1
|
Li Y, Yan J, Yang P. The mechanism and therapeutic strategies in doxorubicin-induced cardiotoxicity: Role of programmed cell death. Cell Stress Chaperones 2024; 29:666-680. [PMID: 39343295 PMCID: PMC11490929 DOI: 10.1016/j.cstres.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/26/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024] Open
Abstract
Doxorubicin (DOX) is the most commonly used anthracycline anticancer agent, while its clinical utility is limited by harmful side effects like cardiotoxicity. Numerous studies have elucidated that programmed cell death plays a significant role in DOX-induced cardiotoxicity (DIC). This review summarizes several kinds of programmed cell death, including apoptosis, pyroptosis, necroptosis, autophagy, and ferroptosis. Furthermore, oxidative stress, inflammation, and mitochondrial dysfunction are also important factors in the molecular mechanisms of DIC. Besides, a comprehensive understanding of specific signal pathways of DIC can be helpful to its treatment. Therefore, the related signal pathways are elucidated in this review, including sirtuin deacetylase (silent information regulator 2 [Sir2]) 1 (SIRT1)/nuclear factor erythroid 2-related factor 2, SIRT1/Klotho, SIRT1/Recombinant Sestrin 2, adenosine monophosphate-activated protein kinase, AKT, and peroxisome proliferator-activated receptor. Heat shock proteins function as chaperones, which play an important role in various stressful situations, especially in the heart. Thus, some of heat shock proteins involved in DIC are also included. Hence, the last part of this review focuses on the therapeutic research based on the mechanisms above.
Collapse
Affiliation(s)
- Yanzhao Li
- Department of Second Clinical Medical College, Southern Medical University, Guangzhou, China.
| | - Jing Yan
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Pingzhen Yang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Ding J, Ji R, Wang Z, Jia Y, Meng T, Song X, Gao J, He Q. Cardiovascular protection of YiyiFuzi powder and the potential mechanisms through modulating mitochondria-endoplasmic reticulum interactions. Front Pharmacol 2024; 15:1405545. [PMID: 38978978 PMCID: PMC11228702 DOI: 10.3389/fphar.2024.1405545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/28/2024] [Indexed: 07/10/2024] Open
Abstract
Cardiovascular diseases (CVD) remain the leading cause of death worldwide and represent a major public health challenge. YiyiFuzi Powder (YYFZ), composed of Coicis semen and Fuzi, is a classical traditional Chinese medicine prescription from the Synopsis of Golden Chamber dating back to the Han Dynasty. Historically, YYFZ has been used to treat various CVD, rooted in Chinese therapeutic principles. Network pharmacology analysis indicated that YYFZ may exhibit direct or indirect effects on mitochondria-endoplasmic reticulum (ER) interactions. This review, focusing on the cardiovascular protective effects of Coicis semen and Fuzi, summarizes the potential mechanisms by which YYFZ acts on mitochondria and the ER. The underlying mechanisms are associated with regulating cardiovascular risk factors (such as blood lipids and glucose), impacting mitochondrial structure and function, modulating ER stress, inhibiting oxidative stress, suppressing inflammatory responses, regulating cellular apoptosis, and maintaining calcium ion balance. The involved pathways include, but were not limited to, upregulating the IGF-1/PI3K/AKT, cAMP/PKA, eNOS/NO/cGMP/SIRT1, SIRT1/PGC-1α, Klotho/SIRT1, OXPHOS/ATP, PPARα/PGC-1α/SIRT3, AMPK/JNK, PTEN/PI3K/AKT, β2-AR/PI3K/AKT, and modified Q cycle signaling pathways. Meanwhile, the MCU, NF-κB, and JAK/STAT signaling pathways were downregulated. The PERK/eIF2α/ATF4/CHOP, PERK/SREBP-1c/FAS, IRE1, PINK1-dependent mitophagy, and AMPK/mTOR signaling pathways were bidirectionally regulated. High-quality experimental studies are needed to further elucidate the underlying mechanisms of YYFZ in CVD treatment.
Collapse
Affiliation(s)
- Jingyi Ding
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ran Ji
- Department of Intensive Care Unit, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ziyi Wang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuzhi Jia
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiantian Meng
- Department of Rehabilitation, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xinbin Song
- Graduate School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jing Gao
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingyong He
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Zheng Y, Wei W, Wang Y, Li T, Wei Y, Gao S. Gypenosides exert cardioprotective effects by promoting mitophagy and activating PI3K/Akt/GSK-3 β/Mcl-1 signaling. PeerJ 2024; 12:e17538. [PMID: 38912051 PMCID: PMC11193969 DOI: 10.7717/peerj.17538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/19/2024] [Indexed: 06/25/2024] Open
Abstract
Background Gynostemma pentaphyllum (Thunb.) Makino, a well-known edible and medicinal plant, has anti-aging properties and is used to treataging-associated conditions such as diabetes, metabolic syndrome, and cardiovascular diseases. Gypenosides (GYPs) are the primary constituents of G. pentaphyllum. Increasing evidence indicates that GYPs are effective at preserving mitochondrial homeostasis and preventing heart failure (HF). This study aimed to uncover the cardioprotective mechanisms of GYPs related to mitochondrial regulation. Methods The bioactive components in GYPs and the potential targets in treating HF were obtained and screened using the network pharmacology approach, followed by drug-disease target prediction and enrichment analyses. The pharmacological effects of GYPs in cardioprotection, mitochondrial function, mitochondrial quality control, and underlying mechanisms were further investigated in Doxorubicin (Dox)-stimulated H9c2 cardiomyocytes. Results A total of 88 bioactive compounds of GYPs and their respective 71 drug-disease targets were identified. The hub targets covered MAPK, EGFR, PI3KCA, and Mcl-1. Enrichment analysis revealed that the pathways primarily contained PI3K/Akt, MAPK, and FoxO signalings, as well as calcium regulation, protein phosphorylation, apoptosis, and mitophagy process. In Dox-stimulated H9c2 rat cardiomyocytes, pretreatment with GYPs increased cell viability, enhanced cellular ATP content, restored basal oxygen consumption rate (OCR), and improved mitochondrial membrane potential (MMP). Furthermore, GYPs improved PINK1/parkin-mediated mitophagy without influencing mitochondrial fission/fusion proteins and the autophagic LC3 levels. Mechanistically, the phosphorylation of PI3K, Akt, GSK-3β, and the protein level of Mcl-1 was upregulated by GYP treatment. Conclusion Our findings reveal that GYPs exert cardioprotective effects by rescuing the defective mitophagy, and PI3K/Akt/GSK-3β/Mcl-1 signaling is potentially involved in this process.
Collapse
Affiliation(s)
- Yizhe Zheng
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
- Department of Pharmacy, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Wei Wei
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
- School of Science, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Yukun Wang
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
- School of Science, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Tingting Li
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Yundong Wei
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Si Gao
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| |
Collapse
|
4
|
Rui Y, Zhang X, Min X, Xie H, Ma X, Geng F, Liu R. Unlocking renal Restoration: Mesaconine from Aconitum plants restore mitochondrial function to halt cell apoptosis in acute kidney injury. Int Immunopharmacol 2024; 133:112170. [PMID: 38691919 DOI: 10.1016/j.intimp.2024.112170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/09/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Acute kidney injury (AKI) is characterized by a sudden decline in renal function. Traditional Chinese medicine has employed Fuzi for kidney diseases; however, concerns about neurotoxicity and cardiotoxicity have constrained its clinical use. This study explored mesaconine, derived from processed Fuzi, as a promising low-toxicity alternative for AKI treatment. In this study, we assessed the protective effects of mesaconine in gentamicin (GM)-induced NRK-52E cells and AKI rat models in vitro and in vivo, respectively. Mesaconine promotes the proliferation of damaged NRK-52E cells and down-regulates intracellular transforming growth factor β1 (TGF-β1) and kidney injury molecule 1 (KIM-1) to promote renal cell repair. Concurrently, mesaconine restored mitochondrial morphology and permeability transition pores, reversed the decrease in mitochondrial membrane potential, mitigated mitochondrial dysfunction, decreased ATP production, inhibited inflammatory factor release, and reduced early apoptosis rates. In vivo, GM-induced AKI rat models exhibited elevated AKI biomarkers, in which mesaconine was effectively reduced, indicating improved renal function. Mesaconine enhanced superoxide dismutase activity, reduced malondialdehyde content, alleviated inflammatory infiltrate, mitigated tubular and glomerular lesions, and downregulated NF-κB (nuclear factor-κb) p65 expression, leading to decreased tumor necrosis factor-α (TNF-α) and IL-1β (interleukin-1β) levels in GM-induced AKI animals. Furthermore, mesaconine inhibited the expression of renal pro-apoptotic proteins (Bax, cytochrome c, cleaved-caspase 9, and cleaved-caspase 3) and induced the release of the anti-apoptotic protein bcl-2, further suppressing apoptosis. This study highlighted the therapeutic potential of mesaconine in GM-induced AKI. Its multifaceted mechanisms, including the restoration of mitochondrial dysfunction, anti-inflammatory and antioxidant effects, and apoptosis mitigation, make mesaconine a promising candidate for further exploration in AKI management.
Collapse
Affiliation(s)
- Yixin Rui
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Xiumeng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Xinran Min
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Hongxiao Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Xiuying Ma
- Sichuan Engineering Research Center for Medicinal Animals, Sichuan 611137, China
| | - Funeng Geng
- Sichuan Engineering Research Center for Medicinal Animals, Sichuan 611137, China; Guizhou Yunfeng Pharmaceutical, Guizhou 510000, China.
| | - Rong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| |
Collapse
|
5
|
Zhao J, Yang T, Yi J, Hu H, Lai Q, Nie L, Liu M, Chu C, Yang J. AP39 through AMPK-ULK1-FUNDC1 pathway regulates mitophagy, inhibits pyroptosis, and improves doxorubicin-induced myocardial fibrosis. iScience 2024; 27:109321. [PMID: 38558936 PMCID: PMC10981016 DOI: 10.1016/j.isci.2024.109321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/10/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Doxorubicin induces myocardial injury and fibrosis. Still, no effective interventions are available. AP39 is an H2S donor that explicitly targets mitochondria. This study investigated whether AP39 could improve doxorubicin-induced myocardial fibrosis. Doxorubicin induced significant myocardial fibrosis while suppressing mitophagy-related proteins and elevating pyroptosis-related proteins. Conversely, AP39 reverses these effects, enhancing mitophagy and inhibiting pyroptosis. In vitro experiments revealed that AP39 inhibited H9c2 cardiomyocyte pyroptosis, improved doxorubicin-induced impairment of mitophagy, reduced ROS levels, ameliorated the mitochondrial membrane potential, and upregulated AMPK-ULK1-FUNDC1 expression. In contrast, AMPK inhibitor (dorsomorphin) and ULK1 inhibitor (SBI-0206965) reversed AP39 antagonism of doxorubicin-induced FUNDC1-mediated impairment of mitophagy and secondary cardiomyocyte pyroptosis. These results suggest that mitochondria-targeted H2S can antagonize doxorubicin-induced pyroptosis and impaired mitophagy in cardiomyocytes via AMPK-ULK1-FUNDC1 and ameliorated myocardial fibrosis and remodeling.
Collapse
Affiliation(s)
- Junxiong Zhao
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, China
| | - Ting Yang
- School of Pharmaceutical Science of University of South China, Hengyang 421000, China
- Department of Pharmacy, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, China
| | - Jiali Yi
- Department of Cardiology, Hunan University of Medicine General Hospital, Huaihua 418000, China
| | - Hongmin Hu
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, China
| | - Qi Lai
- School of Pharmaceutical Science of University of South China, Hengyang 421000, China
- Department of Pharmacy, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, China
| | - Liangui Nie
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, China
| | - Maojun Liu
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, China
| | - Chun Chu
- Department of Pharmacy, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, China
| | - Jun Yang
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, China
| |
Collapse
|
6
|
Cao H, Liao Y, Hong J. Protective effects of METRNL overexpression against pathological cardiac remodeling. Gene 2024; 901:148171. [PMID: 38242372 DOI: 10.1016/j.gene.2024.148171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/19/2023] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
At present, meteorin-like protein (METRNL) has been proven to be widely expressed in the myocardium and participates in the pathogenic process of various cardiovascular diseases. However, the effects of METRNL on pathological cardiac hypertrophy is still unknown. In the present study, we used a mouse model of transverse aortic constriction (TAC) surgery to mimic pathological cardiac hypertrophy and gene delivery system to overexpress METRNL in vivo. The results showed that METRNL overexpression improved TAC-induced pathological cardiac hypertrophy in mice and neonatal cardiomyocytes. In addition, METRNL overexpression diminished TAC-induced cardiac oxidative damage, inflammation and cardiomyocyte apoptosis. Moreover, the cardioprotective effect of METRNL overexpression was directly related to the activation of AMP-activated protein kinase (AMPK) and sirtuin1 (SIRT1). In summary, our data identified that METRNL may be a promising therapeutic target to mitigate pathological cardiac hypertrophy in the future.
Collapse
Affiliation(s)
- Huang Cao
- Department of Vascular Surgery, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, Fujian, China
| | - Yiming Liao
- Department of Vascular Surgery, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, Fujian, China
| | - Junmou Hong
- Department of Vascular Surgery, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
7
|
Du RR, Zhou JC, Qin WJ, Lu KZ, Duan XM, Yang YN, Yuan X, Li K, Zhang XW, Zhang PC. Fourteen new 2-benzylbenzofuran glycosides with cardioprotective activity from Heterosmilax yunnanensis. Bioorg Chem 2024; 143:107079. [PMID: 38185011 DOI: 10.1016/j.bioorg.2023.107079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024]
Abstract
Fourteen new 2-benzylbenzofuran O-glycosides (1-13, 15) and one new key precursor, diarylacetone (14) were isolated from the roots of Heterosmilax yunnanensis Gagnep, which all have characteristic 2,3,4-O-trisubstituted benzyl. Their structures were elucidated by 1D and 2D NMR, HRESIMS, UV and IR. The isolated compounds were assessed for their cardioprotective activities and compounds 1, 3 and 6 could significantly improve cardiomyocytes viability. Moreover, the mechanistic study revealed that these three compounds could significantly decrease intracellular ROS levels and maintain mitochondrial homeostasis upon hypoxia inducement. Consequently, 1, 3 and 6 might serve as potential lead compounds to prevent myocardial ischemia.
Collapse
Affiliation(s)
- Rong-Rong Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ji-Chao Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wen-Jie Qin
- Beijing Zhendong Guangming Pharmaceutical Research Institute, Beijing 100085, China
| | - Kai-Zhou Lu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiu-Mei Duan
- Beijing Zhendong Guangming Pharmaceutical Research Institute, Beijing 100085, China
| | - Ya-Nan Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiang Yuan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Kun Li
- Shanxi Zhendong Pharmaceutical Co. Ltd, Changzhi 047100, China.
| | - Xiao-Wei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Pei-Cheng Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
8
|
Li X, Wu Y, Yang Y, Wu Y, Yu X, Hu W. Omaveloxolone ameliorates isoproterenol-induced pathological cardiac hypertrophy in mice. Free Radic Res 2024; 58:57-68. [PMID: 38145457 DOI: 10.1080/10715762.2023.2299359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important transcriptional regulator that plays a protective role against various cardiovascular diseases. Omaveloxolone is a newly discovered potent activator of Nrf2 that has a variety of cytoprotective functions. However, the potential role of omaveloxolone in the process of pathological cardiac hypertrophy and heart failure are still unknown. In this study, an isoproterenol (ISO)-induced pathological cardiac hypertrophy model was established to investigate the protective effect of omaveloxolone in vivo and in vitro. Our study first confirmed that omaveloxolone administration improved ISO-induced pathological cardiac hypertrophy in mice and neonatal cardiomyocytes. Omaveloxolone administration also diminished ISO-induced cardiac oxidative stress, inflammation and cardiomyocyte apoptosis. In addition, omaveloxolone administration activated the Nrf2 signaling pathway, and Nrf2 knockdown almost completely abolished the cardioprotective effect of omaveloxolone, indicated that the cardioprotective effect of omaveloxolone was directly related to the activation of the Nrf2 signaling. In summary, our study identified that omaveloxolone may be a promising therapeutic agent to mitigate pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Xianchao Li
- Health Science Center, Yangtze University, Huanggang Central Hospital of Yangtze University, Huanggang, China
| | - Yang Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunzhao Yang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yaohua Wu
- Health Science Center, Yangtze University, Huanggang Central Hospital of Yangtze University, Huanggang, China
| | - Xi Yu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenjuan Hu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|