1
|
Manna PR, Yang S, Manna C, Waters H, Md Ariful I, Reddy AP, Rawat P, Reddy PH. Steroidogenic acute regulatory protein mediated variations of gender-specific sex neurosteroids in Alzheimer's disease: Relevance to hormonal and neuronal imbalance. Neurosci Biobehav Rev 2024; 169:105969. [PMID: 39631487 DOI: 10.1016/j.neubiorev.2024.105969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/24/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
The steroidogenic acute regulatory (StAR) protein mediates the rate-liming step in neuro/steroid biosynthesis. Multifaceted and delicate changes during aging, disrupting hormonal and neuronal homeostasis, constitute human senescence, an inevitable phenomenon that attributes to increased morbidity and mortality. Aging, along with progressive decreases in bioactive neurosteroids, is the primary risk factor for Alzheimer's disease (AD), which preferentially impacts two-thirds of women and one-third of men. AD is neuropathologically characterized by the accumulation of extracellular amyloid-β and intracellular phosphorylated Tau containing neurofibrillary tangles, resulting in dementia. Postmortem brains pertaining to gender-specific AD patients exhibit varied suppression of StAR and sex neurosteroid levels compared with age-matched cognitively healthy subjects, in which the attenuation of StAR is inversely correlated with the AD pathological markers. Interestingly, retinoid signaling upregulates StAR-motivated neurosteroid biosynthesis and reinstates various neurodegenerative vulnerabilities that promote AD pathogenesis. This review summarizes current understanding of StAR-driven alterations of sex neurosteroids in gender-specific AD risks and provides biochemical and molecular insights into therapeutic interventions for preventing and/or alleviating dementia for healthy aging.
Collapse
Affiliation(s)
- Pulak R Manna
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Shengping Yang
- Department of Biostatistics, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | - Chayan Manna
- Baylor College of Medicine, Ben Taub Research Center, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Hope Waters
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Islam Md Ariful
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Priyanka Rawat
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
2
|
Al-Mazidi S. Molecular physiology unlocks the mystery that relates cognitive impairment with the retina in schizophrenia and autism spectrum disorders: a perspective review. Front Psychiatry 2024; 15:1495017. [PMID: 39588547 PMCID: PMC11586360 DOI: 10.3389/fpsyt.2024.1495017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/21/2024] [Indexed: 11/27/2024] Open
Abstract
Schizophrenia and Autism spectrum disorders (SSD and ASD) are neurodevelopmental disorders involving cognitive impairment. Timely diagnosis is important for early intervention; currently, no tools are available to help with early diagnosis. Molecular biomarkers of cognitive impairment have been extensively studied, but clinical correlation is crucial in screening for cognitive impairment in SSD and ASD. There has been growing interest in examining the retina to scan for neurological disorders since the retina is the only part of the central nervous system that can be directly imaged non-invasively and in a timely manner. This review discusses biomarkers of cognitive impairment and their correlation to the retina in SSD and ASD. It also discusses the possible involvement of the retina and molecular biomarkers, specifically Disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) and ciliary neurotrophic factor (CNTF) in the pathophysiology of SSD and ASD. A protocol for early diagnosing cognitive impairment and its severity in SSD and ASD is also suggested. This review also mentions insights into the potential use of molecular biomarkers of cognitive impairment to enhance cognitive performance in ASD and SSD and areas where more research is needed to solve the mystery of the relationship between the retina and cognitive impairment in neurodevelopmental psychiatric disorders.
Collapse
Affiliation(s)
- Sarah Al-Mazidi
- Department of Anatomy and Physiology, Imam Muhammad ibn Saud Islamic University, Riyadh, Saudi Arabia
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Corcoran JPT, Mey J. Editorial: The role of retinoic acid signaling in maintenance and regeneration of the CNS: from mechanisms to therapeutic targeting. Front Mol Neurosci 2024; 17:1491745. [PMID: 39558937 PMCID: PMC11570587 DOI: 10.3389/fnmol.2024.1491745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 11/20/2024] Open
Affiliation(s)
- Jonathan P. T. Corcoran
- Neuroscience Drug Discovery Unit, Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, United Kingdom
| | - Jörg Mey
- Hospital Nacional de Parapléjicos, Toledo, Spain
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
4
|
Preethy H A, Rajendran K, Sukumar AJ, Krishnan UM. Emerging paradigms in Alzheimer's therapy. Eur J Pharmacol 2024; 981:176872. [PMID: 39117266 DOI: 10.1016/j.ejphar.2024.176872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/13/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Alzheimer's disease is a neurodegenerative disorder that affects elderly, and its incidence is continuously increasing across the globe. Unfortunately, despite decades of research, a complete cure for Alzheimer's disease continues to elude us. The current medications are mainly symptomatic and slow the disease progression but do not result in reversal of all disease pathologies. The growing body of knowledge on the factors responsible for the onset and progression of the disease has resulted in the identification of new targets that could be targeted for treatment of Alzheimer's disease. This has opened new vistas for treatment of Alzheimer's disease that have moved away from chemotherapeutic agents modulating a single target to biologics and combinations that acted on multiple targets thereby offering better therapeutic outcomes. This review discusses the emerging directions in therapeutic interventions against Alzheimer's disease highlighting their merits that promise to change the treatment paradigm and challenges that limit their clinical translation.
Collapse
Affiliation(s)
- Agnes Preethy H
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India
| | - Kayalvizhi Rajendran
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India
| | - Anitha Josephine Sukumar
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India
| | - Uma Maheswari Krishnan
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India; School of Arts, Sciences, Humanities & Education, SASTRA Deemed University, Thanjavur, India.
| |
Collapse
|
5
|
Pareek A, Singhal R, Pareek A, Ghazi T, Kapoor DU, Ratan Y, Singh AK, Jain V, Chuturgoon AA. Retinoic acid in Parkinson's disease: Molecular insights, therapeutic advances, and future prospects. Life Sci 2024; 355:123010. [PMID: 39181315 DOI: 10.1016/j.lfs.2024.123010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Parkinson's disease (PD) is a common and progressively worsening neurodegenerative disorder characterized by abnormal protein homeostasis and the degeneration of dopaminergic neurons, particularly in the substantia nigra pars compacta. The prevalence of PD has doubled in the past 25 years, now affecting over 8.5 million individuals worldwide, underscoring the need for effective management strategies. While current pharmacological therapies provide symptom relief, they face challenges in treating advanced PD stages. Recent research highlights the therapeutic benefits of retinoic acid (RA) in PD, demonstrating its potential to mitigate neuroinflammation and oxidative stress, regulate brain aging, promote neuronal plasticity, and influence circadian rhythm gene expression and retinoid X receptor heterodimerization. Additionally, RA helps maintain intestinal homeostasis and modulates the enteric nervous system, presenting significant therapeutic potential for managing PD. This review explores RA as a promising alternative to conventional therapies by summarizing the molecular mechanisms underlying its role in PD pathophysiology and presenting up-to-date insights into both preclinical and clinical studies of RA in PD treatment. It also delves into cutting-edge formulations incorporating RA, highlighting ongoing efforts to refine therapeutic strategies by integrating RA into novel treatments. This comprehensive overview aims to advance progress in the field, contribute to the development of effective, targeted treatments for PD, and enhance patient well-being. Further research is essential to fully explore RA's therapeutic potential and validate its efficacy in PD treatment.
Collapse
Affiliation(s)
- Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India.
| | - Runjhun Singhal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | | | - Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India
| | - Arun Kumar Singh
- Department of Pharmacy, Vivekananda Global University, Jaipur 303012, India
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur 313001, India
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa.
| |
Collapse
|
6
|
Alanazi N, Fitzgerald M, Hume P, Hellewell S, Horncastle A, Anyaegbu C, Papini MG, Hargreaves N, Halicki M, Entwistle I, Hind K, Chazot P. Concussion-Related Biomarker Variations in Retired Rugby Players and Implications for Neurodegenerative Disease Risk: The UK Rugby Health Study. Int J Mol Sci 2024; 25:7811. [PMID: 39063053 PMCID: PMC11276902 DOI: 10.3390/ijms25147811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
The health and well-being of retired rugby union and league players, particularly regarding the long-term effects of concussions, are of major concern. Concussion has been identified as a major risk factor for neurodegenerative diseases, such as Alzheimer's and Amyotrophic Lateral Sclerosis (ALS), in athletes engaged in contact sports. This study aimed to assess differences in specific biomarkers between UK-based retired rugby players with a history of concussion and a non-contact sports group, focusing on biomarkers associated with Alzheimer's, ALS, and CTE. We randomly selected a sample of male retired rugby or non-contact sport athletes (n = 56). The mean age was 41.84 ± 6.44, and the mean years since retirement from the sport was 7.76 ± 6.69 for participants with a history of substantial concussions (>5 concussions in their career) (n = 30). The mean age was 45.75 ± 11.52, and the mean years since retirement was 6.75 ± 4.64 for the healthy controls (n = 26). Serum biomarkers (t-tau, RBP-4, SAA, Nf-L, and retinol), plasma cytokines, and biomarkers associated with serum-derived exosomes (Aβ42, p-tau181, p-tau217, and p-tau231) were analyzed using validated commercial ELISA assays. The results of the selected biomarkers were compared between the two groups. Biomarkers including t-tau and p-tau181 were significantly elevated in the history of the substantial concussion group compared to the non-contact sports group (t-tau: p < 0.01; p-tau181: p < 0.05). Although between-group differences in p-tau217, p-tau231, SAA, Nf-L, retinol, and Aβ42 were not significantly different, there was a trend for higher levels of Aβ42, p-tau217, and p-tau231 in the concussed group. Interestingly, the serum-derived exosome sizes were significantly larger (p < 0.01), and serum RBP-4 levels were significantly reduced (p < 0.05) in the highly concussed group. These findings indicate that retired athletes with a history of multiple concussions during their careers have altered serum measurements of exosome size, t-tau, p-tau181, and RBP-4. These biomarkers should be explored further for the prediction of future neurodegenerative outcomes, including ALS, in those with a history of concussion.
Collapse
Affiliation(s)
- Norah Alanazi
- Department of Biosciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham DH1 3LE, UK; (N.A.); (A.H.); (N.H.); (M.H.); (I.E.)
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; (M.F.); (S.H.); (M.G.P.)
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA 6009, Australia
| | - Patria Hume
- Sports Performance Research Institute New Zealand (SPRINZ), Faculty of Health and Environmental Science, Auckland University of Technology, AUT Millennium, 17 Antares Place, Mairangi Bay, Private Bag 92006, Auckland 1142, New Zealand;
- Traumatic Brain Injury Network (TBIN), Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Technology and Policy Laboratory, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Sarah Hellewell
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; (M.F.); (S.H.); (M.G.P.)
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA 6009, Australia
- Centre for Neuromuscular & Neurological Disorders, University of Western Australia, Crawley, WA 6009, Australia
| | - Alex Horncastle
- Department of Biosciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham DH1 3LE, UK; (N.A.); (A.H.); (N.H.); (M.H.); (I.E.)
| | - Chidozie Anyaegbu
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; (M.F.); (S.H.); (M.G.P.)
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA 6009, Australia
- Centre for Neuromuscular & Neurological Disorders, University of Western Australia, Crawley, WA 6009, Australia
| | - Melissa G. Papini
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; (M.F.); (S.H.); (M.G.P.)
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA 6009, Australia
- Centre for Neuromuscular & Neurological Disorders, University of Western Australia, Crawley, WA 6009, Australia
| | - Natasha Hargreaves
- Department of Biosciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham DH1 3LE, UK; (N.A.); (A.H.); (N.H.); (M.H.); (I.E.)
| | - Michal Halicki
- Department of Biosciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham DH1 3LE, UK; (N.A.); (A.H.); (N.H.); (M.H.); (I.E.)
| | - Ian Entwistle
- Department of Biosciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham DH1 3LE, UK; (N.A.); (A.H.); (N.H.); (M.H.); (I.E.)
- Wolfson Research Institute for Health and Wellbeing, Durham University, Durham TS17 6BH, UK
| | - Karen Hind
- Wolfson Research Institute for Health and Wellbeing, Durham University, Durham TS17 6BH, UK
| | - Paul Chazot
- Department of Biosciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham DH1 3LE, UK; (N.A.); (A.H.); (N.H.); (M.H.); (I.E.)
| |
Collapse
|
7
|
Vassal M, Martins F, Monteiro B, Tambaro S, Martinez-Murillo R, Rebelo S. Emerging Pro-neurogenic Therapeutic Strategies for Neurodegenerative Diseases: A Review of Pre-clinical and Clinical Research. Mol Neurobiol 2024:10.1007/s12035-024-04246-w. [PMID: 38816676 DOI: 10.1007/s12035-024-04246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
The neuroscience community has largely accepted the notion that functional neurons can be generated from neural stem cells in the adult brain, especially in two brain regions: the subventricular zone of the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus. However, impaired neurogenesis has been observed in some neurodegenerative diseases, particularly in Alzheimer's, Parkinson's, and Huntington's diseases, and also in Lewy Body dementia. Therefore, restoration of neurogenic function in neurodegenerative diseases emerges as a potential therapeutic strategy to counteract, or at least delay, disease progression. Considering this, the present study summarizes the different neuronal niches, provides a collection of the therapeutic potential of different pro-neurogenic strategies in pre-clinical and clinical research, providing details about their possible modes of action, to guide future research and clinical practice.
Collapse
Affiliation(s)
- Mariana Vassal
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Filipa Martins
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Bruno Monteiro
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Ricardo Martinez-Murillo
- Neurovascular Research Group, Department of Translational Neurobiology, Cajal Institute (CSIC), Madrid, Spain
| | - Sandra Rebelo
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
8
|
Thangeswaran D, Shamsuddin S, Balakrishnan V. A comprehensive review on the progress and challenges of tetrahydroisoquinoline derivatives as a promising therapeutic agent to treat Alzheimer's disease. Heliyon 2024; 10:e30788. [PMID: 38803973 PMCID: PMC11128835 DOI: 10.1016/j.heliyon.2024.e30788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
Alzheimer's disease (AD) is the most common and irreversible neurodegenerative disorder worldwide. While the precise mechanism behind this rapid progression and multifaceted disease remains unknown, the numerous drawbacks of the available therapies are prevalent, necessitating effective alternative treatment methods. In view of the rising demand for effective AD treatment, numerous reports have shown that tetrahydroisoquinoline (THIQ) is a valuable scaffold in various clinical medicinal molecules and has a promising potential as a therapeutic agent in treating AD due to its significant neuroprotective, anti-inflammatory, and antioxidative properties via several mechanisms that target the altered signaling pathways. Therefore, this review comprehensively outlines the potential application of THIQ derivatives in AD treatment and the challenges in imparting the action of these prospective therapeutic agents. The review emphasizes a number of THIQ derivatives, including Dauricine, jatrorrhizine, 1MeTIQ, and THICAPA, that have been incorporated in AD studies in recent years. Subsequently, a dedicated section of the review briefly discusses the emerging potential benefits of multi-target therapeutics, which lie in their ability to be integrated with alternative therapeutics. Eventually, this review elaborates on the rising challenges and future recommendations for the development of therapeutic drug agents to treat AD effectively. In essence, the valuable research insights of THIQ derivatives presented in this comprehensive review would serve as an integral reference for future studies to develop potent therapeutic drugs for AD research.
Collapse
Affiliation(s)
- Danesh Thangeswaran
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
- Nanobiotech Research Initiative, Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| |
Collapse
|
9
|
Ahmadi S, Taghizadieh M, Mehdizadehfar E, Hasani A, Khalili Fard J, Feizi H, Hamishehkar H, Ansarin M, Yekani M, Memar MY. Gut microbiota in neurological diseases: Melatonin plays an important regulatory role. Biomed Pharmacother 2024; 174:116487. [PMID: 38518598 DOI: 10.1016/j.biopha.2024.116487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024] Open
Abstract
Melatonin is a highly conserved molecule produced in the human pineal gland as a hormone. It is known for its essential biological effects, such as antioxidant activity, circadian rhythm regulator, and immunomodulatory effects. The gut is one of the primary known sources of melatonin. The gut microbiota helps produce melatonin from tryptophan, and melatonin has been shown to have a beneficial effect on gut barrier function and microbial population. Dysbiosis of the intestinal microbiota is associated with bacterial imbalance and decreased beneficial microbial metabolites, including melatonin. In this way, low melatonin levels may be related to several human diseases. Melatonin has shown both preventive and therapeutic effects against various conditions, including neurological diseases such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. This review was aimed to discuss the role of melatonin in the body, and to describe the possible relationship between gut microbiota and melatonin production, as well as the potential therapeutic effects of melatonin on neurological diseases.
Collapse
Affiliation(s)
- Somayeh Ahmadi
- Students Research Committee, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women's Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Mehdizadehfar
- Department of Neurosciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Khalili Fard
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Feizi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Microbiology, Aalinasab Hospital, Social Security Organization, Tabriz, Iran
| | - Hammed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masood Ansarin
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Reay WR, Kiltschewskij DJ, Di Biase MA, Gerring ZF, Kundu K, Surendran P, Greco LA, Clarke ED, Collins CE, Mondul AM, Albanes D, Cairns MJ. Genetic influences on circulating retinol and its relationship to human health. Nat Commun 2024; 15:1490. [PMID: 38374065 PMCID: PMC10876955 DOI: 10.1038/s41467-024-45779-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/04/2024] [Indexed: 02/21/2024] Open
Abstract
Retinol is a fat-soluble vitamin that plays an essential role in many biological processes throughout the human lifespan. Here, we perform the largest genome-wide association study (GWAS) of retinol to date in up to 22,274 participants. We identify eight common variant loci associated with retinol, as well as a rare-variant signal. An integrative gene prioritisation pipeline supports novel retinol-associated genes outside of the main retinol transport complex (RBP4:TTR) related to lipid biology, energy homoeostasis, and endocrine signalling. Genetic proxies of circulating retinol were then used to estimate causal relationships with almost 20,000 clinical phenotypes via a phenome-wide Mendelian randomisation study (MR-pheWAS). The MR-pheWAS suggests that retinol may exert causal effects on inflammation, adiposity, ocular measures, the microbiome, and MRI-derived brain phenotypes, amongst several others. Conversely, circulating retinol may be causally influenced by factors including lipids and serum creatinine. Finally, we demonstrate how a retinol polygenic score could identify individuals more likely to fall outside of the normative range of circulating retinol for a given age. In summary, this study provides a comprehensive evaluation of the genetics of circulating retinol, as well as revealing traits which should be prioritised for further investigation with respect to retinol related therapies or nutritional intervention.
Collapse
Affiliation(s)
- William R Reay
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia.
| | - Dylan J Kiltschewskij
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Maria A Di Biase
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zachary F Gerring
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kousik Kundu
- Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Praveen Surendran
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Health Data Research UK, Wellcome Genome Campus and University of Cambridge, Hinxton, UK
| | - Laura A Greco
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Erin D Clarke
- School of Health Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Food and Nutrition Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Clare E Collins
- School of Health Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Food and Nutrition Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Alison M Mondul
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD, USA
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.
| |
Collapse
|
11
|
Mandal PK. Pro-Oxidants and Antioxidants Imbalance in Alzheimer's Disease. J Alzheimers Dis 2024; 99:S1-S4. [PMID: 38461511 DOI: 10.3233/jad-240217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Affiliation(s)
- Pravat K Mandal
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
- Florey Institute of Neuroscience and Mental Health, Melbourne School of Medicine Campus, Melbourne, VIC, Australia
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Syed RA, Hayat M, Qaiser H, Uzair M, Al-Regaiey K, Khallaf R, Kaleem I, Bashir S. Aging-Related Protein Alterations in the Brain. J Alzheimers Dis 2024; 99:S5-S22. [PMID: 38339930 DOI: 10.3233/jad-230801] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Aging is an intrinsic aspect of an organism's life cycle and is characterized by progressive physiological decline and increased susceptibility to mortality. Many age-associated disorders, including neurological disorders, are most commonly linked with the aging process, such as Alzheimer's disease (AD). This review aims to provide a comprehensive overview of the effects of aging and AD on the molecular pathways and levels of different proteins in the brain, including metalloproteins, neurotrophic factors, amyloid proteins, and tau proteins. AD is caused by the aggregation of amyloid proteins in the brain. Factors such as metal ions, protein ligands, and the oligomerization state of amyloid precursor protein significantly influence the proteolytic processing of amyloid-β protein precursor (AβPP). Tau, a disordered cytosolic protein, serves as the principal microtubule-associated protein in mature neurons. AD patients exhibit decreased levels of nerve growth factor within their nervous systems and cerebrospinal fluid. Furthermore, a significant increase in brain-derived neurotrophic factor resulting from the neuroprotective effect of glial cell line-derived neurotrophic factor suggests that the synergistic action of these proteins plays a role in inhibiting neuronal degeneration and atrophy. The mechanism through which Aβ and AβPP govern Cu2+ transport and their influence on Cu2+ and other metal ion pools requires elucidation in future studies. A comprehensive understanding of the influence of aging and AD on molecular pathways and varying protein levels may hold the potential for the development of novel diagnostic and therapeutic methods for the treatment of AD.
Collapse
Affiliation(s)
- Rafay Ali Syed
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Mahnoor Hayat
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Hammad Qaiser
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Khalid Al-Regaiey
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Roaa Khallaf
- Department of Neurology, Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Imdad Kaleem
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| |
Collapse
|
13
|
Patas K, Baker DG, Chrousos GP, Agorastos A. Inflammation in Posttraumatic Stress Disorder: Dysregulation or Recalibration? Curr Neuropharmacol 2024; 22:524-542. [PMID: 37550908 PMCID: PMC10845099 DOI: 10.2174/1570159x21666230807152051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 08/09/2023] Open
Abstract
Despite ample experimental data indicating a role of inflammatory mediators in the behavioral and neurobiological manifestations elicited by exposure to physical and psychologic stressors, causative associations between systemic low-grade inflammation and central nervous system inflammatory processes in posttraumatic stress disorder (PTSD) patients remain largely conceptual. As in other stress-related disorders, pro-inflammatory activity may play an equivocal role in PTSD pathophysiology, one that renders indiscriminate employment of anti-inflammatory agents of questionable relevance. In fact, as several pieces of preclinical and clinical research convergingly suggest, timely and targeted potentiation rather than inhibition of inflammatory responses may actually be beneficial in patients who are characterized by suppressed microglia function in the face of systemic low-grade inflammation. The deleterious impact of chronic stress-associated inflammation on the systemic level may, thus, need to be held in context with the - often not readily apparent - adaptive payoffs of low-grade inflammation at the tissue level.
Collapse
Affiliation(s)
- Kostas Patas
- Department of Biopathology and Laboratory Medicine, Eginition University Hospital, Athens, Greece
| | - Dewleen G. Baker
- Department of Psychiatry, University of California, San Diego (UCSD), La Jolla, CA, USA
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, San Diego, CA, USA
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Medical School, Aghia Sophia Children's Hospital, Athens, Greece
| | - Agorastos Agorastos
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, San Diego, CA, USA
- Department of Psychiatry, Division of Neurosciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Central Macedonia, Greece
| |
Collapse
|
14
|
Ommati MM, Rezaei H, Socorro RM, Tian W, Zhao J, Rouhani A, Sabouri S, Ghaderi F, Niknahad AM, Najibi A, Mazloomi S, Safipour M, Honarpishefard Z, Wang HW, Niknahad H, Heidari R. Pre/postnatal taurine supplementation improves neurodevelopment and brain function in mice offspring: A persistent developmental study from puberty to maturity. Life Sci 2024; 336:122284. [PMID: 38008208 DOI: 10.1016/j.lfs.2023.122284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Taurine (TAU) is a sulfur-containing amino acid abundantly found in the human body. Endogenously, TAU is synthesized from cysteine in the liver. However, newborns rely entirely on TAU's dietary supply (milk). There is no investigation on the effect of long-term TAU administration on next-generation neurological development. The current study evaluated the effect of long-term TAU supplementation during the maternal gestational and litter weaning time on several neurological parameters in mice offspring. Moreover, the effects of TAU on mitochondrial function and oxidative stress biomarkers as plausible mechanisms of its action in the whole brain and hippocampus have been evaluated. TAU (0.5 % and 1 % w/v) was dissolved in the drinking water of pregnant mice (Day one of pregnancy), and amino acid supplementation was continued during the weaning time (post-natal day; PND = 21) until litters maturity (PND = 65). It was found that TAU significantly improved cognitive function, memory performance, reflexive motor activity, and emotional behaviors in F1-mice generation. TAU measurement in the brain and hippocampus revealed higher levels of this amino acid. TAU and ATP levels were also significantly higher in the mitochondria isolated from the whole brain and hippocampus. Based on these data, TAU could be suggested as a supplement during pregnancy or in pediatric formula. The effects of TAU on cellular mitochondrial function and energy metabolism might play a fundamental role in the positive effects of this amino acid observed in this investigation.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Heresh Rezaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Retana-Márquez Socorro
- Department of Reproductive Biology, Universidad Autónoma Metropolitana-Iztapalapa, México City, Mexico
| | - Weishun Tian
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Jing Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Ayeh Rouhani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sabouri
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China; College of Animal Science and Veterinary, Shanxi agricultural University, Taigu, Shanxi, China
| | - Fatemeh Ghaderi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Mohammad Niknahad
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asma Najibi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Chemistry and Biochemistry, Miami University, 244 Hughes Laboratories, 651 E. High Street, Oxford, OH 45056, USA
| | - Sahra Mazloomi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moslem Safipour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Honarpishefard
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China.
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Reproductive Biology, Universidad Autónoma Metropolitana-Iztapalapa, México City, Mexico.
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
15
|
Manna PR, Kshirsagar S, Pradeepkiran JA, Rawat P, Kumar S, Reddy AP, Reddy PH. Protective function of StAR in amyloid-β accumulated hippocampal neurotoxicity and neurosteroidogenesis: Mechanistic insights into Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166738. [PMID: 37142132 DOI: 10.1016/j.bbadis.2023.166738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
The steroidogenic acute regulatory (StAR) protein principally mediates steroid hormone biosynthesis by governing the transport of intramitochondrial cholesterol. Neurosteroids progressively decrease during aging, the key risk factor for Alzheimer's disease (AD), which is triggered by brain-region specific accumulation of amyloid beta (Aβ) precursor protein (APP), a key pathological factor. We demonstrate that hippocampal neuronal cells overexpressing wild-type (WtAPP) and mutant APP (mAPP) plasmids, conditions mimetic to AD, resulted in decreases in StAR mRNA, free cholesterol, and pregnenolone levels. The magnitude of suppression of the steroidogenic response was more pronounced with mAPP than that of WtAPP. While mAPP-waned assorted anomalies correlate to AD pathology, deterioration of APP/Aβ laden StAR expression and neurosteroid biosynthesis was enhanced by retinoid signaling. An abundance of mitochondrially targeted StAR expression partially restored APP/Aβ accumulated diverse neurodegenerative vulnerabilities. Immunofluorescence analyses revealed that overexpression of StAR diminishes mAPP provoked Aβ aggregation. Co-expression of StAR and mAPP in hippocampal neurons substantially reversed the declines in mAPP mediated cell survival, mitochondrial oxygen consumption rate, and ATP production. Concurrently, induction of mAPP induced Aβ loading showed an increase in cholesterol esters, but decrease in free cholesterol, concomitant with pregnenolone biosynthesis, events that were inversely regulated by StAR. Moreover, retinoid signaling was found to augment cholesterol content for facilitating neurosteroid biosynthesis in an AD mimetic condition. These findings provide novel insights into the molecular events by which StAR acts to protect mAPP-induced hippocampal neurotoxicity, mitochondrial dysfunction, and neurosteroidogenesis, and these measures are fundamental for ameliorating and/or delaying dementia in individuals with AD.
Collapse
Affiliation(s)
- Pulak R Manna
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | - Priyanka Rawat
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Subodh Kumar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
16
|
Rahmadi M, Nurhan AD, Rahmawati RIA, Damayanti TF, Purwanto DA, Khotib J. Epigallocatechin Gallate Ameliorates Nicotine Withdrawal Conditions-Induced Somatic and Affective Behavior Changes in Mice and Its Molecular Mechanism. Behav Neurol 2023; 2023:5581893. [PMID: 37346971 PMCID: PMC10281828 DOI: 10.1155/2023/5581893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/10/2023] [Accepted: 05/20/2023] [Indexed: 06/23/2023] Open
Abstract
In nicotine withdrawal (NW) conditions, molecular changes, such as increasing corticotropin-releasing factor (CRF) in the amygdala, and melanocortin signaling in the hypothalamus, can occur in the brain, leading to increased feeding behavior and body weight as somatic changes as well as high anxiety-like behavior as an affective changes. Therefore, this research aimed to investigate the effect of epigallocatechin gallate (EGCG), the largest component in green tea, on CRF, pro-opiomelanocortin (POMC), and melanocortin four receptor gene expression in the brain under NW conditions. The 24 Balb/c male mice used were randomly divided into four groups. The doses used included normal saline 1.0 mL/kg as a control group, and nicotine 3.35 mg/kg that was administered subcutaneously three times a day. After NW conditions, EGCG 50 mg/kg was administered intraperitoneally two times a day. Behavior evaluation was performed to measure somatic and affective changes, and the animal was sacrificed for molecular analysis. The results showed that NW conditions significantly increased food intake, body weight, and anxiety-like behavior compared with the normal group. Meanwhile, EGCG significantly decreased food intake, body weight, and anxiety-like behavior compared with NW conditions in mice without EGCG. The polymerase chain reaction results also showed that EGCG decreased the CRF mRNA expression in the amygdala and increased the POMC. This indicated that EGCG improved somatic and affective behavior in NW conditions by decreasing CRF mRNA expression in the amygdala and increasing POMC mRNA expression in the hypothalamus.
Collapse
Affiliation(s)
- Mahardian Rahmadi
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
- Biomedical Pharmacy Research Group, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Ahmad D. Nurhan
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
- Biomedical Pharmacy Research Group, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Retno I. A. Rahmawati
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Theresia F. Damayanti
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Djoko A. Purwanto
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
- Pharmaceutical Analysis Research Group, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Junaidi Khotib
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
- Biomaterial Translational Research Group, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
17
|
Zhang X, Subbanna S, Williams CRO, Canals-Baker S, Smiley JF, Wilson DA, Das BC, Saito M. Anti-inflammatory Action of BT75, a Novel RARα Agonist, in Cultured Microglia and in an Experimental Mouse Model of Alzheimer's Disease. Neurochem Res 2023; 48:1958-1970. [PMID: 36781685 PMCID: PMC10355192 DOI: 10.1007/s11064-023-03888-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/15/2023]
Abstract
BT75, a boron-containing retinoid, is a novel retinoic acid receptor (RAR)α agonist synthesized by our group. Previous studies indicated that activation of retinoic acid (RA) signaling may attenuate progression of Alzheimer's disease (AD). Presently, we aimed to examine the anti-inflammatory effect of BT75 and explore the possible mechanism using cultured cells and an AD mouse model. Pretreatment with BT75 (1-25 µM) suppressed the release of nitric oxide (NO) and IL-1β in the culture medium of mouse microglial SIM-A9 cells activated by LPS. BMS195614, an RARα antagonist, partially blocked the inhibition of NO production by BT75. Moreover, BT75 attenuated phospho-Akt and phospho-NF-κB p65 expression augmented by LPS. In addition, BT75 elevated arginase 1, IL-10, and CD206, and inhibited inducible nitric oxide synthase (iNOS) and IL-6 formation in LPS-treated SIM-A9 cells, suggesting the promotion of M1-M2 microglial phenotypic polarization. C57BL/6 mice were injected intracerebroventricularly (icv) with streptozotocin (STZ) (3 mg/kg) to provide an AD-like mouse model. BT75 (5 mg/kg) or the vehicle was intraperitoneally (ip) injected to icv-STZ mice once a day for 3 weeks. Immunohistochemical analyses indicated that GFAP-positive cells and rod or amoeboid-like Iba1-positive cells, which increased in the hippocampal fimbria of icv-STZ mice, were reduced by BT75 treatment. Western blot results showed that BT75 decreased levels of neuronal nitric oxide synthase (nNOS), GFAP, and phosphorylated Tau, and increased levels of synaptophysin in the hippocampus of icv-STZ mice. BT75 may attenuate neuroinflammation by affecting the Akt/NF-κB pathway and microglial M1-M2 polarization in LPS-stimulated SIM-A9 cells. BT75 also reduced AD-like pathology including glial activation in the icv-STZ mice. Thus, BT75 may be a promising anti-inflammatory and neuroprotective agent worthy of further AD studies.
Collapse
Affiliation(s)
- Xiuli Zhang
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY, 10962, USA
| | - Shivakumar Subbanna
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY, 10962, USA
| | - Colin R O Williams
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Stefanie Canals-Baker
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY, 10962, USA
| | - John F Smiley
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY, 10962, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Donald A Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY, USA
| | - Bhaskar C Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, 75 DeKalb Ave., Brooklyn, NY, 11201, USA.
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Mariko Saito
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY, 10962, USA.
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
18
|
Sonsalla MM, Lamming DW. Geroprotective interventions in the 3xTg mouse model of Alzheimer's disease. GeroScience 2023; 45:1343-1381. [PMID: 37022634 PMCID: PMC10400530 DOI: 10.1007/s11357-023-00782-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disease. As the population ages, the increasing prevalence of AD threatens massive healthcare costs in the coming decades. Unfortunately, traditional drug development efforts for AD have proven largely unsuccessful. A geroscience approach to AD suggests that since aging is the main driver of AD, targeting aging itself may be an effective way to prevent or treat AD. Here, we discuss the effectiveness of geroprotective interventions on AD pathology and cognition in the widely utilized triple-transgenic mouse model of AD (3xTg-AD) which develops both β-amyloid and tau pathologies characteristic of human AD, as well as cognitive deficits. We discuss the beneficial impacts of calorie restriction (CR), the gold standard for geroprotective interventions, and the effects of other dietary interventions including protein restriction. We also discuss the promising preclinical results of geroprotective pharmaceuticals, including rapamycin and medications for type 2 diabetes. Though these interventions and treatments have beneficial effects in the 3xTg-AD model, there is no guarantee that they will be as effective in humans, and we discuss the need to examine these interventions in additional animal models as well as the urgent need to test if some of these approaches can be translated from the lab to the bedside for the treatment of humans with AD.
Collapse
Affiliation(s)
- Michelle M Sonsalla
- Department of Medicine, University of Wisconsin-Madison, 2500 Overlook Terrace, VAH C3127 Research 151, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, 2500 Overlook Terrace, VAH C3127 Research 151, Madison, WI, 53705, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA.
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
19
|
Shen W, Wang X, Tang M, Yao L, Wan C, Niu J, Kolattukudy PE, Jin Z. Huoluo Xiaoling Pellet promotes microglia M2 polarization through increasing MCPIP1 expression for ischemia stroke alleviation. Biomed Pharmacother 2023; 164:114914. [PMID: 37236023 DOI: 10.1016/j.biopha.2023.114914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Huoluo Xiaoling Pellet (HXP), a Chinese patent medicine, is commonly administered for the treatment of treat ischemic strokes. MCPIP1, an inducible suppressor of the inflammatory response, is a regulator of microglial M2 polarization. This study aimed to explore whether HXP can promote microglial M2 polarization by upregulating MCPIP1 expression, consequently mitigating cerebral ischemic injury. Our study involved 85 Sprague-Dawley rats (weighing 250-280 g). We established middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation-reoxygenation (OGD/R) models with MCPIP1 knockdown to assess the effects of HXP on ischemic strokes. Our findings show that HXP reduced brain water content, improved neurological function, and inhibited the expression of inflammatory factors in the brain tissues of MCAO rats. The neuroprotective effects of HXP on cerebral ischemic injuries were compromised by MCPIP1 knockdown. Immunofluorescence results indicated that the expression of microglia marker Iba1 and M2 phenotypic marker CD206 was upregulated in MCAO rats and OGD/R-treated microglia. Administration of HXP significantly reduced Iba1 expression and facilitated CD206 expression, an effect that was counteracted by sh-MCPIP1 transfection. Western blotting revealed that HXP treatment augmented the expression of MCPIP1, microglial M2 marker proteins (CD206 and Arg1), and PPARγ, while reducing the expression of microglial M1 marker proteins (CD16 and iNOS) in MCAO rats and OGD/R-induced microglia. MCPIP1 knockdown suppressed HXP-mediated upregulation of MCPIP1, CD206, Arg1, and PPARγ, as well as the downregulation of CD16 and iNOS. Our findings suggest that HXP primarily ameliorates ischemic stroke through the upregulation of MCPIP1, which in turn induces microglial M2 polarization.
Collapse
Affiliation(s)
- Wei Shen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No.54 Youdian Road, Hangzhou 310000, China
| | - Xiaoguang Wang
- School of Life Science, Xiamen University, No.4221-120, Xiangan North Road, Xiamen 361100, China
| | - Meiqi Tang
- Department of Chemistry, Zhejiang University, No.38 Zheda Road, Hangzhou 310027, China
| | - Lan Yao
- Department of Chemistry, Zhejiang University, No.38 Zheda Road, Hangzhou 310027, China
| | - Chenyu Wan
- The Affiliated Hospital of Hangzhou Normal University, No.126 Wenzhou Road, Hangzhou 310015, China
| | - Jianli Niu
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 4000 Central Florida Blvd, Orlando, United States
| | - Pappachan E Kolattukudy
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 4000 Central Florida Blvd, Orlando, United States
| | - Zhuqing Jin
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, No.548 Binwen Road, Hangzhou 310053, China.
| |
Collapse
|