1
|
Li Y, Liu Z, O'Shea C, Li J, Luo X, Chen T, Ou X, Liu W, Hao G, Huang CLH, Pavlovic D, Tan X, Lei M. Dual calcium-voltage optical mapping of regional voltage and calcium signals in intact murine RyR2-R2474S hearts. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 10:100121. [PMID: 39697246 PMCID: PMC11649530 DOI: 10.1016/j.jmccpl.2024.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 08/08/2024] [Accepted: 11/07/2024] [Indexed: 12/20/2024]
Abstract
Abnormal regional variations in electrical and calcium homeostasis properties have been implicated in catecholaminergic polymorphic ventricular tachycardias (CPVT) attributable to abnormal RyR2-mediated store Ca2+ release, but their underlying mechanism have not been well explored in intact hearts. Methods We performed in vivo and ex vivo studies including high throughput mapping of Ca2+ transients (CaT) and transmembrane voltage (Vm) in murine wild-type (WT) and heterozygous RyR2-R2474S/+ hearts, before and during isoprenaline (ISO) challenge. Results ISO-challenged RyR2-R2474S/+ showed increased incidence of arrhythmia accompanied by abnormal Ca2+ transients compared to WT. CaT duration (CaTD) in the LV apex amongst regions studied both before and during ISO challenge in both WT and RyR2-R2474S/+ ventricles. RyR2-R2474S/+ ventricles showed prolonged CaTD, both before and during isoprenaline (ISO) challenge. Conversely, action potential durations (APD) were the same in WT and RyR2-R2474S/+ ventricles and identically reduced by ISO challenge. RyR2-R2474S/+ showed V m-CaT latencies at time to half decay, but not rise time to peak, which were significantly prolonged compared to WT in all ventricular regions examined with ISO challenge. Following burst pacing, ventricular localized concordant alternans in CaT and APD were readily observed in RyR2-R2474S/+ but not in WT mice. Such CaT and APD alternans occurred mostly semiannually in specific regions of the ventricular pre-occurrence of VT. Conclusion The pro-arrhythmic RyR2-R2474S/+ phenotype in intact hearts thus directly parallels delayed regional CaT recovery properties and alteration of V m-CaT latencies. Studies suggest that discordant localized calcium alternans are mechanistically responsible for action potential duration alternans and occurrence of VT in RyR2-R2474S/+ mice.
Collapse
Affiliation(s)
- Yangpeng Li
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhu Liu
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Christopher O'Shea
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jianhong Li
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xian Luo
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tangting Chen
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xianhong Ou
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Weichao Liu
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Guoliang Hao
- Henan SCOPE Research Institute of Electrophysiology Co. Ltd., Kaifeng 475000, China
| | - Christopher L.-H. Huang
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
- Physiological Laboratory, Department of Biochemistry, University of Cambridge, Cambridge CB2 3EG, UK
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ming Lei
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
2
|
Qian Y, Zuo D, Xiong J, Yin Y, Qi R, Ma X, Yan A, Yang Y, Liu P, Zhang J, Tang K, Peng W, Xu Y, Liu Z. Arrhythmogenic mechanism of a novel ryanodine receptor mutation underlying sudden cardiac death. Europace 2023; 25:euad220. [PMID: 37466361 PMCID: PMC10374982 DOI: 10.1093/europace/euad220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023] Open
Abstract
AIMS The ryanodine receptor 2 (RyR2) is essential for cardiac muscle excitation-contraction coupling; dysfunctional RyR2 participates in the development of inherited arrhythmogenic cardiac disease. In this study, a novel RyR2 mutation A690E is identified from a patient with family inheritance of sudden cardiac death, and we aimed to investigate the pathogenic basis of the mutation. METHODS AND RESULTS We generated a mouse model that carried the A690E mutation. Mice were characterized by adrenergic-induced ventricular arrhythmias similar to clinical manifestation of the patient. Optical mapping studies revealed that isolated A690E hearts were prone to arrhythmogenesis and displayed frequency-dependence calcium transient alternans. Upon β-adrenoceptor challenge, the concordant alternans was shifted towards discordant alternans that favour triggering ectopic beats and Ca2+ re-entry; similar phenomenon was also found in the A690E cardiomyocytes. In addition, we found that A690E cardiomyocytes manifested abnormal Ca2+ release and electrophysiological disorders, including an increased sensitivity to cytosolic Ca2+, an elevated diastolic RyR2-mediated Ca2+ leak, and an imbalance between Ca2+ leak and reuptake. Structural analyses reveal that the mutation directly impacts RyR2-FK506 binding protein interaction. CONCLUSION In this study, we have identified a novel mutation in RyR2 that is associated with sudden cardiac death. By characterizing the function defects of mutant RyR2 in animal, whole heat, and cardiomyocytes, we demonstrated the pathogenic basis of the disease-causing mutation and provided a deeper mechanistic understanding of a life-threatening cardiac arrhythmia.
Collapse
Affiliation(s)
- Yunyun Qian
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
- Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, 36 Yunxin Road, Jingan District, Shanghai 200435, China
| | - Dongchuan Zuo
- Key Laboratory of Medical Electrophysiology, Institute of Cardiovascular Research, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Southwest Medical University, 1 Xianglin Road, Longmatan District, Luzhou 646000, China
- National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, 182 Chunhui Road, Longmatan District, Luzhou 646000, China
| | - Jing Xiong
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
- Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, 36 Yunxin Road, Jingan District, Shanghai 200435, China
| | - Yihen Yin
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
- Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, 36 Yunxin Road, Jingan District, Shanghai 200435, China
| | - Ruxi Qi
- Cryo-electron Microscopy Center, Southern University of Science and Technology, 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| | - Xiaomin Ma
- Cryo-electron Microscopy Center, Southern University of Science and Technology, 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| | - An Yan
- Cryo-electron Microscopy Center, Southern University of Science and Technology, 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| | - Yawen Yang
- Key Laboratory of Medical Electrophysiology, Institute of Cardiovascular Research, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Southwest Medical University, 1 Xianglin Road, Longmatan District, Luzhou 646000, China
| | - Ping Liu
- National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, 182 Chunhui Road, Longmatan District, Luzhou 646000, China
| | - Jingying Zhang
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
| | - Kai Tang
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
| | - Wenhui Peng
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
- Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, 36 Yunxin Road, Jingan District, Shanghai 200435, China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
- Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, 36 Yunxin Road, Jingan District, Shanghai 200435, China
| | - Zheng Liu
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
- Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, 36 Yunxin Road, Jingan District, Shanghai 200435, China
- Cryo-electron Microscopy Center, Southern University of Science and Technology, 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
3
|
Sadredini M, Haugsten Hansen M, Frisk M, Louch WE, Lehnart SE, Sjaastad I, Stokke MK. CaMKII inhibition has dual effects on spontaneous Ca 2+ release and Ca 2+ alternans in ventricular cardiomyocytes from mice with a gain-of-function RyR2 mutation. Am J Physiol Heart Circ Physiol 2021; 321:H446-H460. [PMID: 34270372 DOI: 10.1152/ajpheart.00011.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In conditions with abnormally increased activity of the cardiac ryanodine receptor (RyR2), Ca2+/calmodulin-dependent protein kinase II (CaMKII) can contribute to a further destabilization of RyR2 that results in triggered arrhythmias. Therefore, inhibition of CaMKII in such conditions has been suggested as a strategy to suppress RyR2 activity and arrhythmias. However, suppression of RyR2 activity can lead to the development of arrhythmogenic Ca2+ alternans. The aim of this study was to test whether the suppression of RyR2 activity caused by inhibition of CaMKII increases propensity for Ca2+ alternans. We studied spontaneous Ca2+ release events and Ca2+ alternans in isolated left ventricular cardiomyocytes from mice carrying the gain-of-function RyR2 mutation RyR2-R2474S and from wild-type mice. CaMKII inhibition by KN-93 effectively decreased the frequency of spontaneous Ca2+ release events in RyR2-R2474S cardiomyocytes exposed to the β-adrenoceptor agonist isoprenaline. However, KN-93-treated RyR2-R2474S cardiomyocytes also showed increased propensity for Ca2+ alternans and increased Ca2+ alternans ratio compared with both an inactive analog of KN-93 and with vehicle-treated controls. This increased propensity for Ca2+ alternans was explained by prolongation of Ca2+ release refractoriness. Importantly, the increased propensity for Ca2+ alternans in KN-93-treated RyR2-R2474S cardiomyocytes did not surpass that of wild type. In conclusion, inhibition of CaMKII efficiently reduces spontaneous Ca2+ release but promotes Ca2+ alternans in RyR2-R2474S cardiomyocytes with a gain-of-function RyR2 mutation. The dominant effect in RyR2-R2474S is to reduce spontaneous Ca2+ release, which supports this intervention as a therapeutic strategy in this specific condition. However, future studies on CaMKII inhibition in conditions with increased propensity for Ca2+ alternans should include investigation of both phenomena.NEW & NOTEWORTHY Genetically increased RyR2 activity promotes arrhythmogenic Ca2+ release. Inhibition of CaMKII suppresses RyR2 activity and arrhythmogenic Ca2+ release. Suppression of RyR2 activity prolongs refractoriness of Ca2+ release. Prolonged refractoriness of Ca2+ release leads to arrhythmogenic Ca2+ alternans. CaMKII inhibition promotes Ca2+ alternans by prolonging Ca2+ release refractoriness.
Collapse
Affiliation(s)
- Mani Sadredini
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Cardiac Research Centre, University of Oslo, Oslo, Norway
| | - Marie Haugsten Hansen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Cardiac Research Centre, University of Oslo, Oslo, Norway
| | - Michael Frisk
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Cardiac Research Centre, University of Oslo, Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Cardiac Research Centre, University of Oslo, Oslo, Norway
| | - Stephan E Lehnart
- Department of Cardiology and Pulmonology, Heart Research Center Göttingen, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Göttingen, Germany
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Cardiac Research Centre, University of Oslo, Oslo, Norway
| | - Mathis Korseberg Stokke
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Cardiac Research Centre, University of Oslo, Oslo, Norway.,Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
4
|
Zhang XD, Thai PN, Lieu DK, Chiamvimonvat N. Model Systems for Addressing Mechanism of Arrhythmogenesis in Cardiac Repair. Curr Cardiol Rep 2021; 23:72. [PMID: 34050853 PMCID: PMC8164614 DOI: 10.1007/s11886-021-01498-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 11/09/2022]
Abstract
PURPOSE OF REVIEW Cardiac cell-based therapy represents a promising approach for cardiac repair. However, one of the main challenges is cardiac arrhythmias associated with stem cell transplantation. The current review summarizes the recent progress in model systems for addressing mechanisms of arrhythmogenesis in cardiac repair. RECENT FINDINGS Animal models have been extensively developed for mechanistic studies of cardiac arrhythmogenesis. Advances in human induced pluripotent stem cells (hiPSCs), patient-specific disease models, tissue engineering, and gene editing have greatly enhanced our ability to probe the mechanistic bases of cardiac arrhythmias. Additionally, recent development in multiscale computational studies and machine learning provides yet another powerful tool to quantitatively decipher the mechanisms of cardiac arrhythmias. Advancing efforts towards the integrations of experimental and computational studies are critical to gain insights into novel mitigation strategies for cardiac arrhythmias in cell-based therapy.
Collapse
Affiliation(s)
- Xiao-Dong Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA 95616 USA
- Department of Veterans Affairs, Veterans Affairs Northern California Health Care System, Mather, CA 95655 USA
| | - Phung N. Thai
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA 95616 USA
- Department of Veterans Affairs, Veterans Affairs Northern California Health Care System, Mather, CA 95655 USA
| | - Deborah K. Lieu
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA 95616 USA
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA 95616 USA
- Department of Veterans Affairs, Veterans Affairs Northern California Health Care System, Mather, CA 95655 USA
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA 95616 USA
| |
Collapse
|
5
|
Salvage SC, Gallant EM, Beard NA, Ahmad S, Valli H, Fraser JA, Huang CLH, Dulhunty AF. Ion channel gating in cardiac ryanodine receptors from the arrhythmic RyR2-P2328S mouse. J Cell Sci 2019; 132:jcs.229039. [PMID: 31028179 PMCID: PMC6550012 DOI: 10.1242/jcs.229039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/16/2019] [Indexed: 12/20/2022] Open
Abstract
Mutations in the cardiac ryanodine receptor Ca2+ release channel (RyR2) can cause deadly ventricular arrhythmias and atrial fibrillation (AF). The RyR2-P2328S mutation produces catecholaminergic polymorphic ventricular tachycardia (CPVT) and AF in hearts from homozygous RyR2P2328S/P2328S (denoted RyR2S/S) mice. We have now examined P2328S RyR2 channels from RyR2S/S hearts. The activity of wild-type (WT) and P2328S RyR2 channels was similar at a cytoplasmic [Ca2+] of 1 mM, but P2328S RyR2 was significantly more active than WT at a cytoplasmic [Ca2+] of 1 µM. This was associated with a >10-fold shift in the half maximal activation concentration (AC50) for Ca2+ activation, from ∼3.5 µM Ca2+ in WT RyR2 to ∼320 nM in P2328S channels and an unexpected >1000-fold shift in the half maximal inhibitory concentration (IC50) for inactivation from ∼50 mM in WT channels to ≤7 μM in P2328S channels, which is into systolic [Ca2+] levels. Unexpectedly, the shift in Ca2+ activation was not associated with changes in sub-conductance activity, S2806 or S2814 phosphorylation or the level of FKBP12 (also known as FKBP1A) bound to the channels. The changes in channel activity seen with the P2328S mutation correlate with altered Ca2+ homeostasis in myocytes from RyR2S/S mice and the CPVT and AF phenotypes.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Samantha C Salvage
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.,Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Esther M Gallant
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Acton ACT 2601, Australia
| | - Nicole A Beard
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Bruce, ACT 2617, Australia
| | - Shiraz Ahmad
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Haseeb Valli
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - James A Fraser
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Christopher L-H Huang
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.,Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Angela F Dulhunty
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Acton ACT 2601, Australia
| |
Collapse
|
6
|
Sun B, Wei J, Zhong X, Guo W, Yao J, Wang R, Vallmitjana A, Benitez R, Hove-Madsen L, Chen SRW. The cardiac ryanodine receptor, but not sarcoplasmic reticulum Ca 2+-ATPase, is a major determinant of Ca 2+ alternans in intact mouse hearts. J Biol Chem 2018; 293:13650-13661. [PMID: 29986885 DOI: 10.1074/jbc.ra118.003760] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/06/2018] [Indexed: 11/06/2022] Open
Abstract
Sarcoplasmic reticulum (SR) Ca2+ cycling is governed by the cardiac ryanodine receptor (RyR2) and SR Ca2+-ATPase (SERCA2a). Abnormal SR Ca2+ cycling is thought to be the primary cause of Ca2+ alternans that can elicit ventricular arrhythmias and sudden cardiac arrest. Although alterations in either RyR2 or SERCA2a function are expected to affect SR Ca2+ cycling, whether and to what extent altered RyR2 or SERCA2a function affects Ca2+ alternans is unclear. Here, we employed a gain-of-function RyR2 variant (R4496C) and the phospholamban-knockout (PLB-KO) mouse model to assess the effect of genetically enhanced RyR2 or SERCA2a function on Ca2+ alternans. Confocal Ca2+ imaging revealed that RyR2-R4496C shortened SR Ca2+ release refractoriness and markedly suppressed rapid pacing-induced Ca2+ alternans. Interestingly, despite enhancing RyR2 function, intact RyR2-R4496C hearts exhibited no detectable spontaneous SR Ca2+ release events during pacing. Unlike for RyR2, enhancing SERCA2a function by ablating PLB exerted a relatively minor effect on Ca2+ alternans in intact hearts expressing RyR2 WT or a loss-of-function RyR2 variant, E4872Q, that promotes Ca2+ alternans. Furthermore, partial SERCA2a inhibition with 3 μm 2,5-di-tert-butylhydroquinone (tBHQ) also had little impact on Ca2+ alternans, whereas strong SERCA2a inhibition with 10 μm tBHQ markedly reduced the amplitude of Ca2+ transients and suppressed Ca2+ alternans in intact hearts. Our results demonstrate that enhanced RyR2 function suppresses Ca2+ alternans in the absence of spontaneous Ca2+ release and that RyR2, but not SERCA2a, is a key determinant of Ca2+ alternans in intact working hearts, making RyR2 an important therapeutic target for cardiac alternans.
Collapse
Affiliation(s)
- Bo Sun
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Jinhong Wei
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Xiaowei Zhong
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Wenting Guo
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Jinjing Yao
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Ruiwu Wang
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Alexander Vallmitjana
- the Department of Automatic Control, Universitat Politècnica de Catalunya, Barcelona 08034, Spain, and
| | - Raul Benitez
- the Department of Automatic Control, Universitat Politècnica de Catalunya, Barcelona 08034, Spain, and
| | - Leif Hove-Madsen
- the Biomedical Research Institute of Barcelona (IIBB), CSIC, Sant Pau, Hospital de Sant Pau, Barcelona 08025, Spain
| | - S R Wayne Chen
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada,
| |
Collapse
|
7
|
Li M, Chadda KR, Matthews GDK, Marr CM, Huang CLH, Jeevaratnam K. Cardiac electrophysiological adaptations in the equine athlete-Restitution analysis of electrocardiographic features. PLoS One 2018. [PMID: 29522557 PMCID: PMC5844547 DOI: 10.1371/journal.pone.0194008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exercising horses uniquely accommodate 7–8-fold increases in heart rate (HR). The present experiments for the first time analysed the related adaptations in action potential (AP) restitution properties recorded by in vivo telemetric electrocardiography from Thoroughbred horses. The horses were subjected to a period of acceleration from walk to canter. The QRS durations, and QT and TQ intervals yielded AP conduction velocities, AP durations (APDs) and diastolic intervals respectively. From these, indices of active, λ = QT/(QRS duration), and resting, λ0 = TQ/(QRS duration), AP wavelengths were calculated. Critical values of QT and TQ intervals, and of λ and λ0 at which plots of these respective pairs of functions showed unity slope, were obtained. These were reduced by 38.9±2.7% and 86.2±1.8%, and 34.1±3.3% and 85.9±1.2%, relative to their resting values respectively. The changes in λ were attributable to falls in QT interval rather than QRS duration. These findings both suggested large differences between the corresponding critical (129.1±10.8 or 117.4±5.6 bpm respectively) and baseline HRs (32.9±2.1 (n = 7) bpm). These restitution analyses thus separately identified concordant parameters whose adaptations ensure the wide range of HRs over which electrophysiological activation takes place in an absence of heart block or arrhythmias in equine hearts. Since the horse is amenable to this in vivo electrophysiological analysis and displays a unique wide range of heart rates, it could be a novel cardiac electrophysiology animal model for the study of sudden cardiac death in human athletes.
Collapse
Affiliation(s)
- Mengye Li
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Karan R. Chadda
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | | | - Celia M. Marr
- Rossdales Equine Hospital and Diagnostic Centre, Exning, Suffolk, United Kingdom
| | - Christopher L.-H. Huang
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
- Division of Cardiovascular Biology, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Kamalan Jeevaratnam
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- * E-mail:
| |
Collapse
|
8
|
Abstract
Cardiac arrhythmias can follow disruption of the normal cellular electrophysiological processes underlying excitable activity and their tissue propagation as coherent wavefronts from the primary sinoatrial node pacemaker, through the atria, conducting structures and ventricular myocardium. These physiological events are driven by interacting, voltage-dependent, processes of activation, inactivation, and recovery in the ion channels present in cardiomyocyte membranes. Generation and conduction of these events are further modulated by intracellular Ca2+ homeostasis, and metabolic and structural change. This review describes experimental studies on murine models for known clinical arrhythmic conditions in which these mechanisms were modified by genetic, physiological, or pharmacological manipulation. These exemplars yielded molecular, physiological, and structural phenotypes often directly translatable to their corresponding clinical conditions, which could be investigated at the molecular, cellular, tissue, organ, and whole animal levels. Arrhythmogenesis could be explored during normal pacing activity, regular stimulation, following imposed extra-stimuli, or during progressively incremented steady pacing frequencies. Arrhythmic substrate was identified with temporal and spatial functional heterogeneities predisposing to reentrant excitation phenomena. These could arise from abnormalities in cardiac pacing function, tissue electrical connectivity, and cellular excitation and recovery. Triggering events during or following recovery from action potential excitation could thereby lead to sustained arrhythmia. These surface membrane processes were modified by alterations in cellular Ca2+ homeostasis and energetics, as well as cellular and tissue structural change. Study of murine systems thus offers major insights into both our understanding of normal cardiac activity and its propagation, and their relationship to mechanisms generating clinical arrhythmias.
Collapse
Affiliation(s)
- Christopher L-H Huang
- Physiological Laboratory and the Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Suppression of ryanodine receptor function prolongs Ca2+ release refractoriness and promotes cardiac alternans in intact hearts. Biochem J 2016; 473:3951-3964. [PMID: 27582498 DOI: 10.1042/bcj20160606] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/30/2016] [Indexed: 11/17/2022]
Abstract
Beat-to-beat alternations in the amplitude of the cytosolic Ca2+ transient (Ca2+ alternans) are thought to be the primary cause of cardiac alternans that can lead to cardiac arrhythmias and sudden death. Despite its important role in arrhythmogenesis, the mechanism underlying Ca2+ alternans remains poorly understood. Here, we investigated the role of cardiac ryanodine receptor (RyR2), the major Ca2+ release channel responsible for cytosolic Ca2+ transients, in cardiac alternans. Using a unique mouse model harboring a suppression-of-function (SOF) RyR2 mutation (E4872Q), we assessed the effect of genetically suppressing RyR2 function on Ca2+ and action potential duration (APD) alternans in intact hearts, and electrocardiogram (ECG) alternans in vivo We found that RyR2-SOF hearts displayed prolonged sarcoplasmic reticulum Ca2+ release refractoriness and enhanced propensity for Ca2+ alternans. RyR2-SOF hearts/mice also exhibited increased propensity for APD and ECG alternans. Caffeine, which enhances RyR2 activity and the propensity for catecholaminergic polymorphic ventricular tachycardia (CPVT), suppressed Ca2+ alternans in RyR2-SOF hearts, whereas carvedilol, a β-blocker that suppresses RyR2 activity and CPVT, promoted Ca2+ alternans in these hearts. Thus, RyR2 function is an important determinant of Ca2+, APD, and ECG alternans. Our data also indicate that the activity of RyR2 influences the propensity for cardiac alternans and CPVT in an opposite manner. Therefore, overly suppressing or enhancing RyR2 function is pro-arrhythmic.
Collapse
|
10
|
Paavola J, Väänänen H, Larsson K, Penttinen K, Toivonen L, Kontula K, Laine M, Aalto-Setälä K, Swan H, Viitasalo M. Slowed depolarization and irregular repolarization in catecholaminergic polymorphic ventricular tachycardia: a study from cellular Ca2+ transients and action potentials to clinical monophasic action potentials and electrocardiography. Europace 2015; 18:1599-1607. [PMID: 26705554 DOI: 10.1093/europace/euv380] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/17/2015] [Indexed: 01/08/2023] Open
Abstract
AIMS Spontaneous Ca2+ release leads to afterdepolarizations and triggered arrhythmia in catecholaminergic polymorphic ventricular tachycardia (CPVT). Irregular Ca2+ release is hypothesized to manifest as slowed depolarization and irregular repolarization. Our goal was to study depolarization and repolarization abnormalities in CPVT, as they remain largely uninvestigated. METHODS AND RESULTS We studied intracellular Ca2+ handling and action potentials (APs) in an induced pluripotent stem cell (iPSC) model of CPVT. Induced pluripotent stem cell cardiomyocytes from a RyR2-P2328S patient showed increased non-alternating variability of Ca2+ transients in response to isoproterenol. β-Agonists decreased AP upslope velocity in CPVT cells and in monophasic AP recordings of CPVT patients. We compared 24 h electrocardiograms (ECGs) of 19 CPVT patients carrying RyR2 mutations and 19 healthy controls. Short-term variability (STV) of the QT interval was 6.9 ± 0.5 ms in CPVT patients vs. 5.5 ± 0.4 ms in controls (P < 0.05) and associated with a history of arrhythmic events. Mean T-wave alternans (TWA) was 25 ± 1.4 µV in CPVT patients vs. 31 ± 2.0 µV in controls (P < 0.05). Older CPVT patients showed lower maximal upslope velocity of the ECG R-spike than control patients. CONCLUSION Catecholaminergic polymorphic ventricular tachycardia patients show higher STV of repolarization but lower TWA on the 24 h ECG than control patients, which is likely to reflect increased non-alternating variability of Ca2+ release by mutant RyR2s as observed in vitro. β-Agonists slow depolarization in RyR2-mutant cells and in CPVT patients. These findings may constitute a marker of arrhythmogenicity.
Collapse
Affiliation(s)
- Jere Paavola
- Minerva Foundation Institute for Medical Research, Helsinki, Finland .,Division of Cardiology, Heart and Lung Center HUS, Helsinki University Central Hospital, Helsinki, Finland
| | - Heikki Väänänen
- Department of Biomedical Engineering and Computational Science, Aalto University, Espoo, Finland
| | - Kim Larsson
- School of Medicine, University of Tampere, Tampere, Finland.,Biomeditech, University of Tampere, Tampere, Finland
| | - Kirsi Penttinen
- School of Medicine, University of Tampere, Tampere, Finland.,Biomeditech, University of Tampere, Tampere, Finland
| | - Lauri Toivonen
- Division of Cardiology, Heart and Lung Center HUS, Helsinki University Central Hospital, Helsinki, Finland
| | - Kimmo Kontula
- Department of Medicine, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
| | - Mika Laine
- Minerva Foundation Institute for Medical Research, Helsinki, Finland.,Division of Cardiology, Heart and Lung Center HUS, Helsinki University Central Hospital, Helsinki, Finland
| | - Katriina Aalto-Setälä
- School of Medicine, University of Tampere, Tampere, Finland.,Biomeditech, University of Tampere, Tampere, Finland.,Heart Center, Tampere University Hospital, Tampere, Finland
| | - Heikki Swan
- Division of Cardiology, Heart and Lung Center HUS, Helsinki University Central Hospital, Helsinki, Finland
| | - Matti Viitasalo
- Division of Cardiology, Heart and Lung Center HUS, Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
11
|
Sato D, Bers DM, Shiferaw Y. Formation of spatially discordant alternans due to fluctuations and diffusion of calcium. PLoS One 2013; 8:e85365. [PMID: 24392005 PMCID: PMC3877395 DOI: 10.1371/journal.pone.0085365] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/25/2013] [Indexed: 11/19/2022] Open
Abstract
Spatially discordant alternans (SDA) of action potential duration (APD) is a phenomenon where different regions of cardiac tissue exhibit an alternating sequence of APD that are out-of-phase. SDA is arrhythmogenic since it can induce spatial heterogeneity of refractoriness, which can cause wavebreak and reentry. However, the underlying mechanisms for the formation of SDA are not completely understood. In this paper, we present a novel mechanism for the formation of SDA in the case where the cellular instability leading to alternans is caused by intracellular calcium (Ca) cycling, and where Ca transient and APD alternans are electromechanically concordant. In particular, we show that SDA is formed when rapidly paced cardiac tissue develops alternans over many beats due to Ca accumulation in the sarcoplasmic reticulum (SR). The mechanism presented here relies on the observation that Ca cycling fluctuations dictate Ca alternans phase since the amplitude of Ca alternans is small during the early stages of pacing. Thus, different regions of a cardiac myocyte will typically develop Ca alternans which are opposite in phase at the early stages of pacing. These subcellular patterns then gradually coarsen due to interactions with membrane voltage to form steady state SDA of voltage and Ca on the tissue scale. This mechanism for SDA is distinct from well-known mechanisms that rely on conduction velocity restitution, and a Turing-like mechanism known to apply only in the case where APD and Ca alternans are electromechanically discordant. Furthermore, we argue that this mechanism is robust, and is likely to underlie a wide range of experimentally observed patterns of SDA.
Collapse
Affiliation(s)
- Daisuke Sato
- Department of Pharmacology, University of California Davis, Davis, California, United States of America
- * E-mail:
| | - Donald M. Bers
- Department of Pharmacology, University of California Davis, Davis, California, United States of America
| | - Yohannes Shiferaw
- Department of Physics and Astronomy, California State University Northridge, Northridge, California, United States of America
| |
Collapse
|
12
|
Qu Z, Nivala M, Weiss JN. Calcium alternans in cardiac myocytes: order from disorder. J Mol Cell Cardiol 2013; 58:100-9. [PMID: 23104004 PMCID: PMC3570622 DOI: 10.1016/j.yjmcc.2012.10.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/22/2012] [Accepted: 10/18/2012] [Indexed: 12/14/2022]
Abstract
Calcium alternans is associated with T-wave alternans and pulsus alternans, harbingers of increased mortality in the setting of heart disease. Recent experimental, computational, and theoretical studies have led to new insights into the mechanisms of Ca alternans, specifically how disordered behaviors dominated by stochastic processes at the subcellular level become organized into ordered periodic behaviors. In this article, we summarize the recent progress in this area, outlining a holistic theoretical framework in which the complex effects of Ca cycling proteins on Ca alternans are linked to three key properties of the cardiac Ca cycling network: randomness, refractoriness, and recruitment. We also illustrate how this '3R theory' can reconcile many seemingly contradictory experimental observations.
Collapse
Affiliation(s)
- Zhilin Qu
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | | | | |
Collapse
|
13
|
Nivala M, Qu Z. Calcium alternans in a couplon network model of ventricular myocytes: role of sarcoplasmic reticulum load. Am J Physiol Heart Circ Physiol 2012; 303:H341-52. [PMID: 22661509 DOI: 10.1152/ajpheart.00302.2012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracellular calcium (Ca) alternans in cardiac myocytes have been shown in many experimental studies, and the mechanisms remain incompletely understood. We recently developed a "3R theory" that links Ca sparks to whole cell Ca alternans through three critical properties: randomness of Ca sparks; recruitment of a Ca spark by neighboring Ca sparks; and refractoriness of Ca release units. In this study, we used computer simulation of a physiologically detailed mathematical model of a ventricular myocyte couplon network to study how sarcoplasmic reticulum (SR) Ca load and other physiological parameters, such as ryanodine receptor sensitivity, SR uptake rate, Na-Ca exchange strength, and Ca buffer levels affect Ca alternans in the context of 3R theory. We developed a method to calculate the parameters used in the 3R theory (i.e., the primary spark rate and the recruitment rate) from the physiologically detailed Ca cycling model and paced the model periodically to elicit Ca alternans. We show that alternans only occurs for an intermediate range of the SR Ca load, and the underlying mechanism can be explained via its effects on the 3Rs. Furthermore, we show that altering the physiological parameters not only directly changes the 3Rs but also alters the SR Ca load, having an indirect effect on the 3Rs as well. Therefore, our present study links the SR Ca load and other physiological parameters to whole cell Ca alternans through the framework of the 3R theory, providing a general mechanistic understanding of Ca alternans in ventricular myocytes.
Collapse
Affiliation(s)
- Michael Nivala
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, USA
| | | |
Collapse
|