1
|
Liu Q, Luo S, Peng J, Chang R. Electrospun Nanofibers from Plant Natural Products: A New Approach Toward Efficient Wound Healing. Int J Nanomedicine 2024; 19:13973-13990. [PMID: 39742091 PMCID: PMC11687314 DOI: 10.2147/ijn.s501970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/23/2024] [Indexed: 01/03/2025] Open
Abstract
Globally, wound care has become a significant burden on public health, with annual medical costs reaching billions of dollars, particularly for the long-term treatment of chronic wounds. Traditional treatments, such as gauze and bandages, often fail to provide an ideal healing environment due to their lack of effective biological activity. Consequently, researchers have increasingly focused on developing new dressings. Among these, electrospinning technology has garnered considerable attention for its ability to produce nano-scale fine fibers. This new type of dressing, with its unique physical and chemical properties-especially in enhancing breathability, increasing specific surface area, optimising porosity, and improving flexibility-demonstrates significant advantages in promoting wound healing, reducing the risk of infection, and improving overall healing outcomes. Additionally, the application of natural products from plants in electrospinning technology further enhances the effectiveness of dressings. These natural products not only exhibit good biocompatibility but are also rich in pharmacologically active ingredients, such as antibacterial, anti-inflammatory, and antioxidant compounds. They can serve as both the substrate for nanofibers and as bioactive components, effectively promoting cell proliferation and tissue regeneration, thereby accelerating wound healing and reducing the risk of complications. This article reviews the application of plant natural product nanofibers prepared by electrospinning technology in wound healing, focussing on the development and optimisation of these nanofibers, discussing the advantages and challenges of using plant natural products in this technology, and outlining future research directions and application prospects in this field.
Collapse
Affiliation(s)
- Qin Liu
- School of Government, Yunnan University, Kunming, 650504, People’s Republic of China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, 650500, People’s Republic of China
| | - Shicui Luo
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, 650500, People’s Republic of China
| | - Junjie Peng
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, 650500, People’s Republic of China
| | - Renjie Chang
- Digestive Endoscopy Center, Department of Spleen and Gastroenterology, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, 650021, People’s Republic of China
| |
Collapse
|
2
|
Chen X, Yang Z, Liao M, Zhao Q, Lu Y, Li Q, Liu S, Li S, Chen J, He Y. Ginkgo Flavone Aglycone Ameliorates Atherosclerosis via Inhibiting Endothelial Pyroptosis by Activating the Nrf2 Pathway. Phytother Res 2024; 38:5458-5473. [PMID: 39322309 DOI: 10.1002/ptr.8321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 09/27/2024]
Abstract
Natural antioxidants have been shown to be effective against atherosclerosis. Ginkgo flavone aglycone (GA) has strong antioxidant properties and can protect against endothelial damage. However, the mechanisms by which GA protects against atherosclerosis remain largely unexplored. This study hopes to find the anti-atherosclerotic mechanism of GA. ApoE-/- mice fed a high-fat diet were used for modeling atherosclerosis. The efficacy of GA on mice with atherosclerosis was evaluated based on the following indicators: Oil Red O staining, Masson staining, lipid content, and apoptosis. Transmission electron microscopy, Western blot, immunofluorescence staining, and propidium iodide staining were used to analyze the effects of GA on ox-LDL-treated human aortic endothelial cells. GA activated Nrf2 by promoting the nuclear translocation of Nrf2, thereby inhibiting endothelial pyroptosis. GA prevented endothelial pyroptosis suppressed oxidative stress, and inhibited the development of atherosclerosis in ApoE-/- mice fed high-fat diets. At the cellular level, GA suppressed ox-LDL-induced pyroptosis of HAECs by reducing reactive oxygen species (ROS) levels and inhibiting NLRP3 inflammasome. Furthermore, siRNA targeting Nrf2 or ML385, an Nrf2 inhibitor, reversed these effects. GA liberated Nrf2 from Keap1 sequestration, enhanced the nuclear translocation of Nrf2 and the transcription of downstream antioxidant proteins, reinforced the antioxidant defense system, and inhibited oxidative stress, thereby preventing endothelial cell pyroptosis, and attenuating the progression of atherosclerosis. This study indicated that GA mitigated endothelial pyroptosis by modulating Keap1/Nrf2 interactions, shedding light on the potential mechanisms underlying the protective effects of natural antioxidants against atherosclerosis.
Collapse
Affiliation(s)
- Xingyi Chen
- Clinical Trials Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Zhuan Yang
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Meijuan Liao
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Qing Zhao
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yuan Lu
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Qin Li
- Clinical Trials Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shijing Liu
- Clinical Trials Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shiliang Li
- Department of Vascular Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jiyu Chen
- Clinical Trials Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yan He
- Clinical Trials Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| |
Collapse
|
3
|
Buranasudja V, Sanookpan K, Vimolmangkang S, Binalee A, Mika K, Krobthong S, Kerdsomboon K, Kumkate S, Poolpak T, Kidhakarn S, Yang KM, Limcharoensuk T, Auesukaree C. Pretreatment with aqueous Moringa oleifera Lam. leaf extract prevents cadmium-induced hepatotoxicity by improving cellular antioxidant machinery and reducing cadmium accumulation. Heliyon 2024; 10:e37424. [PMID: 39309955 PMCID: PMC11416483 DOI: 10.1016/j.heliyon.2024.e37424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/25/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Cadmium (Cd) is a highly harmful pollutant that poses a serious threat to human health. The liver is the primary organ for Cd accumulation, and Cd-induced hepatotoxicity has been shown to be strongly correlated with an oxidative imbalance in hepatocytes. Our previous studies in the eukaryotic model organism Saccharomyces cerevisiae revealed that not only co-treatment but also pretreatment with aqueous Moringa oleifera Lam. leaf extract (AMOLE) effectively mitigated Cd toxicity by reducing intracellular Cd accumulation and Cd-mediated oxidative stress. In this study, we therefore investigated the preventive effect of AMOLE against Cd toxicity in human HepG2 hepatocytes. The results showed that, similar to the case of the yeast model, pretreatment with AMOLE prior to Cd exposure also significantly inhibited Cd-induced oxidative stress in HepG2 cells. Untargeted LC-MS/MS-based metabolomic analysis of AMOLE revealed that its major phytochemical constituents were organic acids, particularly phenolic acids and carboxylic acids. Additionally, DPPH-HPTLC fingerprints suggested that quercetin and other flavonoids possibly contribute to the antioxidant activities of AMOLE. Based on our findings, it appears that pretreatment with AMOLE prevented Cd-induced hepatotoxicity via three possible mechanisms: i) direct elimination of free radicals by AMOLE antioxidant compounds; ii) upregulation of antioxidant defensive machinery (GPx1, and HO-1) via Nrf2 signaling cascade to improve cellular antioxidant capacity; and iii) reduction of intracellular Cd accumulation, probably by suppressing Cd uptake. These data strongly suggest the high potential of AMOLE for clinical utility in the prevention of Cd toxicity.
Collapse
Affiliation(s)
- Visarut Buranasudja
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kittipong Sanookpan
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Nabsolute Co., Ltd., Bangkok, 10330, Thailand
| | - Sornkanok Vimolmangkang
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Asma Binalee
- HPTLC Center, Chula PharTech Co., Ltd., Bangkok, 10330, Thailand
| | - Kamil Mika
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Pharmacological Screening, Jagiellonian University Medical College, 9 Medyczna Street, Krakow, PL, 30-688, Poland
| | - Sucheewin Krobthong
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kittikhun Kerdsomboon
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, 12120, Thailand
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Supeecha Kumkate
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Toemthip Poolpak
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), CHE, OPS, MHESI, Bangkok, 10400, Thailand
| | - Siraprapa Kidhakarn
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Kwang Mo Yang
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), CHE, OPS, MHESI, Bangkok, 10400, Thailand
| | - Tossapol Limcharoensuk
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Choowong Auesukaree
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
4
|
Sheng S, Han N, Wei Y, Wang J, Han W, Xing B, Xing M, Zhang W. Liver Injury Induced by Exposure to Polystyrene Microplastics Alone or in Combination with Cadmium in Mice Is Mediated by Oxidative Stress and Apoptosis. Biol Trace Elem Res 2024; 202:2170-2183. [PMID: 37736782 DOI: 10.1007/s12011-023-03835-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023]
Abstract
Microplastics (MPs) have been considered an emerging environmental pollutant which, when combined with toxic metals, enter the circulatory system of mammals and eventually cause damage. Therefore, it is important to study the toxicity of the mixture of MPs and heavy metals for evaluating risk assessment of mammals. In the present study, the toxicological effects of different concentrations of polystyrene (PS)-MPs alone or in combination with cadmium chloride (CdCl2) during chronic exposure (8 weeks) were evaluated using intragastric administration in mice. Using comparative analysis, it was revealed that PS-MPs alone or in combination with Cd could destroy the normal structural morphology of liver tissue and increase the levels of two biochemical indicators of liver damage, thereby inducing changes in antioxidant and hyperoxide capacities. In addition, PS-MPs and/or Cd activated the antioxidant signaling pathway Nrf2-Keap1 and affected the endogenous apoptosis signaling pathway p53-Bcl-2/Bax, thus promoting apoptosis. These findings suggested that exposure to MPs alone or in combination with Cd led to adverse effects on the liver. Furthermore, it was revealed that co-exposure to MPs and Cd reduced Cd toxicity, thereby highlighting the possibility MPs may act as carriers of other toxic substances and coordinate with them. Therefore, evaluating the synergistic or anti-agonistic effects of MPs on the toxicity and bioavailability of xenobiotics is in the future critical in environmental toxicological studies.
Collapse
Affiliation(s)
- Shuai Sheng
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Ningxin Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Yufeng Wei
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Jinghan Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Wei Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Boyu Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.
| | - Wen Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.
- Key Laboratory of Wildlife Diseases and Biosecurity Management, Harbin, 150040, Heilongjiang, People's Republic of China.
| |
Collapse
|
5
|
Hussein S, Ben Bacha A, Alonazi M, Alwaili MA, Mobasher MA, Alburae NA, Banjabi AA, El-Said KS. Urtica pilulifera leaves extract mitigates cadmium induced hepatotoxicity via modulation of antioxidants, inflammatory markers and Nrf-2 signaling in mice. Front Mol Biosci 2024; 11:1365440. [PMID: 38469182 PMCID: PMC10925629 DOI: 10.3389/fmolb.2024.1365440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction: Cadmium (Cd) is a harmful heavy metal that results in many toxic issues. Urtica pilulifera showed potential pharmaceutical applications. This study investigated the possible ameliorative mechanism of Urtica pilulifera leaves extract (UPLE) against hepatotoxicity induced by cadmium chloride (CdCl2) in mice. Methods: In vitro phytochemical screening and the metal-chelating activity of UPLE were ascertained. Four groups of forty male mice were used (n = 10) as follows; Group 1 (G1) was a negative control. G2 was injected i.p., with UPLE (100 mg/kg b. wt) daily. G3 was injected i.p., with Cd (5 mg/kg b. wt) daily. G4 was injected with Cd as in G3 and with UPLE as in G2. On day 11, the body weight changes were evaluated, blood, and serum samples were collected for hematological and biochemical assessments. Liver tissues were used for biochemical, molecular, and histopathological investigations. Results: The results showed that UPLE contains promising secondary metabolites that considerably lessen the negative effects of Cd on liver. Furthermore, UPLE inhibited oxidative stress and inflammation; restored antioxidant molecules; and promoted nuclear-related factor-2 (Nrf-2) expression. Also, UPLE improved the histopathological alterations induced by Cd. Discussion: This study explored the beneficial role of UPLE treatment in Cd-induced liver injury through enhancing Nrf-2 signaling and antioxidant enzyme gene expression in the liver of mice. Therefore, UPLE could have valuable implications against hepatotoxicity induced by environmental cadmium exposure. Which can be used as a chelating agent against Cd.
Collapse
Affiliation(s)
- Shaimaa Hussein
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al Jawf, Saudi Arabia
| | - Abir Ben Bacha
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mona Alonazi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maha Abdullah Alwaili
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Maysa A. Mobasher
- Department of Pathology, Biochemistry Division, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Najla Ali Alburae
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abeer A. Banjabi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Karim Samy El-Said
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
6
|
Liu J, Xie L, Zhai H, Wang D, Li X, Wang Y, Song M, Xu C. Exploration of the protective mechanisms of Icariin against cisplatin-induced renal cell damage in canines. Front Vet Sci 2024; 11:1331409. [PMID: 38455257 PMCID: PMC10919057 DOI: 10.3389/fvets.2024.1331409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
This study delves into the protective mechanisms of Icariin (ICA) against cisplatin-induced damage in Madin-Darby canine kidney (MDCK) cells. Comprising two distinct phases, the investigation initially employed a single-factor randomized design to ascertain the minimal cisplatin concentration eliciting MDCK cell damage, spanning concentrations from 0 to 16 mmol/L. Concurrently, various concentrations of ICA (ranging from 5 to 50 mmol/L) were combined with 1 mmol/L cisplatin to determine the most efficacious treatment concentration. Subsequent investigations utilized four treatment groups: control, 1 mmol/L cisplatin, 1 mmol/L cisplatin + 20 mmol/L ICA, and 1 mmol/L cisplatin + 25 mmol/L ICA, aimed at elucidating ICA's protective mechanisms. Findings from the initial phase underscored a significant reduction in MDCK cell viability with 1 mmol/L cisplatin in comparison to the control (P < 0.01). Notably, the inclusion of 20 and 25 mmol/L ICA substantively ameliorated MDCK cell viability under 1 mmol/L cisplatin (P < 0.01). Moreover, cisplatin administration induced an elevation in inflammatory factors, malondialdehyde (MDA), reactive oxygen species (ROS), and Bax protein levels, while concurrently suppressing superoxide dismutase (SOD), catalase (CAT), and Bcl-2 expression (P < 0.01). Conversely, supplementation of 20 and 25 mmol/L ICA demonstrated a marked increase in mitochondrial membrane potential and levels of SOD, CAT, and Bcl-2 (P < 0.01). These interventions effectively attenuated inflammatory responses and suppressed Bax protein expression (P < 0.05), consequently mitigating cisplatin-induced apoptosis in MDCK cells (P < 0.01). In summary, these findings elucidate the role of ICA in impeding apoptosis in cisplatin-induced MDCK cells by regulating inflammatory responses, oxidative stress, and autophagic protein expression.
Collapse
Affiliation(s)
- Jiayi Liu
- College of Police Dog Technology of Criminal Investigation Police University of China, Shenyang, China
| | - Liuwei Xie
- College of Police Dog Technology of Criminal Investigation Police University of China, Shenyang, China
| | - He Zhai
- College of Police Dog Technology of Criminal Investigation Police University of China, Shenyang, China
| | - Dongwei Wang
- College of Police Dog Technology of Criminal Investigation Police University of China, Shenyang, China
| | - Xiao Li
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yao Wang
- College of Police Dog Technology of Criminal Investigation Police University of China, Shenyang, China
| | - Mingqiang Song
- College of Police Dog Technology of Criminal Investigation Police University of China, Shenyang, China
| | - Chao Xu
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
7
|
Kim M, Jee SC, Sung JS. Hepatoprotective Effects of Flavonoids against Benzo[a]Pyrene-Induced Oxidative Liver Damage along Its Metabolic Pathways. Antioxidants (Basel) 2024; 13:180. [PMID: 38397778 PMCID: PMC10886006 DOI: 10.3390/antiox13020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Benzo[a]pyrene (B[a]P), a highly carcinogenic polycyclic aromatic hydrocarbon primarily formed during incomplete organic matter combustion, undergoes a series of hepatic metabolic reactions once absorbed into the body. B[a]P contributes to liver damage, ranging from molecular DNA damage to the onset and progression of various diseases, including cancer. Specifically, B[a]P induces oxidative stress via reactive oxygen species generation within cells. Consequently, more research has focused on exploring the underlying mechanisms of B[a]P-induced oxidative stress and potential strategies to counter its hepatic toxicity. Flavonoids, natural compounds abundant in plants and renowned for their antioxidant properties, possess the ability to neutralize the adverse effects of free radicals effectively. Although extensive research has investigated the antioxidant effects of flavonoids, limited research has delved into their potential in regulating B[a]P metabolism to alleviate oxidative stress. This review aims to consolidate current knowledge on B[a]P-induced liver oxidative stress and examines the role of flavonoids in mitigating its toxicity.
Collapse
Affiliation(s)
| | | | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.); (S.-C.J.)
| |
Collapse
|
8
|
Ding L, Zhu H, Wang K, Huang R, Yu W, Yan B, Zhou B, Wang H, Yang Z, Liu Z, Wang J. Quercetin alleviates cadmium-induced BRL-3A cell apoptosis by inhibiting oxidative stress and the PERK/IRE1α/ATF6 signaling pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125790-125805. [PMID: 38001299 DOI: 10.1007/s11356-023-31189-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
Cadmium (Cd) is a highly toxic environmental pollutant. The liver is an important metabolic organ in the body and is susceptible to Cd toxicity attacks. Quercetin (Que) is a flavonoid compound with pharmacological activities of scavenging free radicals and antioxidant activity. Previous studies have shown that Que can alleviate Cd caused hepatocyte apoptosis in rats, but the specific mechanism remains unclear. To explore the specific mechanism, we established a model of Cd toxicity and Que rescue in BRL-3A cells and used 4-phenylbutyrate (4-PBA), an endoplasmic reticulum stress (ERS) inhibitor, as positive control. Set up a control group, Cd treatment group, Cd and Que co treatment group, Que treatment group, Cd and 4-PBA co treatment group, and 4-PBA treatment group. Cell Counting Kit-8 (CCK-8) method was employed to measure cell viability. Fluorescence staining was applied to observe cell apoptosis. Flow cytometry was performed to detect reactive oxygen species levels. Real-time quantitative polymerase chain reaction (qRT-PCR) and Western blot method was adopted to detect the mRNA and protein expression levels of ERS and apoptosis-related genes. The results showed that compared with the control group, the Cd treated group showed a significant decrease in cell viability (P < 0.01), an increase in intracellular ROS levels, and apoptosis. The mRNA and protein expression levels of ERS and apoptosis related factors such as GRP78, IRE1α, XBP1, ATF6, Caspase-12, Caspase-3 and Bax in the cells were significantly increased (P < 0.01), while the mRNA and protein expression levels of Bcl-2 were significantly reduced (P < 0.01). Compared with the Cd treatment group, the Cd and Que co treatment group and the Cd and 4-PBA co treatment group showed a significant increase in cell viability (P < 0.01), a decrease in intracellular ROS levels, a decrease in cell apoptosis, and a significant decrease in the expression levels of ERS and apoptosis related factors mRNA and protein (P < 0.01), as well as a significant increase in Bcl-2 mRNA and protein expression (P < 0.01). We confirmed that Que could alleviate the apoptosis caused by Cd in BRL-3A cells, and the effects of Que were similar to those of ERS inhibitor.
Collapse
Affiliation(s)
- Lulu Ding
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, People's Republic of China
- College of Veterinary Medicine, Yangzhou University, No.12, East Wenhui Road, 225009, Yangzhou, People's Republic of China
| | - Huali Zhu
- Law Hospital, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, People's Republic of China
| | - Ke Wang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, People's Republic of China
| | - Ruxue Huang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, People's Republic of China
| | - Wenjing Yu
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, People's Republic of China
| | - Bingzhao Yan
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, People's Republic of China
| | - Bianhua Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, People's Republic of China
| | - Hongwei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, People's Republic of China
| | - Zijun Yang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, People's Republic of China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, No.12, East Wenhui Road, 225009, Yangzhou, People's Republic of China
| | - Jicang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, People's Republic of China.
| |
Collapse
|
9
|
Yu P, Wang W, Guo W, Cheng L, Wan Z, Cheng Y, Shen Y, Xu F. Pioglitazone-Enhanced Brown Fat Whitening Contributes to Weight Gain in Diet-Induced Obese Mice. Exp Clin Endocrinol Diabetes 2023; 131:595-604. [PMID: 37729949 DOI: 10.1055/a-2178-9113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
INTRODUCTION Pioglitazone is an insulin sensitizer used for the treatment of type 2 diabetes mellitus (T2DM) by activating peroxisome proliferator-activated receptor gamma. This study aimed to investigate the effects of pioglitazone on white adipose tissue (WAT) and brown adipose tissue (BAT) in diet-induced obese (DIO) mice. METHODS C57BL/6 mice were treated with pioglitazone (30 mg/kg/day) for 4 weeks after a 16-week high-fat diet (HFD) challenge. Body weight gain, body fat mass, energy intake, and glucose homeostasis were measured during or after the treatment. Histopathology was observed by hematoxylin and eosin, oil red O, immunohistochemistry, and immunofluorescence staining. Expression of thermogenic and mitochondrial biogenesis-related genes was detected by quantitative real-time PCR and western blotting. RESULTS After 4-week pioglitazone treatment, the fasting blood glucose levels, glucose tolerance, and insulin sensitivity were significantly improved, but the body weight gain and fat mass were increased in DIO mice. Compared with the HFD group, pioglitazone did not significantly affect the weights of liver and WAT in both subcutaneous and epididymal regions. Unexpectedly, the weight of BAT was increased after pioglitazone treatment. Histological staining revealed that pioglitazone ameliorated hepatic steatosis, reduced the adipocyte size in WAT, but increased the adipocyte size in BAT. CONCLUSION Though pioglitazone can promote lipolysis, thermogenesis, and mitochondrial function in WAT, it leads to impaired thermogenesis, and mitochondrial dysfunction in BAT. In conclusion, pioglitazone could promote the browning of WAT but led to the whitening of BAT; the latter might be a new potential mechanism of pioglitazone-induced weight gain during T2DM treatment.
Collapse
Affiliation(s)
- Piaojian Yu
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong Province, China
- Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University
| | - Wei Wang
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong Province, China
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Wanrong Guo
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong Province, China
| | - Lidan Cheng
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong Province, China
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhiping Wan
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong Province, China
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yanglei Cheng
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yunfeng Shen
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Fen Xu
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong Province, China
- Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University
| |
Collapse
|
10
|
Sharma A, Singh AK. Molecular mechanism of caloric restriction mimetics-mediated neuroprotection of age-related neurodegenerative diseases: an emerging therapeutic approach. Biogerontology 2023; 24:679-708. [PMID: 37428308 DOI: 10.1007/s10522-023-10045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/10/2023] [Indexed: 07/11/2023]
Abstract
Aging-induced neurodegenerative diseases (NDs) are significantly increasing health problem worldwide. It has been well documented that oxidative stress is one of the potential causes of aging and age-related NDs. There are no drugs for the treatment of NDs, therefore there is an immediate necessity for the development of strategies/treatments either to prevent or cure age-related NDs. Caloric restriction (CR) and intermittent fasting have been considered as effective strategies in increasing the healthspan and lifespan, but it is difficult to adhere to these routines strictly, which has led to the development of calorie restriction mimetics (CRMs). CRMs are natural compounds that provide similar molecular and biochemical effects of CR, and activate autophagy process. CRMs have been reported to regulate redox signaling by enhancing the antioxidant defense systems through activation of the Nrf2 pathway, and inhibiting ROS generation through attenuation of mitochondrial dysfunction. Moreover, CRMs also regulate redox-sensitive signaling pathways such as the PI3K/Akt and MAPK pathways to promote neuronal cell survival. Here, we discuss the neuroprotective effects of various CRMs at molecular and cellular levels during aging of the brain. The CRMs are envisaged to become a cornerstone of the pharmaceutical arsenal against aging and age-related pathologies.
Collapse
Affiliation(s)
- Apoorv Sharma
- Amity Institute of Neuropsychology and Neurosciences, Amity University Uttar Pradesh, Noida, 201313, India
| | - Abhishek Kumar Singh
- Amity Institute of Neuropsychology and Neurosciences, Amity University Uttar Pradesh, Noida, 201313, India.
| |
Collapse
|
11
|
Kong Z, Liu C, Olatunji OJ. Asperuloside attenuates cadmium-induced toxicity by inhibiting oxidative stress, inflammation, fibrosis and apoptosis in rats. Sci Rep 2023; 13:5698. [PMID: 37029128 PMCID: PMC10081990 DOI: 10.1038/s41598-023-29504-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/06/2023] [Indexed: 04/09/2023] Open
Abstract
This present study investigated the protective effects of asperuloside (ASP) against cadmium-induced nephrocardiac toxicity. Rats were treated with 50 mg/kg of ASP for five weeks and CdCl2 (5 mg/kg, p.o., once daily) during the last 4 weeks of ASP treatment. The serum levels of blood urea nitrogen (BUN), creatinine (Scr), aspartate transaminase (AST), creatine kinase-MB (CK-MB), troponin T (TnT) and lactate dehydrogenase (LDH) were evealuted. Oxido-inflammatory parameters were detected via malondialdehyde (MDA), reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), interleukin-1beta (IL-1β) and nuclear factor kappa B (NF-κB). Additionally, the cardiorenal levels of caspase 3, transforming growth factor-β (TGF-β), α-smooth muscle actin (α-SMA), collagen IV and Bcl2 were measured by ELISA or immunohistochemical assays. The results indicated that ASP significantly decreased Cd-instigated oxidative stress, serum BUN, Scr, AST, CK-MB, TnT and LDH as well as histopathological alterations. Furthermore, ASP notably attenuated Cd-induced cardiorenal and apoptosis and fibrosis by reducing caspase 3 and TGF-β levels, as well as reducing the stain intensity of a-SMA and collagen IV, while increasing Bcl2 intensity. These results revealed that ASP attenuated Cd induced cardiac and renal toxicity which may be attributed to reducing oxidative stress, inflammation, fibrosis and apoptosis.
Collapse
Affiliation(s)
- Zhiyang Kong
- Second Peoples Hospital, Wuhu City, 241001, Anhui, China
| | - Chunhong Liu
- Second Peoples Hospital, Wuhu City, 241001, Anhui, China.
| | - Opeyemi Joshua Olatunji
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, 90110, Thailand.
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, 43150, Morocco.
| |
Collapse
|
12
|
Gali S, Sharma S, Kundu A, Lee E, Han JH, Shin JK, Choi JS, Kyung SY, Kim JS, Kim HS. Protective effect of dendropanoxide against cadmium-induced hepatotoxicity via anti-inflammatory activities in Sprague-Dawley rats. Toxicol Mech Methods 2023:1-15. [PMID: 36718047 DOI: 10.1080/15376516.2023.2171824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cadmium (Cd) accumulates in the body through contaminated foods or water and causes pathological damage to the liver via oxidative stress and inflammatory reactions. This study was conducted to explore the effects of dendropanoxide (DPx) on Cd-induced hepatotoxicity in rats. Sprague-Dawley (SD) rats were injected with CdCl2 (7 mg/kg body weight) intraperitoneally for 14 days for the induction of liver dysfunction. The CdCl2-exposed rats were subjected to DPx (10 mg/kg) or silymarin (50 mg/kg). The animals were euthanized after 24 h of the last CdCl2 injection and the serum biochemical parameters, lipid content, pro-inflammatory cytokine levels, apoptotic cell death and histopathology of the tissues were analyzed. Additionally, the activity of antioxidant enzymes, including superoxide dismutase (SOD) and catalase (CAT), was measured. Compared to controls, Cd-injected rats showed significantly elevated serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglycerides (TG), total cholesterol, and pro-inflammatory cytokines, and a remarkable decrease in SOD and CAT activities. Importantly, Cd-induced liver damage was drastically ameliorated by treatment with DPx or silymarin. Treatment with DPx protected the Cd-induced histopathological hepatic injury, as confirmed by the evaluation of TUNEL assay. DPx treatment significantly reduced Bax and caspase-3 expression in Cd-injected rats. Additionally, HO-1 and NRF2 expressions were significantly increased after DPx administration in the liver of Cd-injected rats. Our data indicate that DPx successfully prevents Cd-induced hepatotoxicity by emphasizing the antioxidant and anti-inflammatory effect.
Collapse
Affiliation(s)
- Sreevarsha Gali
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Republic of Korea
| | - Swati Sharma
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Republic of Korea
| | - Amit Kundu
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Republic of Korea
| | - Eunah Lee
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Republic of Korea
| | - Joo Hee Han
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Republic of Korea
| | - Joo Kyung Shin
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Republic of Korea
| | - Ji Soo Choi
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Republic of Korea
| | - So Young Kyung
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Republic of Korea
| | - Jae-Sung Kim
- Mary Culver Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Republic of Korea
| |
Collapse
|