1
|
Du C, Zhao Y, Shen F, Qian H. Effect of Brassica rapa L. Polysaccharide on Lewis Lung Cancer Mice by Inflammatory Regulation and Gut Microbiota Modulation. Foods 2024; 13:3704. [PMID: 39594117 PMCID: PMC11593872 DOI: 10.3390/foods13223704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related fatalities globally, related to inflammatory and gut microbiota imbalance. Brassica rapa L. polysaccharide (BP) is a functional compound, which is utilized by the gut microbiota to regulate immunity and metabolism. However, the effect of BP on lung cancer and whether it affects the "gut-lung" axis remains unclear. This study explored the intervention of BP in Lewis lung cancer (LLC) mice and its effect on the gut microbiota. The results revealed that BP reduced tumor weight and downregulated the expression of Ki67 protein. Additionally, BP reduced the content of inflammatory factors and growth factors, promoting tumor cell apoptosis and inhibiting the growth of LLC. The intervention of BP suppressed intestinal inflammation, preserved intestinal barrier integrity, and augmented the level of beneficial microbiota, such as Blautia and Bifidobacterium. Furthermore, BP significantly increased the production of short-chain fatty acids (SCFAs), particularly butyrate and propionate. A correlation analysis showed significant correlations among the gut microbiota, SCFAs, inflammatory factors, and tight junction proteins. A functional analysis indicated that BP promoted amino acid metabolism and fatty acid metabolism. These findings suggested that BP had the potential to act as prebiotics to prevent disease and improve lung cancer progression by regulating the gut microbiota.
Collapse
Affiliation(s)
- Changhui Du
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Yong Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China;
| | - Fanglin Shen
- School of Environmental Engineering, Wuxi University, Wuxi 214105, China;
| | - He Qian
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| |
Collapse
|
2
|
Lyu X, Wang Y, Xu Y, Zhao Z, Liu H, Hu Z. Metabolomic Profiling of Tumor Tissues Unveils Metabolic Shifts in Non-Small Cell Lung Cancer Patients with Concurrent Diabetes Mellitus. J Proteome Res 2024; 23:3746-3753. [PMID: 39162688 PMCID: PMC11385698 DOI: 10.1021/acs.jproteome.3c00924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
A comprehensive understanding of the exact influence of type 2 diabetes mellitus (T2DM) on the metabolic status of non-small cell lung cancer (NSCLC) is still lacking. This study explores metabolic alterations in tumor tissues among patients with coexisting NSCLC and T2DM in comparison with NSCLC patients. A combined approach of clinical analysis and metabolomics was employed, including 20 NSCLC patients and 20 NSCLC+T2DM patients. Targeted metabolomics analysis was performed on tumor tissues using the liquid chromatography-mass spectrometry (LC-MS) approach. A clear segregation was observed between NSCLC+T2DM and matched NSCLC tissue samples in Orthogonal Partial Least Squares Discrimination Analysis (OPLS-DA). Furthermore, the levels of 7 metabolites are found to be significantly different between diabetes/nondiabetes tumor tissue samples. The related pathways included arginine biosynthesis, glutathione metabolism, arginine and proline metabolism, purine metabolism, biotin metabolism, and histidine metabolism. 3-Phenyllactic acid, carnitine-C5, carnitine-C12, and serotonin showed a positive linear correlation with fasting blood glucose levels in NSCLC patients. Uridine, pipecolic acid, cytosine, and fasting blood glucose levels were found to have a negative correlation. Our results suggest that NSCLC patients with concurrent T2DM exhibit distinct metabolic shifts in tumor tissues compared to those of solely NSCLC patients.
Collapse
Affiliation(s)
- Xiaohong Lyu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing 100730, China
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing 100730, China
| | - Yujue Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yuan Xu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing 100730, China
| | - Zhewei Zhao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing 100730, China
| | - Hongsheng Liu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing 100730, China
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Gan L, Wang L, Li W, Zhang Y, Xu B. Metabolomic profile of secondary hyperparathyroidism in patients with chronic kidney disease stages 3-5 not receiving dialysis. Front Endocrinol (Lausanne) 2024; 15:1406690. [PMID: 39027473 PMCID: PMC11254665 DOI: 10.3389/fendo.2024.1406690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Secondary hyperparathyroidism (SHPT) is a common and serious complication of chronic kidney disease (CKD). Elucidating the metabolic characteristics of SHPT may provide a new theoretical basis for its prevention and treatment. This study aimed to perform a metabolomic analysis of SHPT in patients with CKD stages 3-5 not receiving dialysis. Methods A total of 76 patients with CKD, 85 patients with CKD-SHPT, and 67 healthy controls were enrolled in this study. CKD was diagnosed according to the criteria specified in the Kidney Disease Improving Global Outcomes 2012 guidelines. SHPT was diagnosed by experienced clinicians according to the Renal Disease Outcomes Quality Initiative Clinical Practice Guidelines. Serum renal function markers and the lipid profile were analyzed. Untargeted ultra performance liquid chromatography-tandem mass spectrometry was used to analyze the serum metabolites of patients with CKD and SHPT. Multivariate analysis of the data was performed using principal component analysis and partial least square discriminant analysis. Serum differential metabolites were identified and further characterized using databases. Pathway enrichment analysis was performed using the Kyoto Encyclopedia of Genes and Genomes database. Correlations between differential metabolites and clinical parameters were determined using the Spearman correlation. Results The serum metabolomic profiles of patients with CKD with and without SHPT differed significantly. Differential metabolites were mainly enriched in the top four Kyoto Encyclopedia of Genes and Genomes pathways: phenylalanine, tyrosine, and tryptophan biosynthesis; sphingolipid metabolism; glycerophospholipid metabolism; and phenylalanine metabolism. In total, 31 differential metabolites were identified; of these, L-tryptophan and (R)-(+)-1-phenylethylamine were decreased, while other amino acids and their derivatives, uremia toxins, carnitine, and lipids, were increased significantly in patients with SHPT compared to those without. The 14 lipid metabolites were positively correlated with levels of Urea, serum creatinine, cystatin C, and triglycerides and negatively correlated with the estimated glomerular filtration rate and levels of total and high- and low-density lipoprotein cholesterol. Discussion Disturbed amino acid and lipid metabolism were more apparent in patients with SHPT than in those without. This metabolomic profile of SHPT may provide a therapeutic foundation for its future clinical management.
Collapse
Affiliation(s)
- Lingling Gan
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Lijun Wang
- Department of Nephrology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Wanyi Li
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Yamei Zhang
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Bei Xu
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang, China
| |
Collapse
|
4
|
Liu X, Gao Y, Fu L, Li X, Ma J. Cutaneous Melanoma and 486 Human Blood Metabolites: A Mendelian Randomization Study. Aesthetic Plast Surg 2024; 48:2545-2552. [PMID: 38438761 DOI: 10.1007/s00266-024-03873-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/25/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Cutaneous melanoma (CM) has long been recognized as a lethal form of cancer. Despite persistent research endeavors, the precise underlying pathological mechanisms remain largely unclear, and the optimal treatment for this patient population remains undetermined. OBJECTIVES This study aims to examine the causal associations between CM and 486 metabolites. METHODS A two-sample Mendelian randomization (MR) analysis was conducted to ascertain the causal relationship between blood metabolites and CM. The causality analysis involved the inverse variance weighted (IVW) method, followed by the MR-Egger and weighted median (WM) methods. To increase the robustness of our findings, several sensitivity analyses, including the MR-Egger intercept, Cochran's Q test, and MR-pleiotropy residual sum and outlier (MR-PRESSO), were performed. The robustness of our results was further validated in independent outcome samples followed by a meta-analysis. Additionally, a metabolic pathway analysis was carried out. RESULTS The two-sample MR analysis yielded a total of 27 metabolites as potential causal metabolites. After incorporating the outcomes of the sensitivity analyses, seven causal metabolites remained. Palmitoylcarnitine (OR 0.9903 95% CI 0.9848-0.9958, p = 0.0005) emerged as the sole metabolite with a significant causality after Bonferroni correction. Furthermore, the reverse MR analysis provided no evidence of reverse causality from CM to the identified metabolites. CONCLUSIONS This study suggested a causal relationship between seven human blood metabolites and the development of CM, thereby offering novel insights into the underlying mechanisms involved. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Xuanchen Liu
- Department of Facial and Cervical Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Gao
- Department of Facial and Cervical Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Fu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Li
- Department of Facial and Cervical Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jiguang Ma
- Department of Facial and Cervical Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
5
|
Qian X, Chen Z, Ji XM, Ji YL, Wang J, Liu YC, Zhou XC, Li QL, Li CY, Zhang AQ. Qingfei mixture modulates the immune responses in lung cancer through modulating mTOR signaling and gut microbiota-derived short-chain fatty acids. Heliyon 2024; 10:e29404. [PMID: 38660245 PMCID: PMC11041045 DOI: 10.1016/j.heliyon.2024.e29404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Lung cancer ranks among the primary contributors to cancer-related fatalities on a global scale. Multiple research investigations have demonstrated that there exists a dysbiosis within the intestinal bacteria and short-chain fatty acids (SCFAs) is linked with immune responses in lung cancer. Qingfei mixture (QFM) has been widely used in treating lung cancer, yet the active ingredients and roles of the QFM on immune responses by targeting gut microbiota remain to be elucidated. The chemical constituents of QFM were qualitatively examined by UPLC/Q-TOF-MS. Additionally, we evaluated the therapeutic impact of the organic substance QFM on lung cancer, aiming to elucidate its mechanisms for improving the tumor-immune microenvironment. Herein, we constructed a Lewis lung carcinoma (LLC)-bearing mice model with QFM treatment to observe tumor growth and immune cell changes. Then, the feces were collected and a combinatory study using metagenomes, non-targeted metabonomics, and targeted metabonomics of SCFAs was performed. In vitro experiments have been conducted to estimate the roles of acetate and sodium propionate in CD8+ T cells. Furthermore, we treated tumor-bearing mice with QFM, QFM + MHY1485 (an mTOR activator), and QFM + an antibiotic mixture (ABX) to explore the potential therapeutic benefit of regulation of the tumor microenvironment. A total of 96 compounds were obtained from QFM by UPLC/Q-TOF-MS. Besides, the findings demonstrated that QFM exhibited significant efficacy against lung cancer, manifesting in reduced tumor growth and improved immune responses. In investigating its mechanisms, we integrated gut microbiota sequencing and fecal metabolomics, revealing that QFM effectively restored disruptions in gut microbiota and SCFAs in mice with lung cancer. QFM, acetate, or sodium propionate contributed to the up-regulation of IFN-γ, Gzms-B, perforin, IL-17, IL-6, IL-12, TNF-α expressions and decreased HDAC and IL-10 levels in vitro and in vivo. Moreover, MHY1485 and ABX weakened the effects of QFM on immunomodulation. Collectively, these results suggest that QFM may facilitate immune responses in the LLC-bearing mice via regulating the gut microbiota-derived SCFAs at least partially through targeting the mTOR signaling pathway.
Collapse
Affiliation(s)
- Xiang Qian
- Zhejiang Cancer Hospital, Zhejiang, China
| | - Zhuo Chen
- Zhejiang Cancer Hospital, Zhejiang, China
| | - Xu-Ming Ji
- Zhejiang Chinese Medical University, Zhejiang, China
| | | | - Jin Wang
- Zhejiang Cancer Hospital, Zhejiang, China
| | - Yuan-Cai Liu
- Zhejiang Chinese Medical University, Zhejiang, China
| | | | | | - Chang-Yu Li
- Zhejiang Chinese Medical University, Zhejiang, China
| | | |
Collapse
|
6
|
Li J, Zhang D, Wang S, Yu P, Sun J, Zhang Y, Meng X, Li J, Xiang L. Baicalein induces apoptosis by inhibiting the glutamine-mTOR metabolic pathway in lung cancer. J Adv Res 2024:S2090-1232(24)00085-7. [PMID: 38432394 DOI: 10.1016/j.jare.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/29/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024] Open
Abstract
INTRODUCTION Baicalein, a bioactive component of Scutellaria baicalensis Georgi, has been shown to promote apoptosis in non-small cell lung cancer cells. However, previous studies have not determined if baicalein exerts proapoptotic effects by modulating the metabolic pathways. OBJECTIVE To investigate if baicalein induces apoptosis in lung cancer cells by modulating the glutamine-mTOR metabolic pathway. METHODS The in vivo anti-lung cancer activity of baicalein (50, 100, and 200 mg/kg) was evaluated using a xenograft model. In vitro experiments were used to assess the efficacy of baicalein (for H1299: 12.5, 25, and 50 μM; for A549: 10, 20, and 40 μM) on lung cancer cell proliferation, colony formation, and apoptosis. Metabolomics analysis was performed using liquid chromatography-mass spectrometry. The binding of baicalein to glutamine transporters and glutaminase was examined using molecular docking. The overexpression of glutamine transporters was validated using qRT-PCR and western blot analyses. The levels of ASCT2, LAT1, GLS1, p-mTOR, mTOR, and apoptosis-related proteins were evaluated using western blot analysis. RESULTS Baicalein inhibited lung cancer xenograft tumor growth in vivo and suppressed proliferation and promoted apoptosis in lung cancer cells in vitro. Additionally, baicalein altered amino acid metabolites, especially glutamine metabolites, in H1299 and A549 cells. Mechanistically, baicalein interacted with glutamine transporters as well as glutaminase and inhibited their activation. The expression of mTOR, an apoptosis-related protein and downstream target of glutamine metabolism, was also inhibited by baicalein treatment. Importantly, we next demonstrated the suppression of mTOR signaling and the induction of apoptosis by baicalein were achieved by regulating glutamine metabolism. CONCLUSION Baicalein inhibited the mTOR signaling pathway and induced apoptosis by downregulating glutamine metabolism. The potential of baicalein to induce apoptosis in lung cancer cells by selectively targeting the glutamine-mTOR pathway suggests an encouraging approach for treating lung cancer.
Collapse
Affiliation(s)
- Jingyang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Di Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Peng Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiayi Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Juan Li
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China.
| | - Li Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
7
|
Xu B, Li W, Zhang Y, Chen Y, Feng J, Song X. Untargeted and spatial-resolved metabolomics characterize serum and tissue-specific metabolic reprogramming in acute kidney injury. Heliyon 2023; 9:e21171. [PMID: 38027662 PMCID: PMC10660029 DOI: 10.1016/j.heliyon.2023.e21171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Background Acute kidney injury (AKI) is one of the most common clinical emergencies characterized by rapid progression, difficulty in early diagnosis, and high mortality. Currently, there are no effective AKI early diagnostic methods and treatments. Therefore, identifying new mechanisms of AKI have become urgent for development new targets for early diagnosis and treatment of AKI in the current clinical setting. Methods In this study, systematic analysis and comparison of serum metabolic profiles of clinical AKI patients, chronic kidney disease (CKD) patients, and healthy subjects were performed using untargeted metabolomics. Moreover, the first spatial metabolomic analysis of kidney tissues in an AKI mouse model using MALDI-TOF MS technology was conducted. Differentially expressed metabolites were identified using a comprehensive, publicly available database. The metabolic data obtained were evaluated using principal component analysis, (orthogonal) partial least squares discriminant analysis, and metabolic pathway analysis to explore the unique serum metabolic profile of the patients, as well as to characterize the spatial distribution of differential metabolites in the kidneys of AKI mice. Results Significant changes in the metabolite levels of amino acids, carnitine, and lipids were observed in the AKI and CKD groups versus the healthy population, suggesting that kidney injury may lead to abnormalities in various metabolic pathways, such as amino acids, fatty acids, and lipids. The significant difference between the AKI and CKD groups were found for the first time in these indexes including amino acid, carnitine, fatty acid, and lipid levels. Additionally, spatial metabolomics results revealed that amino acid, carnitine, organic acid, and fatty acid metabolites were more likely significantly altered in the renal cortex, while lipid metabolites were both differentially distributed in the cortex and medulla of the AKI group. Conclusion Abnormalities in the serum metabolism of amino acids, carnitine, and lipids in patients with kidney diseases, such as AKI and CKD, are closely associated with the physiological dysfunction of kidney injury. Metabolic differences between patients with AKI and CKD were compared for the first time, showing that fatty acid oxidative inhibition was more severe in patients with AKI. Furthermore, spatial metabolomics has revealed metabolic reprogramming with tissue heterogeneity in AKI mice model. Our study provides valuable information in the molecular pathological features of AKI in the kidney tissues.
Collapse
Affiliation(s)
- Bei Xu
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, China
| | - Wanyi Li
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, China
| | - Yamei Zhang
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, China
| | - Yan Chen
- Department of Clinical Pharmacy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiafu Feng
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, China
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Varlı M, Ngo MT, Kim SM, Taş İ, Zhou R, Gamage CD, Pulat S, Park SY, Sesal NC, Hur JS, Kang KB, Kim H. A fatty acid-rich fraction of an endolichenic fungus Phoma sp. suppresses immune checkpoint markers via AhR/ARNT and ESR1. Heliyon 2023; 9:e19185. [PMID: 37662726 PMCID: PMC10474435 DOI: 10.1016/j.heliyon.2023.e19185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
Lung cancer has the highest mortality rates worldwide. The disease is caused by environmental pollutants, smoking, and many other factors. Recent treatments include immunotherapeutics, which have shown some success; however, the search for new therapeutics is ongoing. Endolichenic fungi produce a whale of a lot of secondary metabolites, the therapeutic effects of which are being evaluated. Here, we used a crude extract and subfractions of the endolichenic fungus, Phoma sp. (EL006848), isolated from the Pseudevernia furfuracea. It was identified the fatty acid components, palmitic acid, stearic acid, and oleic acid, exist in subfractions E1 and E2. In addition, EL006848 and its fatty acids fractions suppressed benzo[a]pyrene (an AhR ligand)- induced expression of PD-L1 to inhibit the activity of multiple immune checkpoints. E2 subfraction, which had a higher fatty acid content than E1, downregulated expression of AhR/ARNT and several human transcription factors related to ESR1. Moreover, E2 showed a strong inhibitory effect on STAT3 expression and mild effect on NF-kB activity. These results suggest that fatty acids extracted from an endolichenic fungus can exert strong immunotherapeutic effects.
Collapse
Affiliation(s)
- Mücahit Varlı
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Men Thi Ngo
- College of Pharmacy, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Seoul 04310, Republic of Korea
| | - Seong-Min Kim
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - İsa Taş
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Rui Zhou
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Chathurika D.B. Gamage
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Sultan Pulat
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - So-Yeon Park
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Nüzhet Cenk Sesal
- Faculty of Arts and Sciences, Department of Biology, Marmara University, Istanbul, Turkey
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Kyo Bin Kang
- College of Pharmacy, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Seoul 04310, Republic of Korea
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| |
Collapse
|
9
|
Cao Q, Wu X, Chen Y, Wei Q, You Y, Qiang Y, Cao G. The impact of concurrent bacterial lung infection on immunotherapy in patients with non-small cell lung cancer: a retrospective cohort study. Front Cell Infect Microbiol 2023; 13:1257638. [PMID: 37712056 PMCID: PMC10497767 DOI: 10.3389/fcimb.2023.1257638] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023] Open
Abstract
Objective To find out how bacterial lung infections (BLI) affect the effectiveness of therapy and the rate of pneumonia caused by pneumonia related to checkpoint inhibitors (CIP) in patients with non-small cell lung cancer (NSCLC) who are getting immunotherapy with checkpoint inhibitors (ICIs). Patients and methods 507 NSCLC patients who received at least two ICI treatments between June 2020 and December 2022 at the Affiliated Hospital of Kunming University of Science and Technology(AHKUST) were included in a retrospective cohort study. Based on whether there was a concurrent BLI diagnosis from high-resolution CT scans of the chest, the patients were divided into two groups: 238 in the NSCLC with BLI group (NSCLC-BLI group), and 269 in the NSCLC alone group. The collected therapeutic outcome measures included the objective response rate (ORR), progression-free survival (PFS), overall survival (OS), and the incidence rate of CIP. We analyzed the effect of BLI on the therapeutic efficacy of ICI treatment and the incidence rate of CIP in NSCLC patients.Inclusion criteria based on NSCLC patients staged I to IV according to the 8th edition of the International Association for Lung Cancer Research (IASLC). Results The NSCLC-BLI group showed superior ORR to the NSCLC group when treated with ICIs. Multifactorial logistic regression and Cox analyses, adjusted for confounders, identified BLI as an independent positive prognostic factor for ORR (HR=0.482, 95%CI: 0.391-0.550; P<0.001) and PFS (HR=0.619; 95%CI: 0.551-0.771; P<0.001). No correlation between BLI and OS was found. Out of 26 cases of CIP, 12 were in the NSCLC-BLI group and 14 in the NSCLC group, with no significant difference in incidence (P=0.145). Conclusion NSCLC patients with BLI receiving ICI treatment show superior ORR and PFS compared to NSCLC alone without an increased CIP risk, positioning BLI as a predictive factor for improved outcomes in NSCLC patients receiving ICIs. However, the study has limitations including its retrospective nature and lacking data on BLI bacteria types and levels, which could influence therapy outcomes.
Collapse
Affiliation(s)
- Qiang Cao
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
- School of Medicine, Macao University of Science and Technology, Macao, Macao SAR, China
| | - Xinyan Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuquan Chen
- Institute of Medical Information/Library, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Wei
- School of Medicine, Macao University of Science and Technology, Macao, Macao SAR, China
| | - Yanwei You
- Division of Sports Science & Physical Education, Tsinghua University, Beijing, China
| | - Yi Qiang
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
| | - Guangzhu Cao
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|