fibrosis Associated with Schistosomiasis: A Review. J Trop Med 2022; 2022:1413711. [PMID: 36313856 PMCID: PMC9616668 DOI: 10.1155/2022/1413711] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 01/30/2023] Open
Abstract
Schistosomiasis remains a major global public health concern. Currently, the control of this neglected tropical disease still depends on chemotherapy to reduce the prevalence and intensity of the parasite infection. It has been widely accepted that praziquantel is highly effective against all species of Schistosoma, and this agent is virtually the only drug of choice for the treatment of human schistosomiasis. Mass drug administration (MDA) with praziquantel has been shown to be effective in greatly reducing the prevalence and morbidity due to schistosomiasis worldwide. In addition to antischistosomal activity, a large number of experiential and clinical evidence has demonstrated the action of praziquantel against fibrosis caused by S. mansoni and S. japonicum infections through decreasing the expression of fibrotic biomarkers such as α-smooth muscle actin (α-SMA), collagen, matrix metalloproteinase (MMP), and tissue inhibitor of metalloproteinase (TIMP), and inhibiting the expression of proinflammatory cytokines such as interleukin (IL)-6, tumor necrosis factor (TNF)-α, and transforming growth factor (TGF)-β, as well as chemokines, and similar antifibrotic activity was observed in mouse models of fibrosis induced by carbon tetrachloride (CCl4) and concanavalin A (Con-A). In this review, we discuss the role of praziquantel in the prevention and treatment of fibrosis associated with schistosomiasis and the possible mechanisms. We call for randomized, controlled clinical trials to evaluate the efficacy and safety of praziquantel in the treatment of schistosomiasis-induced hepatic fibrosis, and further studies to investigate the potential of praziquantel against fibrosis associated with alcohol consumption, viruses, and toxins seem justified.
Collapse
|