1
|
Peng J, Chen G, Guo S, Lin Z, Li J, Yang W, Xiao G, Wang Q. The Galloyl Group Enhances the Inhibitory Activity of Catechins against LPS-Triggered Inflammation in RAW264.7 Cells. Foods 2024; 13:2616. [PMID: 39200543 PMCID: PMC11353959 DOI: 10.3390/foods13162616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/04/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
The galloyl group in catechins was confirmed to be crucial for their health benefits. However, whether the catechins' galloyl group had a contribution to their anti-inflammation remains unclear. This study investigated the anti-inflammation properties and mechanisms of catechins in RAW264.7 cells by using ELISA, fluorometry, flow cytometer, Western blot, and molecular docking. Results showed that the galloyl group enhanced the inhibitory abilities of catechins on inflammatory cytokines (NO, PGE2, IL-1β, and TNF-α) and ROS release in LPS-induced cells. This suppression was likely mediated by delaying cells from the G0/G1 to the S phase, blocking COX-2 and iNOS via the TLR4/MAPK/NF-κB pathway with PU.1 as an upstream target. The research proved that the existence of galloyl groups in catechins was indispensable for their anti-inflammatory capacities and offered a theoretical basis for the anti-inflammatory mechanism of galloylated catechins. Future research is needed to verify the anti-inflammatory effects of catechins in various sources of macrophages or the Caco-2/RAW264.7 cell co-culture system.
Collapse
Affiliation(s)
- Jinming Peng
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.P.); (Z.L.); (G.X.)
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Guangwei Chen
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.P.); (Z.L.); (G.X.)
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Shaoxin Guo
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.P.); (Z.L.); (G.X.)
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ziyuan Lin
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.P.); (Z.L.); (G.X.)
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jun Li
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.P.); (Z.L.); (G.X.)
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wenhua Yang
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.P.); (Z.L.); (G.X.)
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Gengsheng Xiao
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.P.); (Z.L.); (G.X.)
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Qin Wang
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.P.); (Z.L.); (G.X.)
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
2
|
Qin M, Xing Y, Sun M, Ma L, Li X, Ma F, Li D, Duan C. An Exploration of the Antioxidative and Anti-Inflammatory Role of Lactiplantibacillus plantarum 106 via Improving Mitochondrial Function. Foods 2024; 13:1981. [PMID: 38998487 PMCID: PMC11241742 DOI: 10.3390/foods13131981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
In this present study, bioinformatics analysis and the experimental validation method were used to systematically explore the antioxidant activity and anti-inflammatory effect of Lactiplantibacillus plantarum A106, which was isolated from traditional Chinese pickles, on lipopolysaccharide (LPS)-induced RAW264.7 macrophages. L. plantarum A106 had a good scavenging ability for DPPH, ABTS, and hydroxyl radicals. Furthermore, L. plantarum A106 could increase the activity of RAW264.7 macrophages; raise the SOD and GSH levels, with or without LPS sensitization; or decrease the MDA, TNF-α, and IL-6 levels. In order to deeply seek the antioxidant and anti-inflammatory role and mechanism, bioinformatic analysis, including GO, KEGG, and GSEA analysis, was used to conduct an in-depth analysis, and the results showed that the LPS treatment of RAW264.7 macrophages significantly upregulated inflammatory-related genes and revealed an enrichment in the inflammatory signaling pathways. Additionally, a network analysis via the Cytoscape software (version 3.9.1) identified key central genes and found that LPS also disturbed apoptosis and mitochondrial function. Based on the above bioinformatics analysis, the effects of L. plantarum A106 on inflammation-related gene expression, mitochondrial function, apoptosis, etc., were detected. The results indicated that L. plantarum A106 restored the declined expression levels of crucial genes like TNF-α and IL-6; mitochondrial membrane potential; and apoptosis and the expression of apoptosis-related genes, Bcl-2, Caspase-3, and Bax. These results suggest that L. plantarum A106 exerts antioxidant activity and anti-inflammatory effects through regulating inflammatory and apoptosis-related gene expression, restoring the mitochondrial membrane potential.
Collapse
Affiliation(s)
- Mengchun Qin
- Key Laboratory of Agro-Products Processing Technology, Education Department of Jilin Province, Changchun University, 6543 Weixing Road, Changchun 130022, China
| | - Yinfei Xing
- College of Veterinary Medicine, Jilin University, Changchun 130062, China;
| | - Maocheng Sun
- Key Laboratory of Agro-Products Processing Technology, Education Department of Jilin Province, Changchun University, 6543 Weixing Road, Changchun 130022, China
| | - Lin Ma
- Key Laboratory of Agro-Products Processing Technology, Education Department of Jilin Province, Changchun University, 6543 Weixing Road, Changchun 130022, China
| | - Xiaolei Li
- Key Laboratory of Agro-Products Processing Technology, Education Department of Jilin Province, Changchun University, 6543 Weixing Road, Changchun 130022, China
| | - Fumin Ma
- Key Laboratory of Agro-Products Processing Technology, Education Department of Jilin Province, Changchun University, 6543 Weixing Road, Changchun 130022, China
| | - Dan Li
- Key Laboratory of Agro-Products Processing Technology, Education Department of Jilin Province, Changchun University, 6543 Weixing Road, Changchun 130022, China
| | - Cuicui Duan
- Key Laboratory of Agro-Products Processing Technology, Education Department of Jilin Province, Changchun University, 6543 Weixing Road, Changchun 130022, China
| |
Collapse
|
3
|
Zhao P, Xu M, Gong K, Lu K, Ruan C, Yu X, Zhu J, Guan H, Zhu Q. Testing of Anti-EMT, Anti-Inflammatory and Antibacterial Activities of 2',4'-Dimethoxychalcone. Pharmaceuticals (Basel) 2024; 17:653. [PMID: 38794223 PMCID: PMC11124480 DOI: 10.3390/ph17050653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Chalcone (1,3-diaryl-2-propen-1-one) is an α, β-unsaturated ketone that serves as an active constituent or precursor of numerous natural substances, exhibiting a broad spectrum of pharmacological effects. In this study, the classical Claisen-Schmidt condensation method was used to synthesize the chalcone derivative 2',4'-dimethoxychalcone (DTC) and evaluate its pharmacological activity. By upregulating the expression of the epithelial cell marker E-cadherin and downregulating the expression of the mesenchymal cell marker vimentin, DTC was found to inhibit transforming growth factor-β1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) process in A549 cells, maintaining the cells' epithelial-like morphology and reducing the ability of the cells to migrate. Additionally, DTC demonstrated the ability to decrease the expression levels of nitric oxide (NO), tumor necrosis factor (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in RAW264.7 cells, suggesting a possible anti-inflammatory effect. Furthermore, DTC was found to exhibit bacteriostatic activity against Staphylococcus aureus (S. aureus), Proteus vulgaris (P. vulgaris), methicillin-resistant Staphylococcus aureus (MRSA), and Candida albicans (C. albicans), indicating that this chemical may possess broad-spectrum antibacterial activity.
Collapse
Affiliation(s)
- Peiling Zhao
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (P.Z.); (M.X.); (K.G.); (K.L.); (X.Y.); (J.Z.)
| | - Mengzhen Xu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (P.Z.); (M.X.); (K.G.); (K.L.); (X.Y.); (J.Z.)
| | - Kai Gong
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (P.Z.); (M.X.); (K.G.); (K.L.); (X.Y.); (J.Z.)
| | - Kaihui Lu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (P.Z.); (M.X.); (K.G.); (K.L.); (X.Y.); (J.Z.)
| | - Chen Ruan
- School of Pharmacy, Shandong University of traditional Chinese Medicine, Jinan 250355, China;
| | - Xin Yu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (P.Z.); (M.X.); (K.G.); (K.L.); (X.Y.); (J.Z.)
| | - Jiang Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (P.Z.); (M.X.); (K.G.); (K.L.); (X.Y.); (J.Z.)
| | - Haixing Guan
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qingjun Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (P.Z.); (M.X.); (K.G.); (K.L.); (X.Y.); (J.Z.)
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
4
|
Ren J, Fang A, Jiao S, Li R, Huang Y, Ni X, Zhang Y, Ma Y, Li S, Li J. Lignans from the leaves of Styrax japonicus and their anti-inflammatory activity. Fitoterapia 2024; 172:105774. [PMID: 38097021 DOI: 10.1016/j.fitote.2023.105774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/12/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
Five novel lignans, namely styraxjaponica A-E (1-5), together with eight known compounds (6-13) were isolated from the leaves of Styrax japonicus Siebold & Zucc. Their chemical structures were characterized by extensive analysis of 1D and 2D NMR, UV, IR, HRESIMS spectroscopic analysis as well as by comparison to the literature. The absolute configurations of the new compounds were further determined by quantum chemical electronic circular dichroism (ECD) calculations powered by time-dependent density functional theory (TDDFT). Moreover, the anti-inflammatory effects of compounds 1-5 in lipopolysaccharide (LPS)-induced RAW 264.7 cells were also evaluated by measuring nitric oxide (NO) concentrations. All compounds displayed significant anti-inflammatory activity without affecting cell viability in vitro.
Collapse
Affiliation(s)
- Jie Ren
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Aiqing Fang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Shungang Jiao
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Rong Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Yuting Huang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Xiaoting Ni
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Yunkun Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Yuan Ma
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Shunxiang Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, PR China; Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha 410208, PR China; Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha 410208, PR China
| | - Juan Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, PR China; Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha 410208, PR China; Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha 410208, PR China.
| |
Collapse
|
5
|
Yan Z, Wang Y, Song Y, Ma Y, An Y, Wen R, Wang N, Huang Y, Wu X. Phenethylferulate as a natural inhibitor of inflammation in LPS-stimulated RAW 264.7 macrophages: focus on NF-κB, Akt and MAPK signaling pathways. BMC Complement Med Ther 2023; 23:398. [PMID: 37936108 PMCID: PMC10629144 DOI: 10.1186/s12906-023-04234-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Notopterygii Rhizoma et Radix (NRR) is commonly used for the treatment of inflammation-linked diseases. Phenethylferulate (PF) is high content in NRR crude, but its anti-inflammatory effect remains unclear. Therefore, we aimed to investigate the anti-inflammatory properties of PF and its underlying molecular mechanisms in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. METHODS The effect of PF on cell viability was measured by MTT assay. The anti-inflammatory properties of PF were studied by detecting the levels of inflammatory mediators and cytokines using enzyme-linked immunosorbent assay (ELISA). Furthermore, the anti-inflammatory mechanisms of PF were determined by Western blot analysis. RESULTS PF was not cytotoxic to RAW 264.7 macrophages at the concentrations of below 48 μM. ELISA showed that PF conspicuously inhibited overproduction of prostaglandin E2 (PGE2), tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β) and interleukin 6 (IL-6). Western blot analysis showed that PF remarkably suppressed overproduction of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2), the phosphorylation of inhibitor of NF-κB kinase α (IκB-α), protein kinase B (Akt), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinases (JNK) and p38, as well as the degradation and subsequent nuclear translocation of p65. CONCLUSIONS PF is a potent inhibitor of inflammation acting on nuclear factor kappa-B (NF-κB), Akt and mitogen-activated protein kinase (MAPK) signaling pathways in LPS-stimulated RAW 264.7 macrophages. This work provides evidence for the suitability of PF as a therapeutic candidate for the management of inflammatory-mediated immune disorders.
Collapse
Grants
- No. H2022206456, H2021206449, H2022206114, B2022321001 Natural Science Foundation of Hebei Province
- No. H2022206456, H2021206449, H2022206114, B2022321001 Natural Science Foundation of Hebei Province
- No. H2022206456, H2021206449, H2022206114, B2022321001 Natural Science Foundation of Hebei Province
- No. H2022206456, H2021206449, H2022206114, B2022321001 Natural Science Foundation of Hebei Province
- USIP2022173 Undergraduate Innovative Experiment Program of Hebei Medical University
- No. 82104195 National Natural Science Foundation of China
- No. 2022YFF1100301 National Key R&D Program of China
- No. 2022YFF1100301 National Key R&D Program of China
- National Key R&D Program of China
Collapse
Affiliation(s)
- Zhongjie Yan
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Yuanyu Wang
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Yizhen Song
- School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yicong Ma
- School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yufan An
- School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Ran Wen
- School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Na Wang
- School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yun Huang
- School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Xiuwen Wu
- School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
| |
Collapse
|
6
|
Tang S, Liang Y, Wang M, Lei J, Peng Y, Tao Q, Ming T, Yang W, Zhang C, Guo J, Xu H. Qinhuo Shanggan oral solution resolves acute lung injury by down-regulating TLR4/NF- κB signaling cascade and inhibiting NLRP3 inflammasome activation. Front Immunol 2023; 14:1285550. [PMID: 37954597 PMCID: PMC10634205 DOI: 10.3389/fimmu.2023.1285550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
Acute lung injury (ALI) is a common condition, particularly in the COVID-19 pandemic, which is distinguished by sudden onset of respiratory insufficiency with tachypnea, oxygen-refractory cyanosis, reduced lung compliance and diffuse infiltration of pulmonary alveoli. It is well-established that increasing activity of toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) signaling axis and the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome activation are associated with the pathogenesis of ALI. Since ALI poses a huge challenge to human health, it is urgent to tackle this affliction with therapeutic intervention. Qinhuo Shanggan oral solution (QHSG), a traditional Chinese herbal formula, is clinically used for effective medication of various lung diseases including ALI, with the action mechanism obscure. In the present study, with the rat model of lipopolysaccharide (LPS)-induced ALI, QHSG was unveiled to ameliorate ALI by alleviating the pathological features, reversing the alteration in white blood cell profile and impeding the production of inflammatory cytokines through down-regulation of TLR4/NF-κB signaling cascade and inhibition of NLRP3 inflammasome activation. In LPS-stimulated RAW264.7 mouse macrophages, QHSG was discovered to hinder the generation of inflammatory cytokines by lessening TLR4/NF-κB signaling pathway activity and weakening NLRP3 inflammasome activation. Taken together, QHSG may resolve acute lung injury, attributed to its anti-inflammation and immunoregulation by attenuation of TLR4/NF-κB signaling cascade and inhibition of NLRP3 inflammasome activation. Our findings provide a novel insight into the action mechanism of QHSG and lay a mechanistic foundation for therapeutic intervention in acute lung injury with QHSG in clinical practice.
Collapse
Affiliation(s)
- Shun Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanjing Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Minmin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiarong Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhui Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenyu Yang
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlin Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Zhang P, Liu N, Xue M, Zhang M, Xiao Z, Xu C, Fan Y, Liu W, Qiu J, Zhang Q, Zhou Y. Anti-Inflammatory and Antioxidant Properties of Squalene in Copper Sulfate-Induced Inflammation in Zebrafish ( Danio rerio). Int J Mol Sci 2023; 24:ijms24108518. [PMID: 37239865 DOI: 10.3390/ijms24108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/28/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Long-term or excessive oxidative stress can cause serious damage to fish. Squalene can be added to feed as an antioxidant to improve the body constitution of fish. In this study, the antioxidant activity was detected by 2,2-diphenyl-1-acrylhydrazyl (DPPH) test and fluorescent probe (dichloro-dihydro-fluorescein diacetate). Transgenic Tg (lyz: DsRed2) zebrafish were used to evaluate the effect of squalene on CuSO4-induced inflammatory response. Quantitative real-time reverse transcription polymerase chain reaction was used to examine the expression of immune-related genes. The DPPH assay demonstrated that the highest free radical scavenging exerted by squalene was 32%. The fluorescence intensity of reactive oxygen species (ROS) decreased significantly after 0.7% or 1% squalene treatment, and squalene could exert an antioxidative effect in vivo. The number of migratory neutrophils in vivo was significantly reduced after treatment with different doses of squalene. Moreover, compared with CuSO4 treatment alone, treatment with 1% squalene upregulated the expression of sod by 2.5-foldand gpx4b by 1.3-fold to protect zebrafish larvae against CuSO4-induced oxidative damage. Moreover, treatment with 1% squalene significantly downregulated the expression of tnfa and cox2. This study showed that squalene has potential as an aquafeed additive to provide both anti-inflammatory and antioxidative properties.
Collapse
Affiliation(s)
- Peng Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Naicheng Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Mengjie Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Zidong Xiao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Chen Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Wei Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Junqiang Qiu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Qinghua Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| |
Collapse
|
8
|
Corydalis decumbens Alleviates the Migration, Phagocytosis, and Inflammatory Response of Macrophages. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:7000477. [PMID: 36874618 PMCID: PMC9977534 DOI: 10.1155/2023/7000477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/05/2023] [Accepted: 01/30/2023] [Indexed: 02/25/2023]
Abstract
Background The role of Corydalis decumbens (CD) in macrophage activation remains unclear, particularly in the Ras homolog family member A (RhoA) signaling pathway. Therefore, the present study aimed to investigate the effect of CD on the viability, proliferation, morphological changes, migration, phagocytosis, differentiation, and release of inflammatory factors and signaling pathways in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Methods Cell counting kit-8 and water-soluble tetrazolium salt assays were used to evaluate the viability and proliferation of RAW264.7 macrophages. A transwell assay was examined to assess cell migration. The ingestion of lumisphere assay was employed to detect the phagocytic capacity of macrophages. Phalloidin staining was performed to observe morphological changes in the macrophages. An enzyme-linked immunosorbent assay was performed to quantify inflammation-related cytokines in cell culture supernatants. Cellular immunofluorescence and western blotting were adopted to show the expression of inflammation-related factors, biomarkers of M1/M2 subset macrophages, and factors of the RhoA signaling pathway. Results We found that CD increased the viability and proliferation of RAW264.7 macrophages. CD also impaired the migration and phagocytic capacity of macrophages, induced anti-inflammatory M2 macrophage polarization, such as M2-like morphological changes, and upregulated M2 macrophage biomarkers and anti-inflammatory factors. We also observed that CD inactivated the RhoA signaling pathway. Conclusions CD mediates the activation of LPS-stimulated macrophages, alleviates the inflammatory responses of macrophages, and activates related signaling pathways induced by LPS.
Collapse
|