1
|
Kaiser CS, Lubisch M, Schröder E, Ressmann L, Nicolaus M, Leusder D, Moyzio S, Peuss R, Miranda-Vizuete A, Liebau E. Unraveling the functional dynamics of Caenorhabditis elegans stress-responsive omega class GST-44. FEBS J 2025. [PMID: 40186509 DOI: 10.1111/febs.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 04/07/2025]
Abstract
Glutathione transferases from the omega class are notable for their roles in redox regulation and cellular stress response. In this study, we conducted a comprehensive functional characterization of GST-44, an omega-class glutathione S-transferase (GSTO), in Caenorhabditis elegans, focusing on its role in cellular defense mechanisms against stress. Biochemical analysis revealed GSTO-specific enzymatic activities of recombinant GST-44, including dehydroascorbate reductase, thioltransferase, and arsenate reductase activities. Using transgenic GFP reporter strains, we identified predominant expression of GST-44 in the intestine and excretory H-cell, with significant upregulation observed under diverse stress conditions. Induction of GST-44 was particularly pronounced in the intestine in response to pathogen-, oxidative-, and endoplasmic reticulum stress. Notably, under arsenic stress, the expression of gst-44 was significantly upregulated in the excretory system of the worm, underscoring its critical role in mediating arsenic detoxification. Moreover, we demonstrated the induction of GST-44 using dimethyl fumarate, a highly specific mammalian Nrf-2 activator. The upregulation of GST-44 during arsenic stress was dependent not only on the oxidative stress response transcription factor SKN-1/Nrf2 but also on PHA-4. The deletion mutant strain gst-44(tm6133) exhibited reduced stress resistance and a shortened lifespan, with a highly diminished survival rate under arsenic stress compared to other CRISPR-generated C. elegans GSTO deletion mutants. Our findings highlight the essential role of GST-44 in mediating arsenic detoxification, as well as in stress adaptation and defense mechanisms in C. elegans.
Collapse
Affiliation(s)
| | - Milena Lubisch
- Institute of Integrative Cell Biology and Physiology, University of Münster, Germany
| | - Emma Schröder
- Institute of Integrative Cell Biology and Physiology, University of Münster, Germany
| | - Luka Ressmann
- Institute of Integrative Cell Biology and Physiology, University of Münster, Germany
| | - Marie Nicolaus
- Institute of Integrative Cell Biology and Physiology, University of Münster, Germany
| | - Dustin Leusder
- Institute of Integrative Cell Biology and Physiology, University of Münster, Germany
| | - Sven Moyzio
- Institute of Integrative Cell Biology and Physiology, University of Münster, Germany
| | - Robert Peuss
- Institute of Integrative Cell Biology and Physiology, University of Münster, Germany
| | - Antonio Miranda-Vizuete
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Eva Liebau
- Institute of Integrative Cell Biology and Physiology, University of Münster, Germany
| |
Collapse
|
2
|
Xiao J, Wang L, Zhang B, Hou A. Cell death in acute lung injury: caspase-regulated apoptosis, pyroptosis, necroptosis, and PANoptosis. Front Pharmacol 2025; 16:1559659. [PMID: 40191423 PMCID: PMC11968751 DOI: 10.3389/fphar.2025.1559659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
There has been abundant research on the variety of programmed cell death pathways. Apoptosis, pyroptosis, and necroptosis under the action of the caspase family are essential for the innate immune response. Caspases are classified into inflammatory caspase-1/4/5/11, apoptotic caspase-3/6/7, and caspase-2/8/9/10. Although necroptosis is not caspase-dependent to transmit cell death signals, it can cross-link with pyroptosis and apoptosis signals under the regulation of caspase-8. An increasing number of studies have reiterated the involvement of the caspase family in acute lung injuries caused by bacterial and viral infections, blood transfusion, and ventilation, which is influenced by noxious stimuli that activate or inhibit caspase engagement pathways, leading to subsequent lung injury. This article reviews the role of caspases implicated in diverse programmed cell death mechanisms in acute lung injury and the status of research on relevant inhibitors against essential target proteins of the described cell death mechanisms. The findings of this review may help in delineating novel therapeutic targets for acute lung injury.
Collapse
Affiliation(s)
| | | | | | - Ana Hou
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Huang Q, Qu Y, Tang M, Lan K, Zhang Y, Chen S, Li W, Gu L. ROS-responsive hydrogel for bone regeneration: Controlled dimethyl fumarate release to reduce inflammation and enhance osteogenesis. Acta Biomater 2025; 195:183-200. [PMID: 39956305 DOI: 10.1016/j.actbio.2025.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/17/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
Large bone defects, often arising from trauma or infection, pose a considerable therapeutic challenge due to their limited capacity for spontaneous healing, thus requiring bone graft materials for effective reparative procedures. The persistence of inflammation and elevated levels of reactive oxygen species (ROS) within these defect sites significantly impede bone regeneration process. Addressing this, an injectable hydrogel system with ROS-responsive functionality is developed, specifically tailored to the high ROS microenvironment characteristic of bone defects. This system incorporates hyaluronic acid functionalized with dopamine to introduce catechol moieties, and employs 4-formylphenylboronic acid as a crosslinking agent to form a dynamic hydrogel matrix (HAC) with carboxymethyl chitosan. The HAC hydrogel serves as a carrier for dimethyl fumarate (DMF), a compound with established anti-inflammatory and antioxidant effects, enabling its controlled release in response to ROS levels. Herein, we investigated the physicochemical properties of DMF loaded hydrogel (DHAC) by microstructure observation, in vitro degradation assay, self-healing test, injectability experiments, DMF drug release assay. Meanwhile, we systematically investigated its effects on inflammation, intracellular ROS, and osteogenesis. Consequently, the DHAC significantly reduced pro-inflammatory cytokines secreted by RAW264.7 cells and scavenged intracellular ROS in MC3T3 cells. This effect was accompanied by an augmentation in the osteogenic potential of MC3T3 cells and a promotion in the repair of cranial defects in rats. The DHAC, which exhibits anti-inflammatory, antioxidant, and osteogenic activity, hold great potential as an effective strategy for the management of large bone defects. STATEMENT OF SIGNIFICANCE: Here, a novel dimethyl fumarate-loaded ROS-responsive hydrogel system was developed for effective treatment of large bone defects. Our findings demonstrated that the hydrogel not only promotes bone regeneration but also controls inflammation, addressing two critical challenges in bone healing. Comprehensive evaluations show significant improvements in bone formation and reduction of pro-inflammatory cytokines in animal models. Additionally, the hydrogel exhibits excellent reactive oxygen species scavenging ability, effectively modulating oxidative stress in the bone defect microenvironment. Findings suggest the hydrogel system may serve as a promising therapeutic strategy for clinical management of critical-sized bone defects.
Collapse
Affiliation(s)
- Qiuxia Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangdong, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, Guangzhou 510080, China
| | - Yang Qu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, Guangzhou 510080, China
| | - Mengchen Tang
- Hospital of Stomatology, Sun Yat-sen University, Guangdong, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, Guangzhou 510080, China
| | - Kaiwen Lan
- Hospital of Stomatology, Sun Yat-sen University, Guangdong, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, Guangzhou 510080, China
| | - Yilin Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangdong, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, Guangzhou 510080, China
| | - Sishi Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangdong, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, Guangzhou 510080, China
| | - Weichang Li
- Hospital of Stomatology, Sun Yat-sen University, Guangdong, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, Guangzhou 510080, China.
| | - Lisha Gu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, Guangzhou 510080, China.
| |
Collapse
|
4
|
Duarte LF, Carbone-Schellman J, Bueno SM, Kalergis AM, Riedel CA, González PA. Tackling cutaneous herpes simplex virus disease with topical immunomodulators-a call to action. Clin Microbiol Rev 2025; 38:e0014724. [PMID: 39982077 PMCID: PMC11917526 DOI: 10.1128/cmr.00147-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025] Open
Abstract
SUMMARYAntivirals play important roles in restricting viral diseases. Nevertheless, they act on a relatively limited number of viruses and occasionally display partial effectiveness in some tissues or against escape variants. Although vaccination remains the most cost-effective approach for preventing microbial diseases, developing prophylactic or therapeutic solutions for pathogens, such as herpes simplex viruses (HSVs), that effectively reduce their clinical manifestations in the skin has proven exceptionally challenging despite extensive research. Alternatively, a less explored approach for tackling HSV skin infection involves using topical immunomodulatory molecules to potentiate the host's innate antiviral immune responses. When applied directly to herpetic skin lesions where viral antigen is present, this strategy has the potential to elicit virus-specific adaptive immunity. Based on currently available data, we foresee substantial potential for this approach in addressing HSV skin infections, along with additional prospects to advance understanding of skin biology and apply relevant new findings to other dermatological conditions. However, due to the limited number of case studies evaluating this method and its safety profile, particularly in immunocompromised individuals and pregnant women, further research is crucial, especially to assess the effects of immunomodulators in these vulnerable populations. Here, we revisit and discuss the use of immunomodulatory molecules for potentiating the host immune response against HSV skin infection and call for action for increased research and clinical trials regarding the possible benefits of this latter strategy for treating HSV cutaneous disease and recurrences. We also revisit and discuss antivirals and vaccine candidates against HSVs.
Collapse
Affiliation(s)
- Luisa F Duarte
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana - Universidad del Desarrollo, Santiago, Chile
| | - Javier Carbone-Schellman
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Centro de Investigación para la Resilencia a Pandemias, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
5
|
Bian Y, Dong J, Zhou Z, Zhou H, Xu Y, Zhang Q, Chen C, Pi J. The spatiotemporal and paradoxical roles of NRF2 in renal toxicity and kidney diseases. Redox Biol 2025; 79:103476. [PMID: 39724848 PMCID: PMC11732127 DOI: 10.1016/j.redox.2024.103476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Over 10% of the global population is at risk to kidney disorders. Nuclear factor erythroid-derived 2-related factor 2 (NRF2), a pivotal regulator of redox homeostasis, orchestrates antioxidant response that effectively counters oxidative stress and inflammatory response in a variety of acute pathophysiological conditions, including acute kidney injury (AKI) and early stage of renal toxicity. However, if persistently activated, NRF2-induced transcriptional cascade may disrupt normal cell signaling and contribute to numerous chronic pathogenic processes such as fibrosis. In this concise review, we assembled experimental evidence to reveal the cell- and pathophysiological condition-specific roles of NRF2 in renal chemical toxicity, AKI, and chronic kidney disease (CKD), all of which are closely associated with oxidative stress and inflammation. By incorporating pertinent research findings on NRF2 activators, we dissected the spatiotemporal roles of NRF2 in distinct nephrotoxic settings and kidney diseases. Herein, NRF2 exhibits diverse expression patterns and downstream gene profiles across distinct kidney regions and cell types, and during specific phases of nephropathic progression. These changes are directly or indirectly connected to altered antioxidant defense, damage repair, inflammatory response, regulated cell death and fibrogenesis, culminating ultimately in either protective or deleterious outcomes. The spatiotemporal and paradoxical characteristics of NRF2 in mitigating nephrotoxicity suggest that translational application of NRF2 activation strategy for prevention and interventions of kidney injury are unlikely to be straightforward - right timing and spatial precision must be taken into consideration.
Collapse
Affiliation(s)
- Yiying Bian
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| | - Jize Dong
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Zhengsheng Zhou
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Hua Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, GA, 30322, USA
| | - Chengjie Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| | - Jingbo Pi
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
6
|
Wang Z, Guo L, Dong P, Zhu X, Li J, Cui L, Dong J, Liu K, Meng X, Wang H. Dimethyl fumarate alleviates Staphylococcus pseudintermedius-induced cell damage by inhibiting pyroptosis and bacterial virulence. Exp Eye Res 2025; 251:110210. [PMID: 39681234 DOI: 10.1016/j.exer.2024.110210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
The resistance of pathogenic bacteria to various clinical antibiotics is the major problem in treating bacterial keratitis. Dimethyl fumarate (DMF) has good anti-fungal and anti-inflammatory effects in fungal keratitis, but its effect on bacterial keratitis is unclear. This study aims to investigate DMF's anti-inflammatory and antibacterial effects. The pyroptosis model was constructed by intracellular infection of canine corneal epithelial cells (CCECs) with Staphylococcus pseudintermedius (S. pseudintermedius), and 200 μM DMF was added to explore its function. Western blot, ELISA, immunostaining, flow cytometry, qRT-PCR, and bacterial counts were used to examine the expression of the NLRP3-GSDMD signaling pathway, virulence genes, and oxidant mediators. 111 clinical keratitis isolates or S. pseudintermedius were treated with different concentrations of DMF to detect bacterial growth and biofilm formation. Adding DMF resulted in the inhibition of the NLRP3-GSDMD pathway while activating the NRF2 pathway. This led to a decrease in pyroptosis rate, intracellular bacteria count, and ROS content. Additionally, DMF blocked the mRNA expression of virulence genes ebpS, hlgB, siet, lukS-I, PVL, icaA, icaD, spsD, and spsL associated with S. pseudintermedius infection. Furthermore, DMF demonstrated concentration-dependent inhibition of the growth of clinical isolates and the formation of S. pseudintermedius biofilm. In conclusion, our results indicate that DMF can inhibit pyroptosis and the growth of various clinical isolates, making it a novel ophthalmic drug with anti-inflammatory and antibacterial properties.
Collapse
Affiliation(s)
- Zhihao Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China
| | - Long Guo
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China
| | - Pengfei Dong
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China
| | - Xinyi Zhu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China
| | - Luying Cui
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China
| | - Junsheng Dong
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China
| | - Kangjun Liu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China
| | - Xia Meng
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
7
|
Kavianinia M, Kalantar H, Salehcheh M, Khorsandi L, Shariati S, Mohtadi S, Khodayar MJ. Dimethyl fumarate effects on paraquat-induced hepatotoxicity in mice via anti-oxidative, anti-inflammatory, and anti-apoptotic activities. Sci Rep 2025; 15:3897. [PMID: 39890857 PMCID: PMC11785811 DOI: 10.1038/s41598-025-88461-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/28/2025] [Indexed: 02/03/2025] Open
Abstract
Paraquat (PQ) toxicity is a common problem in the world, associated with oxidative stress, inflammation, and apoptosis. Therefore, the use of agents that reduce these disorders can be effective in the treatment of PQ toxicity. The protective effects of dimethyl fumarate (DMF) on liver disorders have been suggested in many reports. In this study, mice were divided into 6 groups; control, PQ (30 mg/kg, i.p., at day 4), DMF (100 mg/kg, p.o.), and PQ groups pretreated by DMF in three doses 10, 30, and 100 mg/kg, respectively. DMF was administered for 7 days to counteract PQ-induced liver toxicity. On the 8th day, mice were euthanized with ketamine/xylazine, and serum factors, oxidative stress markers, apoptosis index, and inflammatory markers were measured. PQ significantly increased the activity level of serum enzymes, thiobarbituric acid reactive substances, apoptotic factor (Bax/Bcl-2 ratio), inflammatory factors (NF-κB protein expression, tumor necrosis factor-α, interleukin-1β), nitric oxide, and Nrf-2 protein expression. Furthermore, PQ decreased hepatic total thiol and activity levels of catalase, superoxide dismutase, and glutathione peroxidase. However, DMF reduced the harmful effects caused by the imbalance in the oxidant and antioxidant system and histopathological damage in PQ-poisoned mice and improved the damage caused by inflammation and apoptosis.
Collapse
Affiliation(s)
- Maryam Kavianinia
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadi Kalantar
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Salehcheh
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeedeh Shariati
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shokooh Mohtadi
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
8
|
Tkaczenko H, Kurhaluk N. Antioxidant-Rich Functional Foods and Exercise: Unlocking Metabolic Health Through Nrf2 and Related Pathways. Int J Mol Sci 2025; 26:1098. [PMID: 39940866 PMCID: PMC11817741 DOI: 10.3390/ijms26031098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
This article reviews the synergistic effects of antioxidant-enriched functional foods and exercise in improving metabolic health, focusing on the underlying molecular mechanisms. The review incorporates evidence from PubMed, SCOPUS, Web of Science, PsycINFO, and reference lists of relevant reviews up to 20 December 2024, highlighting the central role of the Nrf2 pathway. As a critical regulator of oxidative stress and metabolic adaptation, Nrf2 mediates the benefits of these interventions. This article presents an innovative approach to understanding the role of Nrf2 in the regulation of oxidative stress and inflammation, highlighting its potential in the prevention and treatment of various diseases, including cancer, neurodegenerative disorders, cardiovascular and pulmonary diseases, diabetes, inflammatory conditions, ageing, and infections such as COVID-19. The novelty of this study is to investigate the synergistic effects of bioactive compounds found in functional foods (such as polyphenols, flavonoids, and vitamins) and exercise-induced oxidative stress on the activation of the Nrf2 pathway. This combined approach reveals their potential to improve insulin sensitivity and lipid metabolism and reduce inflammation, offering a promising strategy for the management of chronic diseases. However, there are significant gaps in current research, particularly regarding the molecular mechanisms underlying the interaction between diet, physical activity, and Nrf2 activation, as well as their long-term effects in different populations, including those with chronic diseases. In addition, the interactions between Nrf2 and other critical signalling pathways, including AMPK, NF-κB, and PI3K/Akt, and their collective contributions to metabolic health are explored. Furthermore, novel biomarkers are presented to assess the impact of these synergistic strategies, such as the NAD+/NADH ratio, the GSH ratio, and markers of mitochondrial health. The findings provide valuable insights into how the integration of an antioxidant-rich diet and regular exercise can improve metabolic health by activating Nrf2 and related molecular pathways and represent promising strategies for the prevention and treatment of metabolic disorders. Further studies are needed to fully understand the therapeutic potential of these interventions in diseases related to oxidative stress, such as cardiovascular disease, neurodegenerative disease, diabetes, and cancer.
Collapse
Affiliation(s)
| | - Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22b, 76-200 Słupsk, Poland;
| |
Collapse
|
9
|
Buttari B, Tramutola A, Rojo AI, Chondrogianni N, Saha S, Berry A, Giona L, Miranda JP, Profumo E, Davinelli S, Daiber A, Cuadrado A, Di Domenico F. Proteostasis Decline and Redox Imbalance in Age-Related Diseases: The Therapeutic Potential of NRF2. Biomolecules 2025; 15:113. [PMID: 39858508 PMCID: PMC11764413 DOI: 10.3390/biom15010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/20/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a master regulator of cellular homeostasis, overseeing the expression of a wide array of genes involved in cytoprotective processes such as antioxidant and proteostasis control, mitochondrial function, inflammation, and the metabolism of lipids and glucose. The accumulation of misfolded proteins triggers the release, stabilization, and nuclear translocation of NRF2, which in turn enhances the expression of critical components of both the proteasomal and lysosomal degradation pathways. This process facilitates the clearance of toxic protein aggregates, thereby actively maintaining cellular proteostasis. As we age, the efficiency of the NRF2 pathway declines due to several factors including increased activity of its repressors, impaired NRF2-mediated antioxidant and cytoprotective gene expression, and potential epigenetic changes, though the precise mechanisms remain unclear. This leads to diminished antioxidant defenses, increased oxidative damage, and exacerbated metabolic dysregulation and inflammation-key contributors to age-related diseases. Given NRF2's role in mitigating proteotoxic stress, the pharmacological modulation of NRF2 has emerged as a promising therapeutic strategy, even in aged preclinical models. By inducing NRF2, it is possible to mitigate the damaging effects of oxidative stress, metabolic dysfunction, and inflammation, thus reducing protein misfolding. The review highlights NRF2's therapeutic implications for neurodegenerative diseases and cardiovascular conditions, emphasizing its role in improving proteostasis and redox homeostasis Additionally, it summarizes current research into NRF2 as a therapeutic target, offering hope for innovative treatments to counteract the effects of aging and associated diseases.
Collapse
Affiliation(s)
- Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Antonella Tramutola
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University, 00185 Rome, Italy;
| | - Ana I. Rojo
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), National Institute of Health Carlos III (ISCIII), Instituto de Investigación Sanitaria La Paz (IdiPaz), 28049 Madrid, Spain; (A.I.R.); (A.C.)
| | - Niki Chondrogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35 Athens, Greece;
| | - Sarmistha Saha
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 00185, Uttar Pradesh, India;
| | - Alessandra Berry
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.B.); (L.G.)
| | - Letizia Giona
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.B.); (L.G.)
- PhD Program in Science of Nutrition, Metabolism, Aging and Gender-Related Diseases, Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Joana P. Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Elisabetta Profumo
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Andreas Daiber
- Department for Cardiology 1, University Medical Center Mainz, Molecular Cardiology, Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Antonio Cuadrado
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), National Institute of Health Carlos III (ISCIII), Instituto de Investigación Sanitaria La Paz (IdiPaz), 28049 Madrid, Spain; (A.I.R.); (A.C.)
| | - Fabio Di Domenico
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
10
|
Valenca HDM, Mota EC, Silva ACDFA, Figueiredo-Junior AT, Verdini F, Romana-Souza B, Renovato-Martins M, Lanzetti M, Valenca SDS, Moraes JA. Therapeutic Potential of Dimethyl Fumarate for the Treatment of High-Fat/High-Sucrose Diet-Induced Obesity. Antioxidants (Basel) 2024; 13:1496. [PMID: 39765824 PMCID: PMC11673011 DOI: 10.3390/antiox13121496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Obesity is characterized by an imbalance between energy intake and expenditure that triggers abnormal growth of adipose tissues. Dimethyl fumarate (DMF) and its primary active metabolite, monomethyl fumarate (MMF), are Nrf2 activators and have been recognized as strategic antioxidants. This study aimed to evaluate the potential of MMF and DMF to interfere with adipogenesis and obesity, and identify the molecular mechanisms involved. The 3T3-L1 preadipocytes were incubated with differentiation medium (MIX) and simultaneously treated with different concentrations of MMF. In addition, male C57BL/6 mice were fed a standard diet or high-fat/high-sucrose diet (HFHSD) for 16 weeks, during the last 4 of which, they received oral DMF treatment. Exposure to MMF prevented the development of MIX-induced adipogenesis by reducing the expression of transcription factors that drive adipocyte differentiation and by decreasing triglyceride levels. In addition, various antioxidant and anti-inflammatory effects were observed after treatment with MMF as evidenced by the modulation of transcription factor activities and reduction in reactive oxygen species, adipokine, proinflammatory cytokine and resistin levels. In vivo treatment with DMF reduced calorie intake, body weight, and visceral and subcutaneous fat mass in HFHSD mice. Furthermore, DMF administration led to a better glycemic response as well as lower leptin and adiponectin plasma levels in these animals. Our data demonstrate that DMF and its metabolite MMF interfere with adipogenesis and prevent the key features of diet-induced obesity. Considering DMF is already a commercial drug used to treat psoriasis and multiple sclerosis, its pharmacological application for the treatment of obesity and related metabolic disorders holds promise.
Collapse
Affiliation(s)
- Helber da Maia Valenca
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho 373, bloco F, 3° floor, room 301, Cidade Universitária, Rio de Janeiro CEP 21941-902, RJ, Brazil; (H.d.M.V.); (E.C.M.); (A.C.d.F.A.S.); (A.T.F.-J.); (F.V.); (M.L.); (J.A.M.)
| | - Evelyn Caribé Mota
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho 373, bloco F, 3° floor, room 301, Cidade Universitária, Rio de Janeiro CEP 21941-902, RJ, Brazil; (H.d.M.V.); (E.C.M.); (A.C.d.F.A.S.); (A.T.F.-J.); (F.V.); (M.L.); (J.A.M.)
| | - Andressa Caetano da Fonseca Andrade Silva
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho 373, bloco F, 3° floor, room 301, Cidade Universitária, Rio de Janeiro CEP 21941-902, RJ, Brazil; (H.d.M.V.); (E.C.M.); (A.C.d.F.A.S.); (A.T.F.-J.); (F.V.); (M.L.); (J.A.M.)
| | - Alexsandro Tavares Figueiredo-Junior
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho 373, bloco F, 3° floor, room 301, Cidade Universitária, Rio de Janeiro CEP 21941-902, RJ, Brazil; (H.d.M.V.); (E.C.M.); (A.C.d.F.A.S.); (A.T.F.-J.); (F.V.); (M.L.); (J.A.M.)
| | - Fernanda Verdini
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho 373, bloco F, 3° floor, room 301, Cidade Universitária, Rio de Janeiro CEP 21941-902, RJ, Brazil; (H.d.M.V.); (E.C.M.); (A.C.d.F.A.S.); (A.T.F.-J.); (F.V.); (M.L.); (J.A.M.)
| | - Bruna Romana-Souza
- Department of Histology and Embryology, State University of Rio de Janeiro (UERJ), Rua Professor Manoel de Abreu, 444, 3° andar, Rio de Janeiro CEP 20550-170, RJ, Brazil;
| | - Mariana Renovato-Martins
- Laboratory of Inflammation and Metabolism, Biology Institute, Departament of Cellular and Molecular Biology, Fluminense Federal University (UFF), Rua Professor Marcos Waldemar de Freitas Reis, s/n, Campus do Gragoatá, Bloco M, room 316, Niterói CEP 24210-201, RJ, Brazil;
| | - Manuella Lanzetti
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho 373, bloco F, 3° floor, room 301, Cidade Universitária, Rio de Janeiro CEP 21941-902, RJ, Brazil; (H.d.M.V.); (E.C.M.); (A.C.d.F.A.S.); (A.T.F.-J.); (F.V.); (M.L.); (J.A.M.)
| | - Samuel dos Santos Valenca
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho 373, bloco F, 3° floor, room 301, Cidade Universitária, Rio de Janeiro CEP 21941-902, RJ, Brazil; (H.d.M.V.); (E.C.M.); (A.C.d.F.A.S.); (A.T.F.-J.); (F.V.); (M.L.); (J.A.M.)
| | - João Alfredo Moraes
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho 373, bloco F, 3° floor, room 301, Cidade Universitária, Rio de Janeiro CEP 21941-902, RJ, Brazil; (H.d.M.V.); (E.C.M.); (A.C.d.F.A.S.); (A.T.F.-J.); (F.V.); (M.L.); (J.A.M.)
| |
Collapse
|
11
|
Bhat AA, Moglad E, Goyal A, Afzal M, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Ali H, Gaur A, Singh TG, Singh SK, Dua K, Gupta G. Nrf2 pathways in neuroprotection: Alleviating mitochondrial dysfunction and cognitive impairment in aging. Life Sci 2024; 357:123056. [PMID: 39277133 DOI: 10.1016/j.lfs.2024.123056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Mitochondrial dysfunction and cognitive impairment are widespread phenomena among the elderly, being crucial factors that contribute to neurodegenerative diseases. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important regulator of cellular defense systems, including that against oxidative stress. As such, increased Nrf2 activity may serve as a strategy to avert mitochondrial dysfunction and cognitive decline. Scientific data on Nrf2-mediated neuroprotection was collected from PubMed, Google Scholar, and Science Direct, specifically addressing mitochondrial dysfunction and cognitive impairment in older people. Search terms included "Nrf2", "mitochondrial dysfunction," "cognitive impairment," and "neuroprotection." Studies focusing on in vitro and in vivo models and clinical investigations were included to review Nrf2's therapeutic potential comprehensively. The relative studies have demonstrated that increased Nrf2 activity could improve mitochondrial performance, decrease oxidative pressure, and mitigate cognitive impairment. To a large extent, this is achieved through the modulation of critical cellular signalling pathways such as the Keap1/Nrf2 pathway, mitochondrial biogenesis, and neuroinflammatory responses. The present review summarizes the recent progress in comprehending the molecular mechanisms regarding the neuroprotective benefits mediated by Nrf2 through its substantial role against mitochondrial dysfunction and cognitive impairment. This review also emphasizes Nrf2-target pathways and their contribution to cognitive function improvement and rescue from mitochondria-related abnormalities as treatment strategies for neurodegenerative diseases that often affect elderly individuals.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341 Sakaka, Al-Jouf, Saudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Ashish Gaur
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India; Graphic Era Hill University, Clement Town, Dehradun 248002, India
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|
12
|
Jayasuriya R, Ganesan K, Ramkumar KM. Mangiferin Represses Inflammation in Macrophages Under a Hyperglycemic Environment Through Nrf2 Signaling. Int J Mol Sci 2024; 25:11197. [PMID: 39456979 PMCID: PMC11508804 DOI: 10.3390/ijms252011197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Inflammation in macrophages is exacerbated under hyperglycemic conditions, contributing to chronic inflammation and impaired wound healing in diabetes. This study investigates the potential of mangiferin, a natural polyphenol, to alleviate this inflammatory response by targeting a redox-sensitive transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2). Mangiferin, a known Nrf2 activator, was evaluated for its ability to counteract the hyperglycemia-induced inhibition of Nrf2 and enhance antioxidant defenses. The protective effects of mangiferin on macrophages in a hyperglycemic environment were assessed by examining the expression of Nrf2, NF-κB, NLRP3, HO-1, CAT, COX-2, IL-6, and IL-10 through gene and protein expression analyses using qPCR and immunoblotting, respectively. The mangiferin-mediated nuclear translocation of Nrf2 was evidenced, leading to a robust antioxidant response in macrophages exposed to a hyperglycemic microenvironment. This activation suppressed NF-κB signaling, reducing the expression of pro-inflammatory mediators such as COX-2 and IL-6. Additionally, mangiferin decreased NLRP3 inflammasome activation and reactive oxygen species accumulation in hyperglycemia exposed macrophages. Our findings revealed that mangiferin alleviated hyperglycemia-induced reductions in AKT phosphorylation, highlighting its potential role in modulating key signaling pathways. Furthermore, mangiferin significantly enhanced the invasiveness and migration of macrophages in a hyperglycemic environment, indicating its potential to improve wound healing. In conclusion, this study suggests that mangiferin may offer a promising therapeutic approach for managing inflammation and promoting wound healing in diabetic patients by regulating Nrf2 activity in hyperglycemia-induced macrophages.
Collapse
Affiliation(s)
- Ravichandran Jayasuriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India;
| | - Kumar Ganesan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong 999077, China;
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India;
| |
Collapse
|
13
|
Kim Y, Kim J, Kim B, Kim R, Kim HJ, Lee EH, Kim J, Park J, Jeong Y, Park SI, Kim H, Kang M, Lee J, Bahn YS, Choi JW, Park JH, Park KD. Discovery and Optimization of a Series of Vinyl Sulfoximine-Based Analogues as Potent Nrf2 Activators for the Treatment of Multiple Sclerosis. J Med Chem 2024; 67:17866-17892. [PMID: 39323296 PMCID: PMC11472819 DOI: 10.1021/acs.jmedchem.4c01907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Multiple sclerosis (MS) is an immune-mediated neurodegenerative disease of the central nervous system (CNS), which leads to demyelination, axonal loss, and neurodegeneration. Increased oxidative stress and neurodegeneration have been implicated in all stages of MS, making neuroprotective therapeutics a promising strategy for its treatment. We previously have reported vinyl sulfones with antioxidative and anti-inflammatory properties that activate nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that induces the expression of cytoprotective genes against oxidative stress. In this study, we synthesized vinyl sulfoximine derivatives by modifying the core structure and determined therapeutic potential as Nrf2 activators. Among them, 10v effectively activated Nrf2 (EC50 = 83.5 nM) and exhibited favorable drug-like properties. 10v successfully induced expression of Nrf2-dependent antioxidant enzymes and suppressed lipopolysaccharide (LPS)-induced inflammatory responses in BV-2 microglial cells. We also confirmed that 10v effectively reversed disease progression and attenuated demyelination in an experimental autoimmune encephalitis (EAE) mouse model of MS.
Collapse
Affiliation(s)
- Yoowon Kim
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Department
of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jaehwan Kim
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Byungeun Kim
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Rium Kim
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyeon Jeong Kim
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
| | - Elijah Hwejin Lee
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Jushin Kim
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Department
of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jiwoo Park
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Yeeun Jeong
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sang In Park
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyemin Kim
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Minsik Kang
- Doping
Control Center, KIST, Seoul 02792, Republic of Korea
| | - Jaeick Lee
- Doping
Control Center, KIST, Seoul 02792, Republic of Korea
| | - Yong-Sun Bahn
- Department
of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Ji Won Choi
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Cureverse
Co., Ltd., Seoul Biohub, Seoul 02455, Republic
of Korea
| | - Jong-Hyun Park
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Ki Duk Park
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
14
|
Shimizu F, Nakamori M. Blood-Brain Barrier Disruption in Neuroimmunological Disease. Int J Mol Sci 2024; 25:10625. [PMID: 39408955 PMCID: PMC11476930 DOI: 10.3390/ijms251910625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
The blood-brain barrier (BBB) acts as a structural and functional barrier for brain homeostasis. This review highlights the pathological contribution of BBB dysfunction to neuroimmunological diseases, including multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), autoimmune encephalitis (AE), and paraneoplastic neurological syndrome (PNS). The transmigration of massive lymphocytes across the BBB caused by the activation of cell adhesion molecules is involved in the early phase of MS, and dysfunction of the cortical BBB is associated with the atrophy of gray matter in the late phase of MS. At the onset of NMOSD, increased permeability of the BBB causes the entry of circulating AQP4 autoantibodies into the central nervous system (CNS). Recent reports have shown the importance of glucose-regulated protein (GRP) autoantibodies as BBB-reactive autoantibodies in NMOSD, which induce antibody-mediated BBB dysfunction. BBB breakdown has also been observed in MOGAD, NPSLE, and AE with anti-NMDAR antibodies. Our recent report demonstrated the presence of GRP78 autoantibodies in patients with MOGAD and the molecular mechanism responsible for GRP78 autoantibody-mediated BBB impairment. Disruption of the BBB may explain the symptoms in the brain and cerebellum in the development of PNS, as it induces the entry of pathogenic autoantibodies or lymphocytes into the CNS through autoimmunity against tumors in the periphery. GRP78 autoantibodies were detected in paraneoplastic cerebellar degeneration and Lambert-Eaton myasthenic syndrome, and they were associated with cerebellar ataxia with anti-P/Q type voltage-gated calcium channel antibodies. This review reports that therapies affecting the BBB that are currently available for disease-modifying therapies for neuroimmunological diseases have the potential to prevent BBB damage.
Collapse
Affiliation(s)
- Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan;
| | | |
Collapse
|
15
|
Kaur T, Sidana P, Kaur N, Choubey V, Kaasik A. Unraveling neuroprotection in Parkinson's disease: Nrf2-Keap1 pathway's vital role amidst pathogenic pathways. Inflammopharmacology 2024; 32:2801-2820. [PMID: 39136812 DOI: 10.1007/s10787-024-01549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/01/2024] [Indexed: 10/11/2024]
Abstract
Parkinson's disease (PD) is an age-related chronic neurological condition characterized by progressive degeneration of dopaminergic neurons and the presence of Lewy bodies, primarily composed of alpha-synuclein and ubiquitin. The pathophysiology of PD encompasses alpha-synuclein aggregation, oxidative stress, neuroinflammation, mitochondrial dysfunction, and impaired autophagy and ubiquitin-proteasome systems. Among these, the Keap1-Nrf2 pathway is a key regulator of antioxidant defense mechanisms. Nrf2 has emerged as a crucial factor in managing oxidative stress and inflammation, and it also influences ubiquitination through p62 expression. Keap1 negatively regulates Nrf2 by targeting it for degradation via the ubiquitin-proteasome system. Disruption of the Nrf2-Keap1 pathway in PD affects cellular responses to oxidative stress and inflammation, thereby playing a critical role in disease progression. In addition, the role of neuroinflammation in PD has gained significant attention, highlighting the interplay between immune responses and neurodegeneration. This review discusses the various mechanisms responsible for neuronal degeneration in PD, with a special emphasis on the neuroprotective role of the Nrf2-Keap1 pathway. Furthermore, it explores the implications of inflammopharmacology in modulating these pathways to provide therapeutic insights for PD.
Collapse
Affiliation(s)
- Tanzeer Kaur
- Department of Biophysics, Panjab University, Chandigarh, India.
| | - Palak Sidana
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Navpreet Kaur
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Vinay Choubey
- Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Allen Kaasik
- Department of Pharmacology, University of Tartu, Tartu, Estonia
| |
Collapse
|
16
|
Wang L, Dos Santos Sanches N, Panahipour L, Imani A, Yao Y, Zhang Y, Li L, Gruber R. Dimethyl Fumarate-Loaded Gellan Gum Hydrogels Can Reduce In Vitro Chemokine Expression in Oral Cells. Int J Mol Sci 2024; 25:9485. [PMID: 39273432 PMCID: PMC11395421 DOI: 10.3390/ijms25179485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Dimethyl fumarate (DMF), originally proposed to treat multiple sclerosis, is considered to have a spectrum of anti-inflammatory effects that effectively control periodontitis, mainly when applied with a hydrogel delivery system. Chemokine expression by gingival fibroblasts is a significant driver of periodontitis; thus, hydrogel-based strategies to deliver DMF, which in turn dampen chemokine expression, are of potential clinical relevance. To test this approach, we have established a bioassay where chemokine expression is induced by exposing gingival fibroblast to IL1β and TNFα, or with saliva. We show herein that DMF effectively reduced the expression of CXCL8, CXCL1, CXCL2, and CCL2-and lowered the phosphorylation of ERK and JNK-without affecting cell viability. This observation was confirmed by immunoassays with CXCL8. Consistently, the forced chemokine expression in HSC2 oral squamous epithelial cells was greatly diminished by DMF. To implement our hydrogel-based delivery system, gingival fibroblasts were cocultured with gellan gum hydrogels enriched for DMF. In support of our strategy, DMF-enriched gellan gum hydrogels significantly reduced the forced chemokine expression in gingival fibroblasts. Our data suggest that DMF exerts its anti-inflammatory activity in periodontal cells when released from gellan gum hydrogels, suggesting a potential clinical relevance to control overshooting chemokine expression under chronic inflammatory conditions.
Collapse
Affiliation(s)
- Lei Wang
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China
| | - Natalia Dos Santos Sanches
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Department of Diagnosis and Surgery, Araçatuba Dental School of Sao Paulo, Sao Paulo 16015-050, Brazil
| | - Layla Panahipour
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Atefe Imani
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Yili Yao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou 325027, China
| | - Yan Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China
| | - Lingli Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou 325027, China
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
17
|
Mayer C, Riera-Ponsati L, Kauppinen S, Klitgaard H, Erler JT, Hansen SN. Targeting the NRF2 pathway for disease modification in neurodegenerative diseases: mechanisms and therapeutic implications. Front Pharmacol 2024; 15:1437939. [PMID: 39119604 PMCID: PMC11306042 DOI: 10.3389/fphar.2024.1437939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
Neurodegenerative diseases constitute a global health issue and a major economic burden. They significantly impair both cognitive and motor functions, and their prevalence is expected to rise due to ageing societies and continuous population growth. Conventional therapies provide symptomatic relief, nevertheless, disease-modifying treatments that reduce or halt neuron death and malfunction are still largely unavailable. Amongst the common hallmarks of neurodegenerative diseases are protein aggregation, oxidative stress, neuroinflammation and mitochondrial dysfunction. Transcription factor nuclear factor-erythroid 2-related factor 2 (NRF2) constitutes a central regulator of cellular defense mechanisms, including the regulation of antioxidant, anti-inflammatory and mitochondrial pathways, making it a highly attractive therapeutic target for disease modification in neurodegenerative disorders. Here, we describe the role of NRF2 in the common hallmarks of neurodegeneration, review the current pharmacological interventions and their challenges in activating the NRF2 pathway, and present alternative therapeutic approaches for disease modification.
Collapse
Affiliation(s)
| | - Lluís Riera-Ponsati
- NEUmiRNA Therapeutics, Copenhagen, Denmark
- Center for RNA Medicine, Aalborg University, Copenhagen, Denmark
| | - Sakari Kauppinen
- NEUmiRNA Therapeutics, Copenhagen, Denmark
- Center for RNA Medicine, Aalborg University, Copenhagen, Denmark
| | | | | | | |
Collapse
|
18
|
Van Neste M, Nauwelaerts N, Ceulemans M, Cuppers B, Annaert P, Smits A, Allegaert K. Very low monomethyl fumarate exposure via human milk: a case report-a contribution from the ConcePTION project. Front Public Health 2024; 12:1393752. [PMID: 39015385 PMCID: PMC11250615 DOI: 10.3389/fpubh.2024.1393752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Introduction While breastfeeding is recommended, knowledge regarding medicine transfer to human milk and its safety for nursing infants is limited. Only one paper has previously described dimethyl fumarate (DMF) transfer during breastfeeding in two patients at 5 and 6 months postpartum, respectively. The current case report describes maternal pharmacokinetic data of monomethyl fumarate (MMF), the active metabolite of DMF, and infant exposure estimations of MMF at 3 months postpartum. Methods A 32-year-old Caucasian woman started DMF therapy (120 mg, 2x/day) for multiple sclerosis at 3 months postpartum, after weaning her infant from breastfeeding. On day 99 after birth, the patient collected four milk samples over 24 h after 6 days of treatment at the initial dose. Additionally, a single maternal blood sample was collected to calculate the milk-to-plasma (M/P) ratio. The samples were analyzed using liquid chromatography coupled with the mass spectrometry method. Results A wide range of measured steady-state concentrations of MMF (5.5-83.5 ng/mL) was observed in human milk samples. Estimated daily infant dosage values for MMF, calculated with 150 and 200 mL/kg/day human milk intake, were 5.76 and 7.68 μg/kg/day, and the relative infant doses were 0.16 and 0.22%. The observed mean M/P ratio was 0.059, similar to the M/P ratio predicted using the empirical Koshimichi model (0.06). Discussion Combining this case report with the two previously described cases, the estimated infant exposure is low, albeit with relevant intra- and inter-patient variabilities. Research should further focus on infant exposure and safety.
Collapse
Affiliation(s)
- Martje Van Neste
- Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Child & Youth Institute, KU Leuven, Leuven, Belgium
| | - Nina Nauwelaerts
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Michael Ceulemans
- Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Child & Youth Institute, KU Leuven, Leuven, Belgium
- Teratology Information Service, Netherlands Pharmacovigilance Centre Lareb, ‘s-Hertogenbosch, Netherlands
| | - Benedikte Cuppers
- Teratology Information Service, Netherlands Pharmacovigilance Centre Lareb, ‘s-Hertogenbosch, Netherlands
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- BioNotus GCV, Niel, Belgium
| | - Anne Smits
- Child & Youth Institute, KU Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Karel Allegaert
- Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Child & Youth Institute, KU Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
19
|
Mantione ME, Meloni M, Sana I, Bordini J, Del Nero M, Riba M, Ranghetti P, Perotta E, Ghia P, Scarfò L, Muzio M. Disrupting pro-survival and inflammatory pathways with dimethyl fumarate sensitizes chronic lymphocytic leukemia to cell death. Cell Death Dis 2024; 15:224. [PMID: 38494482 PMCID: PMC10944843 DOI: 10.1038/s41419-024-06602-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Microenvironmental signals strongly influence chronic lymphocytic leukemia (CLL) cells through the activation of distinct membrane receptors, such as B-cell receptors, and inflammatory receptors, such as Toll-like receptors (TLRs). Inflammatory pathways downstream of these receptors lead to NF-κB activation, thus protecting leukemic cells from apoptosis. Dimethyl fumarate (DMF) is an anti-inflammatory and immunoregulatory drug used to treat patients with multiple sclerosis and psoriasis in which it blocks aberrant NF-κB pathways and impacts the NRF2 antioxidant circuit. Our in vitro analysis demonstrated that increasing concentrations of DMF reduce ATP levels and lead to the apoptosis of CLL cells, including cell lines, splenocytes from Eµ-TCL1-transgenic mice, and primary leukemic cells isolated from the peripheral blood of patients. DMF showed a synergistic effect in association with BTK inhibitors in CLL cells. DMF reduced glutathione levels and activated the NRF2 pathway; gene expression analysis suggested that DMF downregulated pathways related to NFKB and inflammation. In primary leukemic cells, DMF disrupted the TLR signaling pathways induced by CpG by reducing the mRNA expression of NFKBIZ, IL6, IL10 and TNFα. Our data suggest that DMF targets a vulnerability of CLL cells linked to their inflammatory pathways, without impacting healthy donor peripheral blood mononuclear cells.
Collapse
Affiliation(s)
- Maria Elena Mantione
- Cell Signaling Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Miriam Meloni
- Cell Signaling Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Ilenia Sana
- Cell Signaling Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Jessica Bordini
- B-cell Neoplasia Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Martina Del Nero
- Cell Signaling Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Michela Riba
- Center for Omics Sciences, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Pamela Ranghetti
- B-cell Neoplasia Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Eleonora Perotta
- B-cell Neoplasia Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Paolo Ghia
- B-cell Neoplasia Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
| | - Lydia Scarfò
- B-cell Neoplasia Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
| | - Marta Muzio
- Cell Signaling Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy.
| |
Collapse
|
20
|
Chaudhary P, Lockwood H, Stowell C, Bushong E, Reynaud J, Yang H, Gardiner SK, Wiliams G, Williams I, Ellisman M, Marsh-Armstrong N, Burgoyne C. Retrolaminar Demyelination of Structurally Intact Axons in Nonhuman Primate Experimental Glaucoma. Invest Ophthalmol Vis Sci 2024; 65:36. [PMID: 38407858 PMCID: PMC10902877 DOI: 10.1167/iovs.65.2.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/28/2024] [Indexed: 02/27/2024] Open
Abstract
Purpose To determine if structurally intact, retrolaminar optic nerve (RON) axons are demyelinated in nonhuman primate (NHP) experimental glaucoma (EG). Methods Unilateral EG NHPs (n = 3) were perfusion fixed, EG and control eyes were enucleated, and foveal Bruch's membrane opening (FoBMO) 30° sectoral axon counts were estimated. Optic nerve heads were trephined; serial vibratome sections (VSs) were imaged and colocalized to a fundus photograph establishing their FoBMO location. The peripheral neural canal region within n = 5 EG versus control eye VS comparisons was targeted for scanning block-face electron microscopic reconstruction (SBEMR) using micro-computed tomographic reconstructions (µCTRs) of each VS. Posterior laminar beams within each µCTR were segmented, allowing a best-fit posterior laminar surface (PLS) to be colocalized into its respective SBEMR. Within each SBEMR, up to 300 axons were randomly traced until they ended (nonintact) or left the block (intact). For each intact axon, myelin onset was identified and myelin onset distance (MOD) was measured relative to the PLS. For each EG versus control SBEMR comparison, survival analyses compared EG and control MOD. Results MOD calculations were successful in three EG and five control eye SBEMRs. Within each SBEMR comparison, EG versus control eye axon loss was -32.9%, -8.3%, and -15.2% (respectively), and MOD was increased in the EG versus control SBEMR (P < 0.0001 for each EG versus control SBEMR comparison). When data from all three EG eye SBEMRs were compared to all five control eye SBEMRs, MOD was increased within the EG eyes. Conclusions Structurally intact, RON axons are demyelinated in NHP early to moderate EG. Studies to determine their functional status are indicated.
Collapse
Affiliation(s)
- Priya Chaudhary
- Optic Nerve Head Research Laboratory, Legacy Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
- Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Howard Lockwood
- Optic Nerve Head Research Laboratory, Legacy Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
- Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Cheri Stowell
- Optic Nerve Head Research Laboratory, Legacy Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
- Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Eric Bushong
- National Center for Microscopy & Imaging Research, UCSD, La Jolla, California, United States
| | - Juan Reynaud
- Optic Nerve Head Research Laboratory, Legacy Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
- Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Hongli Yang
- Optic Nerve Head Research Laboratory, Legacy Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
- Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Stuart K Gardiner
- Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Galen Wiliams
- Optic Nerve Head Research Laboratory, Legacy Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
- Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Imee Williams
- Optic Nerve Head Research Laboratory, Legacy Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
- Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Mark Ellisman
- National Center for Microscopy & Imaging Research, UCSD, La Jolla, California, United States
| | - Nick Marsh-Armstrong
- Department of Ophthalmology, University of California, Davis, California, United States
| | - Claude Burgoyne
- Optic Nerve Head Research Laboratory, Legacy Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
- Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| |
Collapse
|
21
|
Li X, Hattori S, Ebara M, Shirahata N, Hanagata N. A facile approach to preparing personalized cancer vaccines using iron-based metal organic framework. Front Immunol 2024; 14:1328379. [PMID: 38259474 PMCID: PMC10800499 DOI: 10.3389/fimmu.2023.1328379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Background Considering the diversity of tumors, it is of great significance to develop a simple, effective, and low-cost method to prepare personalized cancer vaccines. Methods In this study, a facile one-pot synthetic route was developed to prepare cancer vaccines using model antigen or autologous tumor antigens based on the coordination interaction between Fe3+ ions and endogenous fumarate ligands. Results Herein, Fe-based metal organic framework can effectively encapsulate tumor antigens with high loading efficiency more than 80%, and act as both delivery system and adjuvants for tumor antigens. By adjusting the synthesis parameters, the obtained cancer vaccines are easily tailored from microscale rod-like morphology with lengths of about 0.8 μm (OVA-ML) to nanoscale morphology with sizes of about 50~80 nm (OVA-MS). When cocultured with antigen-presenting cells, nanoscale cancer vaccines more effectively enhance antigen uptake and Th1 cytokine secretion than microscale ones. Nanoscale cancer vaccines (OVA-MS, dLLC-MS) more effectively enhance lymph node targeting and cross-presentation of tumor antigens, mount antitumor immunity, and inhibit the growth of established tumor in tumor-bearing mice, compared with microscale cancer vaccines (OVA-ML, dLLC-ML) and free tumor antigens. Conclusions Our work paves the ways for a facile, rapid, and low-cost preparation approach for personalized cancer vaccines.
Collapse
Affiliation(s)
- Xia Li
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
| | - Shinya Hattori
- Bioanalysis Unit, Research Network and Facility Services Division, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
| | - Mitsuhiro Ebara
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
| | - Naoto Shirahata
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Nobutaka Hanagata
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
| |
Collapse
|