1
|
Hossain MMN, Hu NW, Abdelhamid M, Singh S, Murfee WL, Balogh P. Angiogenic Microvascular Wall Shear Stress Patterns Revealed Through Three-dimensional Red Blood Cell Resolved Modeling. FUNCTION 2023; 4:zqad046. [PMID: 37753184 PMCID: PMC10519277 DOI: 10.1093/function/zqad046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
The wall shear stress (WSS) exerted by blood flowing through microvascular capillaries is an established driver of new blood vessel growth, or angiogenesis. Such adaptations are central to many physiological processes in both health and disease, yet three-dimensional (3D) WSS characteristics in real angiogenic microvascular networks are largely unknown. This marks a major knowledge gap because angiogenesis, naturally, is a 3D process. To advance current understanding, we model 3D red blood cells (RBCs) flowing through rat angiogenic microvascular networks using state-of-the-art simulation. The high-resolution fluid dynamics reveal 3D WSS patterns occurring at sub-endothelial cell (EC) scales that derive from distinct angiogenic morphologies, including microvascular loops and vessel tortuosity. We identify the existence of WSS hot and cold spots caused by angiogenic surface shapes and RBCs, and notably enhancement of low WSS regions by RBCs. Spatiotemporal characteristics further reveal how fluctuations follow timescales of RBC "footprints." Altogether, this work provides a new conceptual framework for understanding how shear stress might regulate EC dynamics in vivo.
Collapse
Affiliation(s)
- Mir Md Nasim Hossain
- Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07114, USA
| | - Nien-Wen Hu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Maram Abdelhamid
- Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07114, USA
| | - Simerpreet Singh
- Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07114, USA
| | - Walter L Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Peter Balogh
- Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07114, USA
| |
Collapse
|
2
|
Schulz A, Drost CC, Hesse B, Beul K, Boeckel GR, Lukasz A, Pavenstädt H, Brand M, Di Marco GS. The Endothelial Glycocalyx as a Target of Excess Soluble Fms-like Tyrosine Kinase-1. Int J Mol Sci 2023; 24:ijms24065380. [PMID: 36982455 PMCID: PMC10049398 DOI: 10.3390/ijms24065380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Soluble fms-like tyrosine kinase-1 (sFlt-1) is a secreted protein that binds heparan sulfate expressed on the endothelial glycocalyx (eGC). In this paper we analyze how excess sFlt-1 causes conformational changes in the eGC, leading to monocyte adhesion, a key event triggering vascular dysfunction. In vitro exposure of primary human umbilical vein endothelial cells to excess sFlt-1 decreased eGC height and increased stiffness as determined by atomic force microscopy (AFM). Yet, structural loss of the eGC components was not observed, as indicated by Ulex europaeus agglutinin I and wheat germ agglutinin staining. Moreover, the conformation observed under excess sFlt-1, a collapsed eGC, is flat and stiff with unchanged coverage and sustained content. Functionally, this conformation increased the endothelial adhesiveness to THP-1 monocytes by about 35%. Heparin blocked all these effects, but the vascular endothelial growth factor did not. In vivo administration of sFlt-1 in mice also resulted in the collapse of the eGC in isolated aorta analyzed ex vivo by AFM. Our findings show that excess sFlt-1 causes the collapse of the eGC and favors leukocyte adhesion. This study provides an additional mechanism of action by which sFlt-1 may cause endothelial dysfunction and injury.
Collapse
|
3
|
Schulz S, Haueisen J, Bär KJ, Voss A. The Cardiorespiratory Network in Healthy First-Degree Relatives of Schizophrenic Patients. Front Neurosci 2020; 14:617. [PMID: 32612509 PMCID: PMC7308718 DOI: 10.3389/fnins.2020.00617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/19/2020] [Indexed: 11/23/2022] Open
Abstract
Impaired heart rate- and respiratory regulatory processes as a sign of an autonomic dysfunction seems to be obviously present in patients suffering from schizophrenia. Since the linear and non-linear couplings within the cardiorespiratory system with respiration as an important homeostatic control mechanism are only partially investigated so far for those subjects, we aimed to characterize instantaneous cardiorespiratory couplings by quantifying the casual interaction between heart rate (HR) and respiration (RESP). Therefore, we investigated causal linear and non-linear cardiorespiratory couplings of 23 patients suffering from schizophrenia (SZO), 20 healthy first-degree relatives (REL) and 23 healthy subjects, who were age-gender matched (CON). From all participants' heart rate (HR) and respirations (respiratory frequency, RESP) were investigated for 30 min under resting conditions. The results revealed highly significant increased HR, reduced HR variability, increased respiration rates and impaired cardiorespiratory couplings in SZO in comparison to CON. SZO were revealed bidirectional couplings, with respiration as the driver (RESP → HR), and with weaker linear and non-linear coupling strengths when RESP influencing HR (RESP → HR) and with stronger linear and non-linear coupling strengths when HR influencing RESP (HR → RESP). For REL we found only significant increased HR and only slightly reduced cardiorespiratory couplings compared to CON. These findings clearly pointing to an underlying disease-inherent genetic component of the cardiac system for SZO and REL, and those respiratory alterations are only clearly present in SZO seem to be connected to their mental emotional states.
Collapse
Affiliation(s)
- Steffen Schulz
- Institute of Innovative Health Technologies (IGHT), University of Applied Sciences, Jena, Germany
| | - Jens Haueisen
- Institute of Biomedical Engineering and Informatics, Ilmenau University of Technology, Ilmenau, Germany
| | - Karl-Jürgen Bär
- Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Andreas Voss
- Institute of Innovative Health Technologies (IGHT), University of Applied Sciences, Jena, Germany
| |
Collapse
|
4
|
Vodovotz Y, An G. Agent-based models of inflammation in translational systems biology: A decade later. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1460. [PMID: 31260168 PMCID: PMC8140858 DOI: 10.1002/wsbm.1460] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 12/11/2022]
Abstract
Agent-based modeling is a rule-based, discrete-event, and spatially explicit computational modeling method that employs computational objects that instantiate the rules and interactions among the individual components ("agents") of system. Agent-based modeling is well suited to translating into a computational model the knowledge generated from basic science research, particularly with respect to translating across scales the mechanisms of cellular behavior into aggregated cell population dynamics manifesting at the tissue and organ level. This capacity has made agent-based modeling an integral method in translational systems biology (TSB), an approach that uses multiscale dynamic computational modeling to explicitly represent disease processes in a clinically relevant fashion. The initial work in the early 2000s using agent-based models (ABMs) in TSB focused on examining acute inflammation and its intersection with wound healing; the decade since has seen vast growth in both the application of agent-based modeling to a wide array of disease processes as well as methodological advancements in the use and analysis of ABM. This report presents an update on an earlier review of ABMs in TSB and presents examples of exciting progress in the modeling of various organs and diseases that involve inflammation. This review also describes developments that integrate the use of ABMs with cutting-edge technologies such as high-performance computing, machine learning, and artificial intelligence, with a view toward the future integration of these methodologies. This article is categorized under: Translational, Genomic, and Systems Medicine > Translational Medicine Models of Systems Properties and Processes > Mechanistic Models Models of Systems Properties and Processes > Organ, Tissue, and Physiological Models Models of Systems Properties and Processes > Organismal Models.
Collapse
Affiliation(s)
- Yoram Vodovotz
- Department of Surgery, Immunology, Computational & Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gary An
- Department of Surgery, University of Vermont, Burlington, Vermont
| |
Collapse
|
5
|
Chappell JC, Darden J, Payne LB, Fink K, Bautch VL. Blood Vessel Patterning on Retinal Astrocytes Requires Endothelial Flt-1 (VEGFR-1). J Dev Biol 2019; 7:jdb7030018. [PMID: 31500294 PMCID: PMC6787756 DOI: 10.3390/jdb7030018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/24/2022] Open
Abstract
Feedback mechanisms are critical components of many pro-angiogenic signaling pathways that keep vessel growth within a functional range. The Vascular Endothelial Growth Factor-A (VEGF-A) pathway utilizes the decoy VEGF-A receptor Flt-1 to provide negative feedback regulation of VEGF-A signaling. In this study, we investigated how the genetic loss of flt-1 differentially affects the branching complexity of vascular networks in tissues despite similar effects on endothelial sprouting. We selectively ablated flt-1 in the post-natal retina and found that maximum induction of flt-1 loss resulted in alterations in endothelial sprouting and filopodial extension, ultimately yielding hyper-branched networks in the absence of changes in retinal astrocyte architecture. The mosaic deletion of flt-1 revealed that sprouting endothelial cells flanked by flt-1−/− regions of vasculature more extensively associated with underlying astrocytes and exhibited aberrant sprouting, independent of the tip cell genotype. Overall, our data support a model in which tissue patterning features, such as retinal astrocytes, integrate with flt-1-regulated angiogenic molecular and cellular mechanisms to yield optimal vessel patterning for a given tissue.
Collapse
Affiliation(s)
- John C Chappell
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA.
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Jordan Darden
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061, USA
| | - Laura Beth Payne
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Kathryn Fink
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Victoria L Bautch
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Kühn C, Checa S. Computational Modeling to Quantify the Contributions of VEGFR1, VEGFR2, and Lateral Inhibition in Sprouting Angiogenesis. Front Physiol 2019; 10:288. [PMID: 30971939 PMCID: PMC6445957 DOI: 10.3389/fphys.2019.00288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 03/05/2019] [Indexed: 12/25/2022] Open
Abstract
Sprouting angiogenesis is a necessary process in regeneration and development as well as in tumorigenesis. VEGF-A is the main pro-angiogenic chemoattractant and it can bind to the decoy receptor VEGFR1 or to VEGFR2 to induce sprouting. Active sprout cells express Dll4, which binds to Notch1 on neighboring cells, in turn inhibiting VEGFR2 expression. It is known that the balance between VEGFR2 and VEGFR1 determines tip selection and network architecture, however the quantitative interrelationship of the receptors and their interrelated balances, also with relation to Dll4-Notch1 signaling, remains yet largely unknown. Here, we present an agent-based computer model of sprouting angiogenesis, integrating VEGFR1 and VEGFR2 in a detailed model of cellular signaling. Our model reproduces experimental data on VEGFR1 knockout. We show that soluble VEGFR1 improves the efficiency of angiogenesis by directing sprouts away from existing cells over a wide range of parameters. Our analysis unravels the relevance of the stability of the active notch intracellular domain as a dominating hub in this regulatory network. Our analysis quantitatively dissects the regulatory interactions in sprouting angiogenesis. Because we use a detailed model of intracellular signaling, the results of our analysis are directly linked to biological entities. We provide our computational model and simulation engine for integration in complementary modeling approaches.
Collapse
Affiliation(s)
- Clemens Kühn
- Julius Wolff Institute, Charite - Universitätsmedizin Berlin, Berlin, Germany
| | - Sara Checa
- Julius Wolff Institute, Charite - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charite - UIniversitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
7
|
Wertheim KY, Roose T. Can VEGFC Form Turing Patterns in the Zebrafish Embryo? Bull Math Biol 2019; 81:1201-1237. [PMID: 30607882 PMCID: PMC6397306 DOI: 10.1007/s11538-018-00560-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 12/11/2018] [Indexed: 11/26/2022]
Abstract
This paper is concerned with a late stage of lymphangiogenesis in the trunk of the zebrafish embryo. At 48 hours post-fertilisation (HPF), a pool of parachordal lymphangioblasts (PLs) lies in the horizontal myoseptum. Between 48 and 168 HPF, the PLs spread from the horizontal myoseptum to form the thoracic duct, dorsal longitudinal lymphatic vessel, and parachordal lymphatic vessel. This paper deals with the potential of vascular endothelial growth factor C (VEGFC) to guide the differentiation of PLs into the mature lymphatic endothelial cells that form the vessels. We built a mathematical model to describe the biochemical interactions between VEGFC, collagen I, and matrix metalloproteinase 2 (MMP2). We also carried out a linear stability analysis of the model and computer simulations of VEGFC patterning. The results suggest that VEGFC can form Turing patterns due to its relations with MMP2 and collagen I, but the zebrafish embryo needs a separate control mechanism to create the right physiological conditions. Furthermore, this control mechanism must ensure that the VEGFC patterns are useful for lymphangiogenesis: stationary, steep gradients, and reasonably fast forming. Generally, the combination of a patterning species, a matrix protein, and a remodelling species is a new patterning mechanism.
Collapse
Affiliation(s)
- Kenneth Y. Wertheim
- Faculty of Engineering and the Environment, University of Southampton, Highfield Campus, Southampton, SO17 1BJ UK
- Present Address: University of Nebraska-Lincoln, 1901 Vine St N231, Lincoln, NE 68503 USA
| | - Tiina Roose
- Faculty of Engineering and the Environment, University of Southampton, Highfield Campus, Southampton, SO17 1BJ UK
| |
Collapse
|
8
|
Huppertz B. Biology of preeclampsia: Combined actions of angiogenic factors, their receptors and placental proteins. Biochim Biophys Acta Mol Basis Dis 2018; 1866:165349. [PMID: 30553017 DOI: 10.1016/j.bbadis.2018.11.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/07/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022]
Abstract
Although massive efforts have been undertaken to elucidate the etiology of the pregnancy syndrome preeclampsia, its developmental origin remains a mystery. Most efforts of the last decade have focused on biomarkers to predict and/or diagnose preeclampsia, including the anti-angiogenic factor sFlt-1 (soluble fms-like tyrosin kinase-1), the angiogenic factor PGF (placental growth factor) and PP13 (placental protein 13). The origins of these marker proteins are still under debate, and so far their actions have only been describe separate from each other. This study will focus on the origins and actions of all three markers during pregnancy and outside pregnancy and will describe a scenario where all three markers act synergistically to rescue the mother from the deleterious effects of the debris that is released from the placenta during preeclampsia. This more holistic approach may open new avenues to think about maternal-fetal interactions and putative therapies.
Collapse
Affiliation(s)
- Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria.
| |
Collapse
|
9
|
Nyberg E, Grayson W. Assessing the Minimum Time-Period of Normoxic Preincubation for Stable Adipose Stromal Cell-Derived Vascular Networks. Cell Mol Bioeng 2018; 11:471-481. [PMID: 31719894 DOI: 10.1007/s12195-018-0539-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/06/2018] [Indexed: 12/16/2022] Open
Abstract
Introduction Pre-vascularization of tissue engineered grafts is a promising strategy to facilitate their improved viability following in vivo implantation. In this process, endothelial cells (ECs) form capillary-like networks that can anastomose with host vasculature. Adipose-derived stromal cells (ASCs) are a commonly used cell population for tissue engineering and contain a subpopulation of ECs capable of assembling into robust vascular networks and anastomosing with the host. However, their initial vascular assembly is significantly impaired in hypoxic conditions (2% O2). In this study, we explored the minimum period of normoxic (20% O2) pre-treatment required to enable the formation of stable vascular networks. Methods ASC-derived vascular structures were allowed to preassemble in fibrin hydrogels in normoxia for 0, 2, 4, or 6 days and then transplanted into hypoxic environments for 6 days. Total vascular length, pericyte coverage, cell proliferation, apoptosis rates, and ECM production was assessed. Results Vascular assembly increased with time over the 6 days of culture. We found that 4 days was the minimum period of time required for stable vascular assembly. We compared the major differences in cell behavior and network structure at Days 2 and 4. Neither proliferation nor apoptosis differed, however, the Day 4 time-point was associated with a significant increase in pericyte coverage (46.1 ± 2.6%) compared to Day 2 (24.3 ± 5.3%). Conclusions These data suggest oxygen tension may be a mediator of EC-pericyte interactions during vascular assembly. Pre-vascularization strategies should incorporate a normoxic period of to enable successful vascular formation and development.
Collapse
Affiliation(s)
- Ethan Nyberg
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N. Broadway, Smith Building 5023, Baltimore, MD 21231 USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Warren Grayson
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N. Broadway, Smith Building 5023, Baltimore, MD 21231 USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD USA.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
10
|
Walpole J, Mac Gabhann F, Peirce SM, Chappell JC. Agent-based computational model of retinal angiogenesis simulates microvascular network morphology as a function of pericyte coverage. Microcirculation 2018; 24. [PMID: 28791758 DOI: 10.1111/micc.12393] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/29/2017] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Define a role for perivascular cells during developmental retinal angiogenesis in the context of EC Notch1-DLL4 signaling at the multicellular network level. METHODS The retinal vasculature is highly sensitive to growth factor-mediated intercellular signaling. Although EC signaling has been explored in detail, it remains unclear how PC function to modulate these signals that lead to a diverse set of vascular network patterns in health and disease. We have developed an ABM of retinal angiogenesis that incorporates both ECs and PCs to investigate the formation of vascular network patterns as a function of pericyte coverage. We use our model to test the hypothesis that PC modulate Notch1-DLL4 signaling in endothelial cell-endothelial cell interactions. RESULTS Agent-based model (ABM) simulations that include PCs more accurately predict experimentally observed vascular network morphologies than simulations that lack PCs, suggesting that PCs may influence sprouting behaviors through physical blockade of endothelial intercellular connections. CONCLUSIONS This study supports a role for PCs as a physical buffer to signal propagation during vascular network formation-a barrier that may be important for generating healthy microvascular network patterns.
Collapse
Affiliation(s)
- Joseph Walpole
- Department of Biomedical Engineering, University of Virginia, Charlottesvile, VA, USA
| | - Feilim Mac Gabhann
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesvile, VA, USA
| | - John C Chappell
- Virginia Tech Carilion Research Institute, Department of Biomedical Engineering and Mechanics, Roanoke, VA, USA
| |
Collapse
|
11
|
Wertheim KY, Roose T. A Mathematical Model of Lymphangiogenesis in a Zebrafish Embryo. Bull Math Biol 2017; 79:693-737. [PMID: 28233173 PMCID: PMC5501200 DOI: 10.1007/s11538-017-0248-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 01/19/2017] [Indexed: 01/18/2023]
Abstract
The lymphatic system of a vertebrate is important in health and diseases. We propose a novel mathematical model to elucidate the lymphangiogenic processes in zebrafish embryos. Specifically, we are interested in the period when lymphatic endothelial cells (LECs) exit the posterior cardinal vein and migrate to the horizontal myoseptum of a zebrafish embryo. We wonder whether vascular endothelial growth factor C (VEGFC) is a morphogen and a chemotactic factor for these LECs. The model considers the interstitial flow driving convection, the reactive transport of VEGFC, and the changing dynamics of the extracellular matrix in the embryo. Simulations of the model illustrate that VEGFC behaves very differently in diffusion and convection-dominant scenarios. In the former case, it must bind to the matrix to establish a functional morphogen gradient. In the latter case, the opposite is true and the pressure field is the key determinant of what VEGFC may do to the LECs. Degradation of collagen I, a matrix component, by matrix metallopeptidase 2 controls the spatiotemporal dynamics of VEGFC. It controls whether diffusion or convection is dominant in the embryo; it can create channels of abundant VEGFC and scarce collagen I to facilitate lymphangiogenesis; when collagen I is insufficient, VEGFC cannot influence the LECs at all. We predict that VEGFC is a morphogen for the migrating LECs, but it is not a chemotactic factor for them.
Collapse
Affiliation(s)
- Kenneth Y. Wertheim
- Faculty of Engineering and the Environment, University of Southampton, Highfield Campus, Southampton, SO17 1BJ UK
| | - Tiina Roose
- Faculty of Engineering and the Environment, University of Southampton, Highfield Campus, Southampton, SO17 1BJ UK
| |
Collapse
|
12
|
Clegg LE, Mac Gabhann F. A computational analysis of in vivo VEGFR activation by multiple co-expressed ligands. PLoS Comput Biol 2017; 13:e1005445. [PMID: 28319199 PMCID: PMC5378411 DOI: 10.1371/journal.pcbi.1005445] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 04/03/2017] [Accepted: 03/08/2017] [Indexed: 12/16/2022] Open
Abstract
The splice isoforms of vascular endothelial growth A (VEGF) each have different affinities for the extracellular matrix (ECM) and the coreceptor NRP1, which leads to distinct vascular phenotypes in model systems expressing only a single VEGF isoform. ECM-immobilized VEGF can bind to and activate VEGF receptor 2 (VEGFR2) directly, with a different pattern of site-specific phosphorylation than diffusible VEGF. To date, the way in which ECM binding alters the distribution of isoforms of VEGF and of the related placental growth factor (PlGF) in the body and resulting angiogenic signaling is not well-understood. Here, we extend our previous validated cell-level computational model of VEGFR2 ligation, intracellular trafficking, and site-specific phosphorylation, which captured differences in signaling by soluble and immobilized VEGF, to a multi-scale whole-body framework. This computational systems pharmacology model captures the ability of the ECM to regulate isoform-specific growth factor distribution distinctly for VEGF and PlGF, and to buffer free VEGF and PlGF levels in tissue. We show that binding of immobilized growth factor to VEGF receptors, both on endothelial cells and soluble VEGFR1, is likely important to signaling in vivo. Additionally, our model predicts that VEGF isoform-specific properties lead to distinct profiles of VEGFR1 and VEGFR2 binding and VEGFR2 site-specific phosphorylation in vivo, mediated by Neuropilin-1. These predicted signaling changes mirror those observed in murine systems expressing single VEGF isoforms. Simulations predict that, contrary to the 'ligand-shifting hypothesis,' VEGF and PlGF do not compete for receptor binding at physiological concentrations, though PlGF is predicted to slightly increase VEGFR2 phosphorylation when over-expressed by 10-fold. These results are critical to design of appropriate therapeutic strategies to control VEGF availability and signaling in regenerative medicine applications.
Collapse
Affiliation(s)
- Lindsay E. Clegg
- Institute for Computational Medicine, Institute for NanoBioTechnology, and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Feilim Mac Gabhann
- Institute for Computational Medicine, Institute for NanoBioTechnology, and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
13
|
Martin KS, Virgilio KM, Peirce SM, Blemker SS. Computational Modeling of Muscle Regeneration and Adaptation to Advance Muscle Tissue Regeneration Strategies. Cells Tissues Organs 2016; 202:250-266. [DOI: 10.1159/000443635] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 11/19/2022] Open
Abstract
Skeletal muscle has an exceptional ability to regenerate and adapt following injury. Tissue engineering approaches (e.g. cell therapy, scaffolds, and pharmaceutics) aimed at enhancing or promoting muscle regeneration from severe injuries are a promising and active field of research. Computational models are beginning to advance the field by providing insight into regeneration mechanisms and therapies. In this paper, we summarize the contributions computational models have made to understanding muscle remodeling and the functional implications thereof. Next, we describe a new agent-based computational model of skeletal muscle inflammation and regeneration following acute muscle injury. Our computational model simulates the recruitment and cellular behaviors of key inflammatory cells (e.g. neutrophils and M1 and M2 macrophages) and their interactions with native muscle cells (muscle fibers, satellite stem cells, and fibroblasts) that result in the clearance of necrotic tissue and muscle fiber regeneration. We demonstrate the ability of the model to track key regeneration metrics during both unencumbered regeneration and in the case of impaired macrophage function. We also use the model to simulate regeneration enhancement when muscle is primed with inflammatory cells prior to injury, which is a putative therapeutic intervention that has not yet been investigated experimentally. Computational modeling of muscle regeneration, pursued in combination with experimental analyses, provides a quantitative framework for evaluating and predicting muscle regeneration and enables the rational design of therapeutic strategies for muscle recovery.
Collapse
|
14
|
Chappell JC, Cluceru JG, Nesmith JE, Mouillesseaux KP, Bradley VB, Hartland CM, Hashambhoy-Ramsay YL, Walpole J, Peirce SM, Mac Gabhann F, Bautch VL. Flt-1 (VEGFR-1) coordinates discrete stages of blood vessel formation. Cardiovasc Res 2016; 111:84-93. [PMID: 27142980 DOI: 10.1093/cvr/cvw091] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 03/03/2016] [Indexed: 01/09/2023] Open
Abstract
AIMS In developing blood vessel networks, the overall level of vessel branching often correlates with angiogenic sprout initiations, but in some pathological situations, increased sprout initiations paradoxically lead to reduced vessel branching and impaired vascular function. We examine the hypothesis that defects in the discrete stages of angiogenesis can uniquely contribute to vessel branching outcomes. METHODS AND RESULTS Time-lapse movies of mammalian blood vessel development were used to define and quantify the dynamics of angiogenic sprouting. We characterized the formation of new functional conduits by classifying discrete sequential stages-sprout initiation, extension, connection, and stability-that are differentially affected by manipulation of vascular endothelial growth factor-A (VEGF-A) signalling via genetic loss of the receptor flt-1 (vegfr1). In mouse embryonic stem cell-derived vessels genetically lacking flt-1, overall branching is significantly decreased while sprout initiations are significantly increased. Flt-1(-/-) mutant sprouts are less likely to retract, and they form increased numbers of connections with other vessels. However, loss of flt-1 also leads to vessel collapse, which reduces the number of new stable conduits. Computational simulations predict that loss of flt-1 results in ectopic Flk-1 signalling in connecting sprouts post-fusion, causing protrusion of cell processes into avascular gaps and collapse of branches. Thus, defects in stabilization of new vessel connections offset increased sprout initiations and connectivity in flt-1(-/-) vascular networks, with an overall outcome of reduced numbers of new conduits. CONCLUSIONS These results show that VEGF-A signalling has stage-specific effects on vascular morphogenesis, and that understanding these effects on dynamic stages of angiogenesis and how they integrate to expand a vessel network may suggest new therapeutic strategies.
Collapse
Affiliation(s)
- John C Chappell
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA Center for Heart and Regenerative Medicine Research, Virginia Tech Carilion Research Institute, Roanoke, VA 24014, USA
| | - Julia G Cluceru
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica E Nesmith
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kevin P Mouillesseaux
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Vanessa B Bradley
- Center for Heart and Regenerative Medicine Research, Virginia Tech Carilion Research Institute, Roanoke, VA 24014, USA
| | - Caitlin M Hartland
- Center for Heart and Regenerative Medicine Research, Virginia Tech Carilion Research Institute, Roanoke, VA 24014, USA
| | - Yasmin L Hashambhoy-Ramsay
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Joseph Walpole
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Feilim Mac Gabhann
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Victoria L Bautch
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
15
|
Multi-scale Modeling of the Cardiovascular System: Disease Development, Progression, and Clinical Intervention. Ann Biomed Eng 2016; 44:2642-60. [PMID: 27138523 DOI: 10.1007/s10439-016-1628-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/22/2016] [Indexed: 12/19/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death in the western world. With the current development of clinical diagnostics to more accurately measure the extent and specifics of CVDs, a laudable goal is a better understanding of the structure-function relation in the cardiovascular system. Much of this fundamental understanding comes from the development and study of models that integrate biology, medicine, imaging, and biomechanics. Information from these models provides guidance for developing diagnostics, and implementation of these diagnostics to the clinical setting, in turn, provides data for refining the models. In this review, we introduce multi-scale and multi-physical models for understanding disease development, progression, and designing clinical interventions. We begin with multi-scale models of cardiac electrophysiology and mechanics for diagnosis, clinical decision support, personalized and precision medicine in cardiology with examples in arrhythmia and heart failure. We then introduce computational models of vasculature mechanics and associated mechanical forces for understanding vascular disease progression, designing clinical interventions, and elucidating mechanisms that underlie diverse vascular conditions. We conclude with a discussion of barriers that must be overcome to provide enhanced insights, predictions, and decisions in pre-clinical and clinical applications.
Collapse
|
16
|
Hammadah M, Georgiopoulou VV, Kalogeropoulos AP, Weber M, Wang X, Samara MA, Wu Y, Butler J, Tang WHW. Elevated Soluble Fms-Like Tyrosine Kinase-1 and Placental-Like Growth Factor Levels Are Associated With Development and Mortality Risk in Heart Failure. Circ Heart Fail 2015; 9:e002115. [PMID: 26699385 DOI: 10.1161/circheartfailure.115.002115] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 11/18/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Vascular endothelial dysfunction may play an important role in the progression of heart failure (HF). We hypothesize that elevated levels of vascular markers, placental-like growth factor, and soluble Fms-like tyrosine kinase-1 (sFlt-1) are associated with adverse outcomes in patients with HF. We also assessed possible triggers of sFlt-1 elevation in animal HF models. METHODS AND RESULTS We measured plasma placental-like growth factor and sFlt-1 in 791 HF patients undergoing elective coronary angiogram. Median (interquartile range) placental-like growth factor and sFlt-1 levels were 24 (20-29) and 382 (277-953) pg/mL, respectively. After 5 years of follow-up, and after using receiver operator characteristic curves to determine optimal cutoffs, high levels of sFlt-1 (≥ 280 pg/mL; adjusted hazard ratio, 1.47; 95% confidence interval, 1.03-2.09; P=0.035) but not placental-like growth factor (≥ 25 pg/mL; adjusted hazard ratio, 1.26; 95% confidence interval, 0.94-1.71, P=0.12) were associated with adverse cardiovascular outcomes. In addition, significant elevation of sFlt-1 levels was observed in left anterior descending artery ligation and transverse aortic constriction HF mouse models after 4 and 8 weeks of follow-up, suggesting vascular stress and ischemia as triggers for sFlt-1 elevation in HF. CONCLUSIONS Circulating sFlt-1 is generated as a result of myocardial injury and subsequent HF development. Elevated levels of sFlt-1 are associated with adverse outcomes in stable patients with HF.
Collapse
Affiliation(s)
- Muhammad Hammadah
- From the Department of Cardiovascular Medicine, Heart and Vascular Institute (M.H., W.H.W.T.), Department of Cellular and Molecular Medicine, Lerner Research Institute (M.W., X.W., W.H.W.T.), Cleveland Clinic, OH; Department of Cardiology, Emory University, Atlanta, GA (M.H., V.V.G., A.P.K.); Department of Cardiology, Minneapolis Heart Institute, MN (M.A.S); Department of Mathematics, Cleveland State University, OH (Y.W.); Cardiovascular Division, Stony Brook University, NY (J.B.)
| | - Vasiliki V Georgiopoulou
- From the Department of Cardiovascular Medicine, Heart and Vascular Institute (M.H., W.H.W.T.), Department of Cellular and Molecular Medicine, Lerner Research Institute (M.W., X.W., W.H.W.T.), Cleveland Clinic, OH; Department of Cardiology, Emory University, Atlanta, GA (M.H., V.V.G., A.P.K.); Department of Cardiology, Minneapolis Heart Institute, MN (M.A.S); Department of Mathematics, Cleveland State University, OH (Y.W.); Cardiovascular Division, Stony Brook University, NY (J.B.)
| | - Andreas P Kalogeropoulos
- From the Department of Cardiovascular Medicine, Heart and Vascular Institute (M.H., W.H.W.T.), Department of Cellular and Molecular Medicine, Lerner Research Institute (M.W., X.W., W.H.W.T.), Cleveland Clinic, OH; Department of Cardiology, Emory University, Atlanta, GA (M.H., V.V.G., A.P.K.); Department of Cardiology, Minneapolis Heart Institute, MN (M.A.S); Department of Mathematics, Cleveland State University, OH (Y.W.); Cardiovascular Division, Stony Brook University, NY (J.B.)
| | - Malory Weber
- From the Department of Cardiovascular Medicine, Heart and Vascular Institute (M.H., W.H.W.T.), Department of Cellular and Molecular Medicine, Lerner Research Institute (M.W., X.W., W.H.W.T.), Cleveland Clinic, OH; Department of Cardiology, Emory University, Atlanta, GA (M.H., V.V.G., A.P.K.); Department of Cardiology, Minneapolis Heart Institute, MN (M.A.S); Department of Mathematics, Cleveland State University, OH (Y.W.); Cardiovascular Division, Stony Brook University, NY (J.B.)
| | - Xi Wang
- From the Department of Cardiovascular Medicine, Heart and Vascular Institute (M.H., W.H.W.T.), Department of Cellular and Molecular Medicine, Lerner Research Institute (M.W., X.W., W.H.W.T.), Cleveland Clinic, OH; Department of Cardiology, Emory University, Atlanta, GA (M.H., V.V.G., A.P.K.); Department of Cardiology, Minneapolis Heart Institute, MN (M.A.S); Department of Mathematics, Cleveland State University, OH (Y.W.); Cardiovascular Division, Stony Brook University, NY (J.B.)
| | - Michael A Samara
- From the Department of Cardiovascular Medicine, Heart and Vascular Institute (M.H., W.H.W.T.), Department of Cellular and Molecular Medicine, Lerner Research Institute (M.W., X.W., W.H.W.T.), Cleveland Clinic, OH; Department of Cardiology, Emory University, Atlanta, GA (M.H., V.V.G., A.P.K.); Department of Cardiology, Minneapolis Heart Institute, MN (M.A.S); Department of Mathematics, Cleveland State University, OH (Y.W.); Cardiovascular Division, Stony Brook University, NY (J.B.)
| | - Yuping Wu
- From the Department of Cardiovascular Medicine, Heart and Vascular Institute (M.H., W.H.W.T.), Department of Cellular and Molecular Medicine, Lerner Research Institute (M.W., X.W., W.H.W.T.), Cleveland Clinic, OH; Department of Cardiology, Emory University, Atlanta, GA (M.H., V.V.G., A.P.K.); Department of Cardiology, Minneapolis Heart Institute, MN (M.A.S); Department of Mathematics, Cleveland State University, OH (Y.W.); Cardiovascular Division, Stony Brook University, NY (J.B.)
| | - Javed Butler
- From the Department of Cardiovascular Medicine, Heart and Vascular Institute (M.H., W.H.W.T.), Department of Cellular and Molecular Medicine, Lerner Research Institute (M.W., X.W., W.H.W.T.), Cleveland Clinic, OH; Department of Cardiology, Emory University, Atlanta, GA (M.H., V.V.G., A.P.K.); Department of Cardiology, Minneapolis Heart Institute, MN (M.A.S); Department of Mathematics, Cleveland State University, OH (Y.W.); Cardiovascular Division, Stony Brook University, NY (J.B.)
| | - W H Wilson Tang
- From the Department of Cardiovascular Medicine, Heart and Vascular Institute (M.H., W.H.W.T.), Department of Cellular and Molecular Medicine, Lerner Research Institute (M.W., X.W., W.H.W.T.), Cleveland Clinic, OH; Department of Cardiology, Emory University, Atlanta, GA (M.H., V.V.G., A.P.K.); Department of Cardiology, Minneapolis Heart Institute, MN (M.A.S); Department of Mathematics, Cleveland State University, OH (Y.W.); Cardiovascular Division, Stony Brook University, NY (J.B.).
| |
Collapse
|
17
|
Walpole J, Chappell JC, Cluceru JG, Mac Gabhann F, Bautch VL, Peirce SM. Agent-based model of angiogenesis simulates capillary sprout initiation in multicellular networks. Integr Biol (Camb) 2015; 7:987-97. [PMID: 26158406 PMCID: PMC4558383 DOI: 10.1039/c5ib00024f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many biological processes are controlled by both deterministic and stochastic influences. However, efforts to model these systems often rely on either purely stochastic or purely rule-based methods. To better understand the balance between stochasticity and determinism in biological processes a computational approach that incorporates both influences may afford additional insight into underlying biological mechanisms that give rise to emergent system properties. We apply a combined approach to the simulation and study of angiogenesis, the growth of new blood vessels from existing networks. This complex multicellular process begins with selection of an initiating endothelial cell, or tip cell, which sprouts from the parent vessels in response to stimulation by exogenous cues. We have constructed an agent-based model of sprouting angiogenesis to evaluate endothelial cell sprout initiation frequency and location, and we have experimentally validated it using high-resolution time-lapse confocal microscopy. ABM simulations were then compared to a Monte Carlo model, revealing that purely stochastic simulations could not generate sprout locations as accurately as the rule-informed agent-based model. These findings support the use of rule-based approaches for modeling the complex mechanisms underlying sprouting angiogenesis over purely stochastic methods.
Collapse
Affiliation(s)
- J Walpole
- Department of Biomedical Engineering, University of Virginia, Virginia, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Swarming or collective motion of living entities is one of the most common and spectacular manifestations of living systems that have been extensively studied in recent years. A number of general principles have been established. The interactions at the level of cells are quite different from those among individual animals, therefore the study of collective motion of cells is likely to reveal some specific important features which we plan to overview in this paper. In addition to presenting the most appealing results from the quickly growing related literature we also deliver a critical discussion of the emerging picture and summarize our present understanding of collective motion at the cellular level. Collective motion of cells plays an essential role in a number of experimental and real-life situations. In most cases the coordinated motion is a helpful aspect of the given phenomenon and results in making a related process more efficient (e.g., embryogenesis or wound healing), while in the case of tumor cell invasion it appears to speed up the progression of the disease. In these mechanisms cells both have to be motile and adhere to one another, the adherence feature being the most specific to this sort of collective behavior. One of the central aims of this review is to present the related experimental observations and treat them in light of a few basic computational models so as to make an interpretation of the phenomena at a quantitative level as well.
Collapse
Affiliation(s)
- Előd Méhes
- Department of Biological Physics, Eötvös University, Budapest, Hungary.
| | | |
Collapse
|
19
|
Abstract
The vascular network carries blood throughout the body, delivering oxygen to tissues and providing a pathway for communication between distant organs. The network is hierarchical and structured, but also dynamic, especially at the smaller scales. Remodeling of the microvasculature occurs in response to local changes in oxygen, gene expression, cell-cell communication, and chemical and mechanical stimuli from the microenvironment. These local changes occur as a result of physiological processes such as growth and exercise, as well as acute and chronic diseases including stroke, cancer, and diabetes, and pharmacological intervention. While the vasculature is an important therapeutic target in many diseases, drugs designed to inhibit vascular growth have achieved only limited success, and no drug has yet been approved to promote therapeutic vascular remodeling. This highlights the challenges involved in identifying appropriate therapeutic targets in a system as complex as the vasculature. Systems biology approaches provide a means to bridge current understanding of the vascular system, from detailed signaling dynamics measured in vitro and pre-clinical animal models of vascular disease, to a more complete picture of vascular regulation in vivo. This will translate to an improved ability to identify multi-component biomarkers for diagnosis, prognosis, and monitoring of therapy that are easy to measure in vivo, as well as better drug targets for specific disease states. In this review, we summarize systems biology approaches that have advanced our understanding of vascular function and dysfunction in vivo, with a focus on computational modeling.
Collapse
Affiliation(s)
- Lindsay E Clegg
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | |
Collapse
|
20
|
Murfee WL, Sweat RS, Tsubota KI, Mac Gabhann F, Khismatullin D, Peirce SM. Applications of computational models to better understand microvascular remodelling: a focus on biomechanical integration across scales. Interface Focus 2015; 5:20140077. [PMID: 25844149 DOI: 10.1098/rsfs.2014.0077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Microvascular network remodelling is a common denominator for multiple pathologies and involves both angiogenesis, defined as the sprouting of new capillaries, and network patterning associated with the organization and connectivity of existing vessels. Much of what we know about microvascular remodelling at the network, cellular and molecular scales has been derived from reductionist biological experiments, yet what happens when the experiments provide incomplete (or only qualitative) information? This review will emphasize the value of applying computational approaches to advance our understanding of the underlying mechanisms and effects of microvascular remodelling. Examples of individual computational models applied to each of the scales will highlight the potential of answering specific questions that cannot be answered using typical biological experimentation alone. Looking into the future, we will also identify the needs and challenges associated with integrating computational models across scales.
Collapse
Affiliation(s)
- Walter L Murfee
- Department of Biomedical Engineering , Tulane University , 500 Lindy Boggs Energy Center, New Orleans, LA 70118 , USA
| | - Richard S Sweat
- Department of Biomedical Engineering , Tulane University , 500 Lindy Boggs Energy Center, New Orleans, LA 70118 , USA
| | - Ken-Ichi Tsubota
- Department of Mechanical Engineering , Chiba University , 1-33 Yayoi, Inage, Chiba 263-8522 , Japan
| | - Feilim Mac Gabhann
- Department of Biomedical Engineering , Johns Hopkins University , 3400 North Charles Street, Baltimore, MD 21218 , USA ; Department of Materials Science and Engineering , Johns Hopkins University , 3400 North Charles Street, Baltimore, MD 21218 , USA ; Institute for Computational Medicine , Johns Hopkins University , 3400 North Charles Street, Baltimore, MD 21218 , USA
| | - Damir Khismatullin
- Department of Biomedical Engineering , Tulane University , 500 Lindy Boggs Energy Center, New Orleans, LA 70118 , USA
| | - Shayn M Peirce
- Department of Biomedical Engineering , University of Virginia , 415 Lane Road, Charlottesville, VA 22903 , USA
| |
Collapse
|
21
|
Birkenhauer E, Neethirajan S. A double-edged sword: the role of VEGF in wound repair and chemoattraction of opportunist pathogens. Int J Mol Sci 2015; 16:7159-72. [PMID: 25830483 PMCID: PMC4425010 DOI: 10.3390/ijms16047159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/24/2015] [Accepted: 03/24/2015] [Indexed: 12/19/2022] Open
Abstract
Wound healing is a complex process essential to repairing damaged tissues and preventing infection. Skin is the first line of defense, a chief physical barrier to microbe entry. Wound healing is a physical rebuilding process, but at the same time it is an inflammatory event. In turn, molecules for wound repair are secreted by fibroblasts and others present at the wound site. Vascular endothelial growth factor (VEGF) is a critical cytokine that exhibits chemoattractant properties, recruiting other immune cells to the site. Although generally beneficial, VEGF may also act as a chemoattractant for invading microorganisms, such as Pseudomonas aeruginosa.P. aeruginosa is problematic during wound infection due to its propensity to form biofilms and exhibit heightened antimicrobial resistance. Here, we explored the influence of VEGF gradients (in a microfluidic device wound model) on the motility and chemotactic properties of P. aeruginosa. At lower concentrations, VEGF had little effect on motility, but as the maximal concentration within the gradient increased, P. aeruginosa cells exhibited directed movement along the gradient. Our data provide evidence that while beneficial, VEGF, in excess, may aid colonization by P. aeruginosa. This highlights the necessity for the efficient resolution of inflammation. Understanding the dynamics of wound colonization may lead to new/enhanced therapeutics to hasten recovery.
Collapse
Affiliation(s)
- Eric Birkenhauer
- BioNano Laboratory, School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Suresh Neethirajan
- BioNano Laboratory, School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
22
|
Abstract
Endothelial cells (ECs) exhibit dramatic plasticity of form at the single- and collective-cell level during new vessel growth, adult vascular homeostasis, and pathology. Understanding how, when, and why individual ECs coordinate decisions to change shape, in relation to the myriad of dynamic environmental signals, is key to understanding normal and pathological blood vessel behavior. However, this is a complex spatial and temporal problem. In this review we show that the multidisciplinary field of Adaptive Systems offers a refreshing perspective, common biological language, and straightforward toolkit that cell biologists can use to untangle the complexity of dynamic, morphogenetic systems.
Collapse
Affiliation(s)
- Katie Bentley
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Andrew Philippides
- Centre for Computational Neuroscience and Robotics, Department of Informatics, University of Sussex, Brighton BN1 9QJ, UK
| | - Erzsébet Ravasz Regan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
23
|
Vempati P, Popel AS, Mac Gabhann F. Extracellular regulation of VEGF: isoforms, proteolysis, and vascular patterning. Cytokine Growth Factor Rev 2013; 25:1-19. [PMID: 24332926 DOI: 10.1016/j.cytogfr.2013.11.002] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/14/2013] [Accepted: 11/19/2013] [Indexed: 12/15/2022]
Abstract
The regulation of vascular endothelial growth factor A (VEGF) is critical to neovascularization in numerous tissues under physiological and pathological conditions. VEGF has multiple isoforms, created by alternative splicing or proteolytic cleavage, and characterized by different receptor-binding and matrix-binding properties. These isoforms are known to give rise to a spectrum of angiogenesis patterns marked by differences in branching, which has functional implications for tissues. In this review, we detail the extensive extracellular regulation of VEGF and the ability of VEGF to dictate the vascular phenotype. We explore the role of VEGF-releasing proteases and soluble carrier molecules on VEGF activity. While proteases such as MMP9 can 'release' matrix-bound VEGF and promote angiogenesis, for example as a key step in carcinogenesis, proteases can also suppress VEGF's angiogenic effects. We explore what dictates pro- or anti-angiogenic behavior. We also seek to understand the phenomenon of VEGF gradient formation. Strong VEGF gradients are thought to be due to decreased rates of diffusion from reversible matrix binding, however theoretical studies show that this scenario cannot give rise to lasting VEGF gradients in vivo. We propose that gradients are formed through degradation of sequestered VEGF. Finally, we review how different aspects of the VEGF signal, such as its concentration, gradient, matrix-binding, and NRP1-binding can differentially affect angiogenesis. We explore how this allows VEGF to regulate the formation of vascular networks across a spectrum of high to low branching densities, and from normal to pathological angiogenesis. A better understanding of the control of angiogenesis is necessary to improve upon limitations of current angiogenic therapies.
Collapse
Affiliation(s)
- Prakash Vempati
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Feilim Mac Gabhann
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
24
|
Logsdon EA, Finley SD, Popel AS, Mac Gabhann F. A systems biology view of blood vessel growth and remodelling. J Cell Mol Med 2013; 18:1491-508. [PMID: 24237862 PMCID: PMC4190897 DOI: 10.1111/jcmm.12164] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/16/2013] [Indexed: 12/29/2022] Open
Abstract
Blood travels throughout the body in an extensive network of vessels – arteries, veins and capillaries. This vascular network is not static, but instead dynamically remodels in response to stimuli from cells in the nearby tissue. In particular, the smallest vessels – arterioles, venules and capillaries – can be extended, expanded or pruned, in response to exercise, ischaemic events, pharmacological interventions, or other physiological and pathophysiological events. In this review, we describe the multi-step morphogenic process of angiogenesis – the sprouting of new blood vessels – and the stability of vascular networks in vivo. In particular, we review the known interactions between endothelial cells and the various blood cells and plasma components they convey. We describe progress that has been made in applying computational modelling, quantitative biology and high-throughput experimentation to the angiogenesis process.
Collapse
Affiliation(s)
- Elizabeth A Logsdon
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | |
Collapse
|
25
|
Follin B, Tratwal J, Haack-Sørensen M, Elberg JJ, Kastrup J, Ekblond A. Identical effects of VEGF and serum-deprivation on phenotype and function of adipose-derived stromal cells from healthy donors and patients with ischemic heart disease. J Transl Med 2013; 11:219. [PMID: 24047149 PMCID: PMC3852830 DOI: 10.1186/1479-5876-11-219] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/11/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Adipose-derived stromal cells (ASCs) stimulated with vascular endothelial growth factor (VEGF) and serum-deprived, are applied in the first in-man double-blind placebo-controlled MyStromalCell Trial, as a novel therapeutic option for treatment of ischemic heart disease (IHD). This in vitro study explored the effect of VEGF and serum deprivation on endothelial differentiation capacity of ASCs from healthy donors and IHD patients. METHODS ASCs stimulated with rhVEGF(A165) in serum-deprived medium for one to three weeks were compared with ASCs in serum-deprived (2% fetal bovine serum) or complete medium (10% fetal bovine serum). Expression of VEGF receptors, endothelial and stem cell markers was measured using qPCR, flow cytometry and immunocytochemistry. In vitro tube formation and proliferation was also measured. RESULTS ASCs from VEGF-stimulated and serum-deprived medium significantly increased transcription of transcription factor FOXF1, endothelial marker vWF and receptor VEGFR1 compared with ASCs from complete medium. ASCs maintained stem cell characteristics in all conditions. Tube formation of ASCs occurred in VEGF-stimulated and serum-deprived medium. The only difference between healthy and patient ASCs was a variation in proliferation rate. CONCLUSIONS ASCs from IHD patients and healthy donors proved equally inclined to differentiate in endothelial direction by serum-deprivation, however with no visible additive effect of VEGF stimulation. The treatment did not result in complete endothelial differentiation, but priming towards endothelial lineage.
Collapse
Affiliation(s)
- Bjarke Follin
- Cardiology Stem Cell Center, The Heart Center, Rigshospitalet, University Hospital Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
26
|
Czirok A. Endothelial cell motility, coordination and pattern formation during vasculogenesis. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 5:587-602. [PMID: 23857825 DOI: 10.1002/wsbm.1233] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/24/2013] [Accepted: 05/28/2013] [Indexed: 01/13/2023]
Abstract
How vascular networks assemble is a fundamental problem of developmental biology that also has medical importance. To explain the organizational principles behind vascular patterning, we must understand how can tissue level structures be controlled through cell behavior patterns like motility and adhesion that, in turn, are determined by biochemical signal transduction processes? We discuss the various ideas that have been proposed as mechanisms for vascular network assembly: cell motility guided by extracellular matrix alignment (contact guidance), chemotaxis guided by paracrine and autocrine morphogens, and multicellular sprouting guided by cell-cell contacts. All of these processes yield emergent patterns, thus endothelial cells can form an interconnected structure autonomously, without guidance from an external pre-pattern.
Collapse
Affiliation(s)
- Andras Czirok
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA; Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
27
|
Bentley K, Jones M, Cruys B. Predicting the future: Towards symbiotic computational and experimental angiogenesis research. Exp Cell Res 2013; 319:1240-6. [DOI: 10.1016/j.yexcr.2013.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 02/01/2013] [Accepted: 02/02/2013] [Indexed: 01/14/2023]
|
28
|
Walpole J, Papin JA, Peirce SM. Multiscale computational models of complex biological systems. Annu Rev Biomed Eng 2013; 15:137-54. [PMID: 23642247 DOI: 10.1146/annurev-bioeng-071811-150104] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Integration of data across spatial, temporal, and functional scales is a primary focus of biomedical engineering efforts. The advent of powerful computing platforms, coupled with quantitative data from high-throughput experimental methodologies, has allowed multiscale modeling to expand as a means to more comprehensively investigate biological phenomena in experimentally relevant ways. This review aims to highlight recently published multiscale models of biological systems, using their successes to propose the best practices for future model development. We demonstrate that coupling continuous and discrete systems best captures biological information across spatial scales by selecting modeling techniques that are suited to the task. Further, we suggest how to leverage these multiscale models to gain insight into biological systems using quantitative biomedical engineering methods to analyze data in nonintuitive ways. These topics are discussed with a focus on the future of the field, current challenges encountered, and opportunities yet to be realized.
Collapse
Affiliation(s)
- Joseph Walpole
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
29
|
Abstract
The concept of targeting new blood vessel formation, or angiogenesis, in tumors is an important advancement in cancer therapy, resulting, in part, from the development of such biologic agents as bevacizumab, a monoclonal antibody directed against vascular endothelial growth factor (VEGF)-A. The rationale for antiangiogenic therapy is based on the hypothesis that if tumors are limited in their capacity to obtain a new blood supply, so too is their capacity for growth and metastasis. Additional evidence suggests that pruning and/or "normalization" of irregular tumor vasculature and reduction of hypoxia may facilitate greater access of cytotoxic chemotherapy (CT) to the tumor. Indeed, for metastatic colorectal cancer, bevacizumab in combination with established CT regimens has efficacy superior to that of CT alone. Despite ~2-month longer progression-free and overall survival times than with CT alone, patients still progress, possibly because of alternative angiogenic "escape" pathways that emerge independent of VEGF-A, or are driven by hypoxic stress on the tumor. Other VEGF family members may contribute to resistance, and many factors that contribute to the regulation of tumor angiogenesis function as part of a complex network, existing in different concentrations and spatiotemporal gradients and producing a wide range of biologic responses. Integrating these concepts into the design and evaluation of new antiangiogenic therapies may help overcome resistance mechanisms and allow for greater efficacy over longer treatment periods.
Collapse
Affiliation(s)
- Sabine Tejpar
- Digestive Oncology Unit, University Hospital Gasthuisberg, Herestraat 49, Leuven B-3000, Belgium.
| | | | | |
Collapse
|
30
|
Czirok A, Little CD. Pattern formation during vasculogenesis. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2012; 96:153-62. [PMID: 22692888 PMCID: PMC3465733 DOI: 10.1002/bdrc.21010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vasculogenesis, the assembly of the first vascular network, is an intriguing developmental process that yields the first functional organ system of the embryo. In addition to being a fundamental part of embryonic development, vasculogenic processes also have medical importance. To explain the organizational principles behind vascular patterning, we must understand how morphogenesis of tissue level structures can be controlled through cell behavior patterns that, in turn, are determined by biochemical signal transduction processes. Mathematical analyses and computer simulations can help conceptualize how to bridge organizational levels and thus help in evaluating hypotheses regarding the formation of vascular networks. Here, we discuss the ideas that have been proposed to explain the formation of the first vascular pattern: cell motility guided by extracellular matrix alignment (contact guidance), chemotaxis guided by paracrine and autocrine morphogens, and sprouting guided by cell-cell contacts.
Collapse
Affiliation(s)
- Andras Czirok
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| | | |
Collapse
|
31
|
Peirce SM, Mac Gabhann F, Bautch VL. Integration of experimental and computational approaches to sprouting angiogenesis. Curr Opin Hematol 2012; 19:184-91. [PMID: 22406822 PMCID: PMC4132663 DOI: 10.1097/moh.0b013e3283523ea6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW We summarize recent experimental and computational studies that investigate molecular and cellular mechanisms of sprouting angiogenesis. We discuss how experimental tools have unveiled new opportunities for computational modeling by providing detailed phenomenological descriptions and conceptual models of cell-level behaviors underpinned by high-quality molecular data. Using recent examples, we show how new understanding results from bridging computational and experimental approaches. RECENT FINDINGS Experimental data extends beyond the tip cell vs. stalk cell paradigm, and involves numerous molecular inputs such as vascular endothelial growth factor and Notch. This data is being used to generate and validate computational models, which can then be used to predict the results of hypothetical experiments that are difficult to perform in the laboratory, and to generate new hypotheses that account for system-wide interactions. As a result of this integration, descriptions of critical gradients of growth factor-receptor complexes have been generated, and new modulators of cell behavior have been described. SUMMARY We suggest that the recent emphasis on the different stages of sprouting angiogenesis, and integration of experimental and computational approaches, should provide a way to manage the complexity of this process and help identify new regulatory paradigms and therapeutic targets.
Collapse
Affiliation(s)
- Shayn M. Peirce
- Dept. of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
| | - Feilim Mac Gabhann
- Dept. of Biomedical Engineering, Johns Hopkins University, Baltimore MD 21218
- Institute for Computational Medicine, Johns Hopkins University, Baltimore MD 21218
| | - Victoria L Bautch
- Dept. of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|