1
|
Drummer DJ, McNiff JL, Howard EE, Gwin JA, Carrigan CT, Murphy NE, Wilson MA, Michalak J, Ryan BJ, McClung JP, Pasiakos SM, Margolis LM. Exogenous erythropoietin increases hematological status, fat oxidation, and aerobic performance in males following prolonged strenuous training. Physiol Rep 2024; 12:e16038. [PMID: 38757249 PMCID: PMC11099744 DOI: 10.14814/phy2.16038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
This study investigated the effects of EPO on hemoglobin (Hgb) and hematocrit (Hct), time trial (TT) performance, substrate oxidation, and skeletal muscle phenotype throughout 28 days of strenuous exercise. Eight males completed this longitudinal controlled exercise and feeding study using EPO (50 IU/kg body mass) 3×/week for 28 days. Hgb, Hct, and TT performance were assessed PRE and on Days 7, 14, 21, and 27 of EPO. Rested/fasted muscle obtained PRE and POST EPO were analyzed for gene expression, protein signaling, fiber type, and capillarization. Substrate oxidation and glucose turnover were assessed during 90-min of treadmill load carriage (LC; 30% body mass; 55 ± 5% V̇O2peak) exercise using indirect calorimetry, and 6-6-[2H2]-glucose PRE and POST. Hgb and Hct increased, and TT performance improved on Days 21 and 27 compared to PRE (p < 0.05). Energy expenditure, fat oxidation, and metabolic clearance rate during LC increased (p < 0.05) from PRE to POST. Myofiber type, protein markers of mitochondrial biogenesis, and capillarization were unchanged PRE to POST. Transcriptional regulation of mitochondrial activity and fat metabolism increased from PRE to POST (p < 0.05). These data indicate EPO administration during 28 days of strenuous exercise can enhance aerobic performance through improved oxygen carrying capacity, whole-body and skeletal muscle fat metabolism.
Collapse
Affiliation(s)
- Devin J. Drummer
- Military Nutrition DivisionU.S. Army Research Institute of Environmental MedicineNatickMassachusettsUSA
- Oak Ridge Institute for Science and EducationBelcampMarylandUSA
| | - Julie L. McNiff
- Military Nutrition DivisionU.S. Army Research Institute of Environmental MedicineNatickMassachusettsUSA
- Combat Feeding DivisionU.S. Army Combat Capabilities Development Command (DEVCOM)NatickMassachusettsUSA
| | - Emily E. Howard
- Military Nutrition DivisionU.S. Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| | - Jess A. Gwin
- Military Nutrition DivisionU.S. Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| | - Christopher T. Carrigan
- Military Nutrition DivisionU.S. Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| | - Nancy E. Murphy
- Military Nutrition DivisionU.S. Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| | - Marques A. Wilson
- Military Nutrition DivisionU.S. Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| | - Julia Michalak
- Military Nutrition DivisionU.S. Army Research Institute of Environmental MedicineNatickMassachusettsUSA
- Oak Ridge Institute for Science and EducationBelcampMarylandUSA
| | - Benjamin J. Ryan
- Thermal and Mountain Medicine DivisionU.S. Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| | - James P. McClung
- Military Nutrition DivisionU.S. Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| | - Stefan M. Pasiakos
- Office of Dietary Supplements, National Institutes of HealthU.S. Department of Health and Human ServicesBethesdaMarylandUSA
| | - Lee M. Margolis
- Military Nutrition DivisionU.S. Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| |
Collapse
|
2
|
Breenfeldt Andersen A, Nordsborg NB, Bonne TC, Bejder J. Contemporary blood doping-Performance, mechanism, and detection. Scand J Med Sci Sports 2024; 34:e14243. [PMID: 36229224 DOI: 10.1111/sms.14243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 10/17/2022]
Abstract
Blood doping is prohibited for athletes but has been a well-described practice within endurance sports throughout the years. With improved direct and indirect detection methods, the practice has allegedly moved towards micro-dosing, that is, reducing the blood doping regime amplitude. This narrative review evaluates whether blood doping, specifically recombinant human erythropoietin (rhEpo) treatment and blood transfusions are performance-enhancing, the responsible mechanism as well as detection possibilities with a special emphasis on micro-dosing. In general, studies evaluating micro-doses of blood doping are limited. However, in randomized, double-blinded, placebo-controlled trials, three studies find that infusing as little as 130 ml red blood cells or injecting 9 IU × kg bw-1 rhEpo three times per week for 4 weeks improve endurance performance ~4%-6%. The responsible mechanism for a performance-enhancing effect following rhEpo or blood transfusions appear to be increased O2 -carrying capacity, which is accompanied by an increased muscular O2 extraction and likely increased blood flow to the working muscles, enabling the ability to sustain a higher exercise intensity for a given period. Blood doping in micro-doses challenges indirect detection by the Athlete Biological Passport, albeit it can identify ~20%-60% of the individuals depending on the sample timing. However, novel biomarkers are emerging, and some may provide additive value for detection of micro blood doping such as the immature reticulocytes or the iron regulatory hormones hepcidin and erythroferrone. Future studies should attempt to validate these biomarkers for implementation in real-world anti-doping efforts and continue the biomarker discovery.
Collapse
Affiliation(s)
- Andreas Breenfeldt Andersen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- Department of Public Health, Section for Sport Science, Aarhus University, Aarhus, Denmark
| | | | - Thomas Christian Bonne
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Bejder
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Aboouf MA, Guscetti F, von Büren N, Armbruster J, Ademi H, Ruetten M, Meléndez-Rodríguez F, Rülicke T, Seymer A, Jacobs RA, Schneider Gasser EM, Aragones J, Neumann D, Gassmann M, Thiersch M. Erythropoietin receptor regulates tumor mitochondrial biogenesis through iNOS and pAKT. Front Oncol 2022; 12:976961. [PMID: 36052260 PMCID: PMC9425774 DOI: 10.3389/fonc.2022.976961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Erythropoietin receptor (EPOR) is widely expressed in healthy and malignant tissues. In certain malignancies, EPOR stimulates tumor growth. In healthy tissues, EPOR controls processes other than erythropoiesis, including mitochondrial metabolism. We hypothesized that EPOR also controls the mitochondrial metabolism in cancer cells. To test this hypothesis, we generated EPOR-knockdown cancer cells to grow tumor xenografts in mice and analyzed tumor cellular respiration via high-resolution respirometry. Furthermore, we analyzed cellular respiratory control, mitochondrial content, and regulators of mitochondrial biogenesis in vivo and in vitro in different cancer cell lines. Our results show that EPOR controls tumor growth and mitochondrial biogenesis in tumors by controlling the levels of both, pAKT and inducible NO synthase (iNOS). Furthermore, we observed that the expression of EPOR is associated with the expression of the mitochondrial marker VDAC1 in tissue arrays of lung cancer patients, suggesting that EPOR indeed helps to regulate mitochondrial biogenesis in tumors of cancer patients. Thus, our data imply that EPOR not only stimulates tumor growth but also regulates tumor metabolism and is a target for direct intervention against progression.
Collapse
Affiliation(s)
- Mostafa A. Aboouf
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Franco Guscetti
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Nadine von Büren
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Julia Armbruster
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Hyrije Ademi
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Maja Ruetten
- PathoVet AG, Pathology Diagnostic Laboratory, Tagelswangen, Switzerland
| | | | - Thomas Rülicke
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Alexander Seymer
- Department for Sociology and Social Geography, Paris Lodron University of Salzburg (PLUS), Salzburg, Austria
| | - Robert A. Jacobs
- Department of Human Physiology & Nutrition, University of Colorado Colorado Springs (UCCS), Colorado Springs, CO, United States
| | - Edith M. Schneider Gasser
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Center of Neuroscience Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| | - Julian Aragones
- Hospital Universitario Santa Cristina, Autonomous University of Madrid, Madrid, Spain
| | - Drorit Neumann
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Markus Thiersch
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- *Correspondence: Markus Thiersch,
| |
Collapse
|
4
|
Vinke JSJ, Wouters HJCM, Stam SP, Douwes RM, Post A, Gomes-Neto AW, van der Klauw MM, Berger SP, Bakker SJL, De Borst MH, Eisenga MF. Decreased haemoglobin levels are associated with lower muscle mass and strength in kidney transplant recipients. J Cachexia Sarcopenia Muscle 2022; 13:2044-2053. [PMID: 35666066 PMCID: PMC9397498 DOI: 10.1002/jcsm.12999] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/18/2022] [Accepted: 03/21/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Post-transplant anaemia and reduced muscle mass and strength are highly prevalent in kidney transplant recipients (KTRs). Decreased haemoglobin levels, a marker of anaemia, could adversely affect muscle mass and strength through multiple mechanisms, among others, through diminished tissue oxygenation. We aimed to investigate the association between haemoglobin levels with muscle mass and strength in KTRs. METHODS We included stable KTRs from the TransplantLines Biobank and Cohort study with a functional graft ≥1 year post-transplantation. Muscle mass was assessed using 24 h urinary creatinine excretion rate (CER) and bioelectrical impedance analysis (BIA). Muscle strength was assessed with a handgrip strength test using a dynamometer and, in a subgroup (n = 290), with the five-times sit-to-stand (FTSTS) test. We used multivariable linear and logistic regression analyses to investigate the associations of haemoglobin levels with muscle mass and strength. RESULTS In 871 included KTRs [median age 58 (interquartile range (IQR), 48-66)] years; 60% men; eGFR 51 ± 18 mL/min/1.73 m2 ) who were 3.5 (1.0-10.2) years post-transplantation, the mean serum haemoglobin level was 13.9 ± 1.8 g/dL in men and 12.8 ± 1.5 g/dL in women. Lower haemoglobin levels were independently associated with a lower CER (std. β = 0.07, P = 0.01), BIA-derived skeletal muscle mass (std. β = 0.22, P < 0.001), handgrip strength (std. β = 0.15, P < 0.001), and worse FTSTS test scores (std. β = -0.17, P = 0.02). KTRs in the lowest age-specific and sex-specific quartile of haemoglobin levels had an increased risk of being in the worst age-specific and sex-specific quartile of CER (fully adjusted OR, 2.09; 95% CI 1.15-3.77; P = 0.02), handgrip strength (fully adjusted OR, 3.30; 95% CI 1.95-5.59; P < 0.001), and FTSTS test score (fully adjusted OR, 7.21; 95% CI 2.59-20.05; P < 0.001). CONCLUSIONS Low haemoglobin levels are strongly associated with decreased muscle mass and strength in KTRs. Future investigation will need to investigate whether maintaining higher haemoglobin levels may improve muscle mass and strength in KTRs.
Collapse
Affiliation(s)
- Joanna Sophia J Vinke
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hanneke J C M Wouters
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Suzanne P Stam
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rianne M Douwes
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Adrian Post
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Antonio W Gomes-Neto
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Melanie M van der Klauw
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stefan P Berger
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stephan J L Bakker
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | -
- Groningen Transplant Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martin H De Borst
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Michele F Eisenga
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Soldatov VO, Pokrovskiy MV, Puchenkova OA, Zhunusov NS, Krayushkina AM, Grechina AV, Soldatova MO, Lapin KN, Bushueva OY. EPOR/CD131-mediated attenuation of rotenone-induced retinal degeneration is associated with upregulation of autophagy genes. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial dysfunction is a key driver of neurodegeneration. This study aimed to evaluate the protective potential of EPOR/CD131 (heterodimeric erythropoietin receptor) stimulation in the neurodegeneration caused by rotenone-induced mitochondrial dysfunction. The effects of erythropoietin (EPO) and an EPO mimetic peptide pHBSP were assessed using in vivo and in vitro models. Single injections of 10 µg/kg EPO or 5 µg/kg pHBSP significantly alleviated the degeneration of ganglion cells of the retina in a rotenone-induced retinopathy in rats (p < 0.05). Consistently, in vitro exposure of rotenone-treated murine primary neuroglial cultures to 500 nM EPO or pHBSP significantly rescued the survival of the cells (p < 0.005). The observed enhancement of LC3A, ATG7, Beclin-1, Parkin and BNIP3 mRNA expression by EPOR/CD131 agonists implicates the autophagy and mitophagy activation as a plausible mitoprotective mechanism.
Collapse
Affiliation(s)
- VO Soldatov
- Belgorod State National Research University, Belgorod, Russia
| | - MV Pokrovskiy
- Belgorod State National Research University, Belgorod, Russia
| | - OA Puchenkova
- Belgorod State National Research University, Belgorod, Russia
| | - NS Zhunusov
- Belgorod State National Research University, Belgorod, Russia
| | - AM Krayushkina
- Belgorod State National Research University, Belgorod, Russia
| | - AV Grechina
- Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - KN Lapin
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | | |
Collapse
|
6
|
Saghaleyni R, Malm M, Moruzzi N, Zrimec J, Razavi R, Wistbacka N, Thorell H, Pintar A, Hober A, Edfors F, Chotteau V, Berggren PO, Grassi L, Zelezniak A, Svensson T, Hatton D, Nielsen J, Robinson JL, Rockberg J. Enhanced metabolism and negative regulation of ER stress support higher erythropoietin production in HEK293 cells. Cell Rep 2022; 39:110936. [PMID: 35705050 DOI: 10.1016/j.celrep.2022.110936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/05/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Recombinant protein production can cause severe stress on cellular metabolism, resulting in limited titer and product quality. To investigate cellular and metabolic characteristics associated with these limitations, we compare HEK293 clones producing either erythropoietin (EPO) (secretory) or GFP (non-secretory) protein at different rates. Transcriptomic and functional analyses indicate significantly higher metabolism and oxidative phosphorylation in EPO producers compared with parental and GFP cells. In addition, ribosomal genes exhibit specific expression patterns depending on the recombinant protein and the production rate. In a clone displaying a dramatically increased EPO secretion, we detect higher gene expression related to negative regulation of endoplasmic reticulum (ER) stress, including upregulation of ATF6B, which aids EPO production in a subset of clones by overexpression or small interfering RNA (siRNA) knockdown. Our results offer potential target pathways and genes for further development of the secretory power in mammalian cell factories.
Collapse
Affiliation(s)
- Rasool Saghaleyni
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Magdalena Malm
- KTH - Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, Department of Protein Science, 106 91 Stockholm, Sweden
| | - Noah Moruzzi
- The Rolf Luft Research Center for Diabetes and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska Institute, 17176 Stockholm, Sweden
| | - Jan Zrimec
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Ronia Razavi
- KTH - Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, Department of Protein Science, 106 91 Stockholm, Sweden
| | - Num Wistbacka
- KTH - Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, Department of Protein Science, 106 91 Stockholm, Sweden
| | - Hannes Thorell
- KTH - Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, Department of Protein Science, 106 91 Stockholm, Sweden
| | - Anton Pintar
- KTH - Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, Department of Protein Science, 106 91 Stockholm, Sweden
| | - Andreas Hober
- Science for Life Laboratory, KTH - Royal Institute of Technology, 171 65 Solna, Sweden
| | - Fredrik Edfors
- Science for Life Laboratory, KTH - Royal Institute of Technology, 171 65 Solna, Sweden
| | - Veronique Chotteau
- KTH - Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, Department of Industrial Biotechnology, 106 91 Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska Institute, 17176 Stockholm, Sweden
| | - Luigi Grassi
- Cell Culture & Fermentation Sciences, BioPharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Aleksej Zelezniak
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Thomas Svensson
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Kemivägen 10, 41258 Gothenburg, Sweden
| | - Diane Hatton
- Cell Culture & Fermentation Sciences, BioPharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jonathan L Robinson
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Kemivägen 10, 41258 Gothenburg, Sweden.
| | - Johan Rockberg
- KTH - Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, Department of Protein Science, 106 91 Stockholm, Sweden.
| |
Collapse
|
7
|
Rufini A, Malisan F, Condò I, Testi R. Drug Repositioning in Friedreich Ataxia. Front Neurosci 2022; 16:814445. [PMID: 35221903 PMCID: PMC8863941 DOI: 10.3389/fnins.2022.814445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
Friedreich ataxia is a rare neurodegenerative disorder caused by insufficient levels of the essential mitochondrial protein frataxin. It is a severely debilitating disease that significantly impacts the quality of life of affected patients and reduces their life expectancy, however, an adequate cure is not yet available for patients. Frataxin function, although not thoroughly elucidated, is associated with assembly of iron-sulfur cluster and iron metabolism, therefore insufficient frataxin levels lead to reduced activity of many mitochondrial enzymes involved in the electron transport chain, impaired mitochondrial metabolism, reduced ATP production and inefficient anti-oxidant response. As a consequence, neurons progressively die and patients progressively lose their ability to coordinate movement and perform daily activities. Therapeutic strategies aim at restoring sufficient frataxin levels or at correcting some of the downstream consequences of frataxin deficiency. However, the classical pathways of drug discovery are challenging, require a significant amount of resources and time to reach the final approval, and present a high failure rate. Drug repositioning represents a viable alternative to boost the identification of a therapy, particularly for rare diseases where resources are often limited. In this review we will describe recent efforts aimed at the identification of a therapy for Friedreich ataxia through drug repositioning, and discuss the limitation of such strategies.
Collapse
Affiliation(s)
- Alessandra Rufini
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- Fratagene Therapeutics, Rome, Italy
- Saint Camillus International University of Health and Medical Sciences, Rome, Italy
- *Correspondence: Alessandra Rufini,
| | - Florence Malisan
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Ivano Condò
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Roberto Testi
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- Fratagene Therapeutics, Rome, Italy
| |
Collapse
|
8
|
Gawish MF, Selim SA, Abd El-Star AA, Ahmed SM. Histological and immunohistochemical study of the effect of ozone versus erythropoietin on induced skeletal muscle ischemia-reperfusion injury in adult male rats. Ultrastruct Pathol 2022; 46:96-109. [PMID: 35130793 DOI: 10.1080/01913123.2022.2035874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ischemia reperfusion (IR) injury of skeletal muscles is a serious problem because of its local and systemic complications. Previous studies reported that ozone and erythropoietin could alleviate IR effect on several organs. The current research is established to evaluate the possible protective role of ozone versus erythropoietin following IR injury of the gastrocnemius muscle. Fifty rats were equally divided into five groups: I control, II ischemia reperfusion (IR), III post-reperfusion ozone treated, IV post-reperfusion erythropoietin-treated, and V recovering post-reperfusion without treatment groups. The right femoral arteries of all rats were clamped for three hours to induce ischemia then clamps were released to allow reperfusion for two hours. Rats of group II were scarified immediately after reperfusion period. Rats of group III were injected with ozone just after reperfusion for 14 days. Animals of group IV were injected with erythropoietin just after reperfusion for 14 days. Rats of group V rats were kept for 2 weeks following reperfusion without treatment. Blood samples were obtained to estimate lactate dehydrogenase (LDH) and creatine kinase (CK) enzymes. Gastrocnemius muscle was processed for measurement of tissue malondialdehyde (MDA), as well as examination by light and electron microscopes. iNOS and PCNA immunohistochemistry and statistical analysis were applied. The current results indicated that both ozone and erythropoietin could be used as protective agents reducing the muscular damage induced by IR injury.
Collapse
Affiliation(s)
- Magdy F Gawish
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Egypt
| | - Sally A Selim
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Egypt
| | - Alyaa A Abd El-Star
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Egypt
| | - Samah M Ahmed
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
9
|
Balaian E, Wobus M, Bornhäuser M, Chavakis T, Sockel K. Myelodysplastic Syndromes and Metabolism. Int J Mol Sci 2021; 22:ijms222011250. [PMID: 34681910 PMCID: PMC8541058 DOI: 10.3390/ijms222011250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/06/2021] [Accepted: 10/14/2021] [Indexed: 12/01/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are acquired clonal stem cell disorders exhibiting ineffective hematopoiesis, dysplastic cell morphology in the bone marrow, and peripheral cytopenia at early stages; while advanced stages carry a high risk for transformation into acute myeloid leukemia (AML). Genetic alterations are integral to the pathogenesis of MDS. However, it remains unclear how these genetic changes in hematopoietic stem and progenitor cells (HSPCs) occur, and how they confer an expansion advantage to the clones carrying them. Recently, inflammatory processes and changes in cellular metabolism of HSPCs and the surrounding bone marrow microenvironment have been associated with an age-related dysfunction of HSPCs and the emergence of genetic aberrations related to clonal hematopoiesis of indeterminate potential (CHIP). The present review highlights the involvement of metabolic and inflammatory pathways in the regulation of HSPC and niche cell function in MDS in comparison to healthy state and discusses how such pathways may be amenable to therapeutic interventions.
Collapse
Affiliation(s)
- Ekaterina Balaian
- Medical Department I, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.W.); (M.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence: (E.B.); (K.S.)
| | - Manja Wobus
- Medical Department I, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.W.); (M.B.)
| | - Martin Bornhäuser
- Medical Department I, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.W.); (M.B.)
- National Center for Tumor Diseases, Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
| | - Triantafyllos Chavakis
- National Center for Tumor Diseases, Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany
| | - Katja Sockel
- Medical Department I, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.W.); (M.B.)
- Correspondence: (E.B.); (K.S.)
| |
Collapse
|
10
|
Larsen S, Dam Søndergård S, Eg Sahl R, Frandsen J, Morville T, Dela F, Helge JW. Acute erythropoietin injection increases muscle mitochondrial respiratory capacity in young men: a double-blinded randomized crossover trial. J Appl Physiol (1985) 2021; 131:1340-1347. [PMID: 34498946 DOI: 10.1152/japplphysiol.00995.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim was to investigate if acute recombinant human erythropoietin (rHuEPO) injection had an effect on mitochondrial function and if exercise would have an additive effect. Furthermore, to investigate if in vitro incubation with rHuEPO had an effect on muscle mitochondrial respiratory capacity. Eight healthy young men were recruited for this double-blinded randomized placebo-controlled crossover study. rHuEPO (400 IU/kg body wt) or saline injection was given intravenously, before an acute bout of exercise. Resting metabolic rate and fat oxidation were measured. Biopsies were obtained at baseline, 120 min after injection, and right after the acute exercise bout. Mitochondrial function (mitochondrial respiration and H2O2 emission) was measured in permeabilized skeletal muscle using high-resolution respirometry and fluorometry. Specific gene expression and enzyme activity were measured. Skeletal muscle mitochondrial respiratory capacity was measured with and without incubation with rHuEPO. Fat oxidation at rest increased after rHuEPO injection, but no difference was found in fat oxidation during exercise. Mitochondrial respiratory capacity was increased after rHuEPO injection when pyruvate was in the assay, which was not the case when saline was injected. No changes were seen in H2O2 emission after rHuEPO injection or acute exercise. Incubation of skeletal muscle fibers in vitro with rHuEPO increased mitochondrial respiratory capacity. Acute rHuEPO injection increased mitochondrial respiratory capacity when pyruvate was used in the assay. No statistical difference was found in H2O2 emission capacity, although a numerical increase was seen after rHuEPO injection. In vitro incubation of the skeletal muscle sample with rHuEPO increases mitochondrial respiratory capacity.NEW & NOTEWORTHY The effect of an acute rHuEPO injection on skeletal muscle mitochondrial function was investigated in young healthy male subjects. rHuEPO has an acute effect on skeletal muscle mitochondrial respiratory capacity in humans, where an increased mitochondrial respiratory capacity was seen. This could be the first step leading to increased mitochondrial biogenesis.
Collapse
Affiliation(s)
- Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Stine Dam Søndergård
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ronni Eg Sahl
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Frandsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Morville
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Dela
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Geriatrics, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Jørn W Helge
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Tsiftsoglou AS. Erythropoietin (EPO) as a Key Regulator of Erythropoiesis, Bone Remodeling and Endothelial Transdifferentiation of Multipotent Mesenchymal Stem Cells (MSCs): Implications in Regenerative Medicine. Cells 2021; 10:cells10082140. [PMID: 34440909 PMCID: PMC8391952 DOI: 10.3390/cells10082140] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
Human erythropoietin (EPO) is an N-linked glycoprotein consisting of 166 aa that is produced in the kidney during the adult life and acts both as a peptide hormone and hematopoietic growth factor (HGF), stimulating bone marrow erythropoiesis. EPO production is activated by hypoxia and is regulated via an oxygen-sensitive feedback loop. EPO acts via its homodimeric erythropoietin receptor (EPO-R) that increases cell survival and drives the terminal erythroid maturation of progenitors BFU-Es and CFU-Es to billions of mature RBCs. This pathway involves the activation of multiple erythroid transcription factors, such as GATA1, FOG1, TAL-1, EKLF and BCL11A, and leads to the overexpression of genes encoding enzymes involved in heme biosynthesis and the production of hemoglobin. The detection of a heterodimeric complex of EPO-R (consisting of one EPO-R chain and the CSF2RB β-chain, CD131) in several tissues (brain, heart, skeletal muscle) explains the EPO pleotropic action as a protection factor for several cells, including the multipotent MSCs as well as cells modulating the innate and adaptive immunity arms. EPO induces the osteogenic and endothelial transdifferentiation of the multipotent MSCs via the activation of EPO-R signaling pathways, leading to bone remodeling, induction of angiogenesis and secretion of a large number of trophic factors (secretome). These diversely unique properties of EPO, taken together with its clinical use to treat anemias associated with chronic renal failure and other blood disorders, make it a valuable biologic agent in regenerative medicine for the treatment/cure of tissue de-regeneration disorders.
Collapse
Affiliation(s)
- Asterios S Tsiftsoglou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
12
|
Nijholt KT, Meems LMG, Ruifrok WPT, Maass AH, Yurista SR, Pavez-Giani MG, Mahmoud B, Wolters AHG, van Veldhuisen DJ, van Gilst WH, Silljé HHW, de Boer RA, Westenbrink BD. The erythropoietin receptor expressed in skeletal muscle is essential for mitochondrial biogenesis and physiological exercise. Pflugers Arch 2021; 473:1301-1313. [PMID: 34142210 PMCID: PMC8302562 DOI: 10.1007/s00424-021-02577-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/16/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022]
Abstract
Erythropoietin (EPO) is a haematopoietic hormone that regulates erythropoiesis, but the EPO-receptor (EpoR) is also expressed in non-haematopoietic tissues. Stimulation of the EpoR in cardiac and skeletal muscle provides protection from various forms of pathological stress, but its relevance for normal muscle physiology remains unclear. We aimed to determine the contribution of the tissue-specific EpoR to exercise-induced remodelling of cardiac and skeletal muscle. Baseline phenotyping was performed on left ventricle and m. gastrocnemius of mice that only express the EpoR in haematopoietic tissues (EpoR-tKO). Subsequently, mice were caged in the presence or absence of a running wheel for 4 weeks and exercise performance, cardiac function and histological and molecular markers for physiological adaptation were assessed. While gross morphology of both muscles was normal in EpoR-tKO mice, mitochondrial content in skeletal muscle was decreased by 50%, associated with similar reductions in mitochondrial biogenesis, while mitophagy was unaltered. When subjected to exercise, EpoR-tKO mice ran slower and covered less distance than wild-type (WT) mice (5.5 ± 0.6 vs. 8.0 ± 0.4 km/day, p < 0.01). The impaired exercise performance was paralleled by reductions in myocyte growth and angiogenesis in both muscle types. Our findings indicate that the endogenous EPO-EpoR system controls mitochondrial biogenesis in skeletal muscle. The reductions in mitochondrial content were associated with reduced exercise capacity in response to voluntary exercise, supporting a critical role for the extra-haematopoietic EpoR in exercise performance.
Collapse
Affiliation(s)
- Kirsten T Nijholt
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Laura M G Meems
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Willem P T Ruifrok
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Alexander H Maass
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Salva R Yurista
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Mario G Pavez-Giani
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Belend Mahmoud
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Anouk H G Wolters
- Department of Cell Biology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Dirk J van Veldhuisen
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Wiek H van Gilst
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - B Daan Westenbrink
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands.
| |
Collapse
|
13
|
An Abductive Inference Approach to Assess the Performance-Enhancing Effects of Drugs Included on the World Anti-Doping Agency Prohibited List. Sports Med 2021; 51:1353-1376. [PMID: 33811295 DOI: 10.1007/s40279-021-01450-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 12/18/2022]
Abstract
Some have questioned the evidence for performance-enhancing effects of several substances included on the World Anti-Doping Agency's Prohibited List due to the divergent or inconclusive findings in randomized controlled trials (RCTs). However, inductive statistical inference based on RCTs-only may result in biased conclusions because of the scarcity of studies, inter-study heterogeneity, too few outcome events, or insufficient power. An abductive inference approach, where the body of evidence is evaluated beyond considerations of statistical significance, may serve as a tool to assess the plausibility of performance-enhancing effects of substances by also considering observations and facts not solely obtained from RCTs. Herein, we explored the applicability of an abductive inference approach as a tool to assess the performance-enhancing effects of substances included on the Prohibited List. We applied an abductive inference approach to make inferences on debated issues pertaining to the ergogenic effects of recombinant human erythropoietin (rHuEPO), beta2-agonists and anabolic androgenic steroids (AAS), and extended the approach to more controversial drug classes where RCTs are limited. We report that an abductive inference approach is a useful tool to assess the ergogenic effect of substances included on the Prohibited List-particularly for substances where inductive inference is inconclusive. Specifically, a systematic abductive inference approach can aid researchers in assessing the effects of doping substances, either by leading to suggestions of causal relationships or identifying the need for additional research.
Collapse
|
14
|
Lee J, Walter MF, Korach KS, Noguchi CT. Erythropoietin reduces fat mass in female mice lacking estrogen receptor alpha. Mol Metab 2020; 45:101142. [PMID: 33309599 PMCID: PMC7809438 DOI: 10.1016/j.molmet.2020.101142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
Objective Erythropoietin (EPO), the cytokine required for erythropoiesis, contributes to metabolic regulation of fat mass and glycemic control. EPO treatment in mice on high-fat diets (HFD) improved glucose tolerance and decreased body weight gain via reduced fat mass in males and ovariectomized females. The decreased fat accumulation with EPO treatment during HFD in ovariectomized females was abrogated with estradiol supplementation, providing evidence for estrogen-related gender-specific EPO action in metabolic regulation. In this study, we examined the cross-talk between estrogen mediated through estrogen receptor α (ERα) and EPO for the regulation of glucose metabolism and fat mass accumulation. Methods Wild-type (WT) mice and mouse models with ERα knockout (ERα−/−) and targeted deletion of ERα in adipose tissue (ERαadipoKO) were used to examine EPO treatment during high-fat diet feeding and after diet-induced obesity. Results ERα−/− mice on HFD exhibited increased fat mass and glucose intolerance. EPO treatment on HFD reduced fat accumulation in male WT and ERα−/− mice and female ERα−/− mice but not female WT mice. EPO reduced HFD increase in adipocyte size in WT mice but not in mice with deletion of ERα independent of EPO-stimulated reduction in fat mass. EPO treatment also improved glucose and insulin tolerance significantly greater in female ERα−/− mice and female ERαadipoKO compared with WT controls. Increased metabolic activity by EPO was associated with browning of white adipocytes as shown by reductions in white fat-associated genes and induction of brown fat-specific uncoupling protein 1 (UCP1). Conclusions This study clearly identified the role of estrogen signaling in modifying EPO regulation of glucose metabolism and the sex-differential EPO effect on fat mass regulation. Cross-talk between EPO and estrogen was implicated for metabolic homeostasis and regulation of body mass in female mice. Erythropoietin regulates fat mass in male but not female mice on high-fat diets. Female estrogen receptor alpha deletion restores erythropoietin fat mass regulation. Estrogen receptor alpha deletion increases erythropoietin regulation of glucose tolerance. Erythropoietin reduced white fat-associated genes and increased uncoupling protein 1. Erythropoietin and estrogen cross-talk is implicated for metabolic homeostasis.
Collapse
Affiliation(s)
- Jeeyoung Lee
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mary F Walter
- Clinical Laboratory Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth S Korach
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Constance Tom Noguchi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Suresh S, Rajvanshi PK, Noguchi CT. The Many Facets of Erythropoietin Physiologic and Metabolic Response. Front Physiol 2020; 10:1534. [PMID: 32038269 PMCID: PMC6984352 DOI: 10.3389/fphys.2019.01534] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/05/2019] [Indexed: 12/30/2022] Open
Abstract
In mammals, erythropoietin (EPO), produced in the kidney, is essential for bone marrow erythropoiesis, and hypoxia induction of EPO production provides for the important erythropoietic response to ischemic stress, such as during blood loss and at high altitude. Erythropoietin acts by binding to its cell surface receptor which is expressed at the highest level on erythroid progenitor cells to promote cell survival, proliferation, and differentiation in production of mature red blood cells. In addition to bone marrow erythropoiesis, EPO causes multi-tissue responses associated with erythropoietin receptor (EPOR) expression in non-erythroid cells such neural cells, endothelial cells, and skeletal muscle myoblasts. Animal and cell models of ischemic stress have been useful in elucidating the potential benefit of EPO affecting maintenance and repair of several non-hematopoietic organs including brain, heart and skeletal muscle. Metabolic and glucose homeostasis are affected by endogenous EPO and erythropoietin administration affect, in part via EPOR expression in white adipose tissue. In diet-induced obese mice, EPO is protective for white adipose tissue inflammation and gives rise to a gender specific response in weight control associated with white fat mass accumulation. Erythropoietin regulation of fat mass is masked in female mice due to estrogen production. EPOR is also expressed in bone marrow stromal cells (BMSC) and EPO administration in mice results in reduced bone independent of the increase in hematocrit. Concomitant reduction in bone marrow adipocytes and bone morphogenic protein suggests that high EPO inhibits adipogenesis and osteogenesis. These multi-tissue responses underscore the pleiotropic potential of the EPO response and may contribute to various physiological manifestations accompanying anemia or ischemic response and pharmacological uses of EPO.
Collapse
Affiliation(s)
- Sukanya Suresh
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Praveen Kumar Rajvanshi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Constance T Noguchi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
16
|
Wu SH, Lu IC, Tai MH, Chai CY, Kwan AL, Huang SH. Erythropoietin Alleviates Burn-induced Muscle Wasting. Int J Med Sci 2020; 17:33-44. [PMID: 31929736 PMCID: PMC6945565 DOI: 10.7150/ijms.38590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Burn injury induces long-term skeletal muscle pathology. We hypothesized EPO could attenuate burn-induced muscle fiber atrophy. Methods: Rats were allocated into four groups: a sham burn group, an untreated burn group subjected to third degree hind paw burn, and two burn groups treated with weekly or daily EPO for four weeks. Gastrocnemius muscle was analyzed at four weeks post-burn. Results: EPO attenuated the reduction of mean myofiber cross-sectional area post-burn and the level of the protective effect was no significant difference between two EPO-treated groups (p=0.784). Furthermore, EPO decreased the expression of atrophy-related ubiquitin ligase, atrogin-1, which was up-regulated in response to burn. Compared to untreated burn rats, those receiving weekly or daily EPO groups had less cell apoptosis by TUNEL assay. EPO decreased the expression of cleaved caspase 3 (key factor in the caspase-dependent pathway) and apoptosis-inducing factor (implicated in the caspase-independent pathway) after burn. Furthermore, EPO alleviated connective tissue overproduction following burn via transforming growth factor beta 1-Smad2/3 pathway. Daily EPO group caused significant erythrocytosis compared with untreated burn group but not weekly EPO group. Conclusion: EPO therapy attenuated skeletal muscle apoptosis and fibrosis at four weeks post-burn. Weekly EPO may be a safe and effective option in muscle wasting post-burn.
Collapse
Affiliation(s)
- Sheng-Hua Wu
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - I-Cheng Lu
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Hong Tai
- Center for Neuroscience, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Chee-Yin Chai
- Departments of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Aij-Lie Kwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Hung Huang
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
17
|
Cardinale DA, Larsen FJ, Lännerström J, Manselin T, Södergård O, Mijwel S, Lindholm P, Ekblom B, Boushel R. Influence of Hyperoxic-Supplemented High-Intensity Interval Training on Hemotological and Muscle Mitochondrial Adaptations in Trained Cyclists. Front Physiol 2019; 10:730. [PMID: 31258485 PMCID: PMC6587061 DOI: 10.3389/fphys.2019.00730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/27/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Hyperoxia (HYPER) increases O2 carrying capacity resulting in a higher O2 delivery to the working muscles during exercise. Several lines of evidence indicate that lactate metabolism, power output, and endurance are improved by HYPER compared to normoxia (NORM). Since HYPER enables a higher exercise power output compared to NORM and considering the O2 delivery limitation at exercise intensities near to maximum, we hypothesized that hyperoxic-supplemented high-intensity interval training (HIIT) would upregulate muscle mitochondrial oxidative capacity and enhance endurance cycling performance compared to training in normoxia. Methods: 23 trained cyclists, age 35.3 ± 6.4 years, body mass 75.2 ± 9.6 kg, height 179.8 ± 7.9 m, and VO2max 4.5 ± 0.7 L min-1 performed 6 weeks polarized and periodized endurance training on a cycle ergometer consisting of supervised HIIT sessions 3 days/week and additional low-intensity training 2 days/week. Participants were randomly assigned to either HYPER (FIO2 0.30; n = 12) or NORM (FIO2 0.21; n = 11) breathing condition during HIIT. Mitochondrial respiration in permeabilized fibers and isolated mitochondria together with maximal and submaximal VO2, hematological parameters, and self-paced endurance cycling performance were tested pre- and posttraining intervention. Results: Hyperoxic training led to a small, non-significant change in performance compared to normoxic training (HYPER 6.0 ± 3.7%, NORM 2.4 ± 5.0%; p = 0.073, ES = 0.32). This small, beneficial effect on the self-paced endurance cycling performance was not explained by the change in VO2max (HYPER 1.1 ± 3.8%, NORM 0.0 ± 3.7%; p = 0.55, ES = 0.08), blood volume and hemoglobin mass, mitochondrial oxidative phosphorylation capacity (permeabilized fibers: HYPER 27.3 ± 46.0%, NORM 16.5 ± 49.1%; p = 0.37, ES = 3.24 and in isolated mitochondria: HYPER 26.1 ± 80.1%, NORM 15.9 ± 73.3%; p = 0.66, ES = 0.51), or markers of mitochondrial content which were similar between groups post intervention. Conclusions: This study showed that 6 weeks hyperoxic-supplemented HIIT led to marginal gain in cycle performance in already trained cyclists without change in VO2max, blood volume, hemoglobin mass, mitochondrial oxidative phosphorylation capacity, or exercise efficiency. The underlying mechanisms for the potentially meaningful performance effects of hyperoxia training remain unexplained and may raise ethical questions for elite sport.
Collapse
Affiliation(s)
- D A Cardinale
- Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - F J Larsen
- Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - J Lännerström
- Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - T Manselin
- Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - O Södergård
- Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - S Mijwel
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - P Lindholm
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - B Ekblom
- Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - R Boushel
- School of Kinesiology, Faculty of Education, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
18
|
Boesch S, Indelicato E. Erythropoietin and Friedreich Ataxia: Time for a Reappraisal? Front Neurosci 2019; 13:386. [PMID: 31105516 PMCID: PMC6491891 DOI: 10.3389/fnins.2019.00386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/04/2019] [Indexed: 12/24/2022] Open
Abstract
Friedreich ataxia (FRDA) is a rare neurological disorder due to deficiency of the mitochondrial protein frataxin. Frataxin deficiency results in impaired mitochondrial function and iron deposition in affected tissues. Erythropoietin (EPO) is a cytokine which was mostly known as a key regulator of erythropoiesis until cumulative evidence showed additional neurotrophic and neuroprotective properties. These features offered the rationale for advancement of EPO in clinical trials in different neurological disorders in the past years, including FRDA. Several mechanisms of action of EPO may be beneficial in FRDA. First of all, EPO exposure results in frataxin upregulation in vitro and in vivo. By promoting erythropoiesis, EPO influences iron metabolism and induces shifts in iron pool which may ameliorate conditions of free iron excess and iron accumulation. Furthermore, EPO signaling is crucial for mitochondrial gene activation and mitochondrial biogenesis. Up to date nine clinical trials investigated the effects of EPO and derivatives in FRDA. The majority of these studies had a proof-of-concept design. Considering the natural history of FRDA, all of them were too short in duration and not powered for clinical changes. However, these studies addressed significant issues in the treatment with EPO, such as (1) the challenge of the dose finding, (2) stability of frataxin up-regulation, (3) continuous versus intermittent stimulation with EPO/regimen, or (4) tissue changes after EPO exposure in humans in vivo (muscle biopsy, brain imaging). Despite several clinical trials in the past, no treatment is available for the treatment of FRDA. Current lines of research focus on gene therapy, frataxin replacement strategies and on regulation of key metabolic checkpoints such as NrF2. Due to potential crosstalk with all these mechanisms, interventions on the EPO pathway still represent a valuable research field. The recent development of small EPO mimetics which maintain cytoprotective properties without erythropoietic action may open a new era in EPO research for the treatment of FRDA.
Collapse
Affiliation(s)
- Sylvia Boesch
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
19
|
Elliot-Portal E, Laouafa S, Arias-Reyes C, Janes TA, Joseph V, Soliz J. Brain-derived erythropoietin protects from intermittent hypoxia-induced cardiorespiratory dysfunction and oxidative stress in mice. Sleep 2018; 41:4985474. [PMID: 29697839 PMCID: PMC6047438 DOI: 10.1093/sleep/zsy072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/21/2018] [Indexed: 12/21/2022] Open
Abstract
Study Objectives Based on the fact that erythropoietin (Epo) administration in rodents protects against spatial learning and cognitive deficits induced by chronic intermittent hypoxia (CIH)-mediated oxidative damage, here we tested the hypothesis that Epo in the brain protects against cardiorespiratory disorders and oxidative stress induced by CIH in adult mice. Methods Adult control and transgenic mice overexpressing Epo in the brain only (Tg21) were exposed to CIH (21%-10% O2-10 cycles/hour-8 hours/day-7 days) or room air. After CIH exposure, we used the tail cuff method to measure arterial pressure, and whole-body plethysmography to assess the frequency of apneic episodes at rest, minute ventilation, and ventilatory responses to hypoxia and hypercapnia. Finally, the activity of pro-oxidant (XO-xanthine oxidase, and NADPH) and antioxidant (super oxide dismutase) enzymes was evaluated in the cerebral cortex and brainstem. Results Exposure of control mice to CIH significantly increased the heart rate and arterial pressure, the number of apneic events, and the ventilatory response to hypoxia and hypercapnia. Furthermore, CIH increased the ratio of pro-oxidant to antioxidant enzymes in cortex and brainstem tissues. Both physiological and molecular changes induced by CIH were prevented in transgenic Tg21 mice. Conclusions We conclude that the neuroprotective effect of Epo prevents oxidative damage in the brain and cardiorespiratory disorders induced by CIH. Considering that Epo is used in clinics to treat chronic kidney disease and stroke, our data show convincing evidence suggesting that Epo may be a promising alternative drug to treat sleep-disorder breathing.
Collapse
Affiliation(s)
- Elizabeth Elliot-Portal
- Centre de Recherche de l’Institut Universitaire, de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Sofien Laouafa
- Centre de Recherche de l’Institut Universitaire, de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Christian Arias-Reyes
- Centre de Recherche de l’Institut Universitaire, de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Tara Adele Janes
- Centre de Recherche de l’Institut Universitaire, de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Vincent Joseph
- Centre de Recherche de l’Institut Universitaire, de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Jorge Soliz
- Centre de Recherche de l’Institut Universitaire, de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
20
|
Sgrò P, Sansone M, Sansone A, Romanelli F, Di Luigi L. Effects of erythropoietin abuse on exercise performance. PHYSICIAN SPORTSMED 2018; 46:105-115. [PMID: 29113535 DOI: 10.1080/00913847.2018.1402663] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The present review provides a comprehensive overview on the erythropoietic and non-erythropoietic effects of rHuEpo on human sport performance, paying attention to quantifying numerically how rHuEpo affects exercise performance and describing physiological changes regarding the most important exercise variables. Much attention has been paid to treatment schedules, in particular, to assess the effects of microdoses of rHuEpo and the prolonged effects on sport performance following withdrawal. Moreover, the review takes into account non-erythropoietic ergogenic effects of rHuEpo, including cognitive benefits of rHuEpo. A significant increase in both Vo2max and maximal cycling power was evidenced in studies taken into account for this review. rHuEpo, administered at clinical dosage, may have significant effects on haematological values, maximal and submaximal physiological variables, whereas few reports show positive effects on exercise perfomance. However, the influence of micro-dose rHuEpo on endurance performance in athletes is still unclear and further studies are warranted.
Collapse
Affiliation(s)
- Paolo Sgrò
- a Department of Movement, Human and Health Sciences, Unit of Endocrinology , Università degli Studi di Roma "Foro Italico" Piazza Lauro de Bosis , Rome , Italy
| | - Massimiliano Sansone
- b Department of Experimental Medicine , "Sapienza" Università di Roma , Rome , Italy
| | - Andrea Sansone
- b Department of Experimental Medicine , "Sapienza" Università di Roma , Rome , Italy
| | - Francesco Romanelli
- b Department of Experimental Medicine , "Sapienza" Università di Roma , Rome , Italy
| | - Luigi Di Luigi
- a Department of Movement, Human and Health Sciences, Unit of Endocrinology , Università degli Studi di Roma "Foro Italico" Piazza Lauro de Bosis , Rome , Italy
| |
Collapse
|
21
|
Nishiyama Y, Niiyama H, Harada H, Katou A, Yoshida N, Ikeda H. Effect of Exercise Training on Red Blood Cell Distribution Width as a Marker of Impaired Exercise Tolerance in Patients With Coronary Artery Disease. Int Heart J 2016; 57:553-7. [PMID: 27581674 DOI: 10.1536/ihj.16-015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Red blood cell distribution width (RDW) can predict mortality in cardiovascular disease. However, the underlying mechanisms of the beneficial prognostic marker remain unknown. The purpose of this study was to investigate whether the RDW is related to impaired exercise tolerance and exercise training (ET) effect on RDW in patients with coronary artery disease (CAD).Seventy-eight patients who underwent ET by supervised bicycle ergometer during 3 weeks served as the ET group whereas 30 patients who did not undergo ET were the control group. Exercise stress test with cardiopulmonary analysis was performed in the ET group. Peak oxygen uptake (from 14.1 ± 4.0 to 15.1 ± 3.8 mL/kg/minute, P < 0.05) significantly increased in the ET group. Although RDW and serum erythropoietin concentration (EP) before the observation period did not differ between the ET and control groups, RDW (from 44.4 ± 4.7 to 43.4 ± 3.8 fL, P < 0.01) and EP (from 27.9 ± 15.8 to 22.9 ± 8.2 mIU/mL, P < 0.005) significantly decreased in the ET group, however, these parameters did not change in the control group. In the ET group, RDW was negatively correlated with peak oxygen uptake (r = -0.55, P < 0.01) and the changes in RDW before and after ET were positively correlated with the changes in EP (r = 0.39, P < 0.005).Thus, ET increases exercise tolerance and decreases RDW in association with increased oxygen uptake in patients with CAD.
Collapse
|
22
|
Lamon S, Zacharewicz E, Arentson-Lantz E, Gatta PAD, Ghobrial L, Gerlinger-Romero F, Garnham A, Paddon-Jones D, Russell AP. Erythropoietin Does Not Enhance Skeletal Muscle Protein Synthesis Following Exercise in Young and Older Adults. Front Physiol 2016; 7:292. [PMID: 27458387 PMCID: PMC4937030 DOI: 10.3389/fphys.2016.00292] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/27/2016] [Indexed: 01/07/2023] Open
Abstract
Purpose: Erythropoietin (EPO) is a renal cytokine that is primarily involved in hematopoiesis while also playing a role in non-hematopoietic tissues expressing the EPO-receptor (EPOR). The EPOR is present in human skeletal muscle. In mouse skeletal muscle, EPO stimulation can activate the AKT serine/threonine kinase 1 (AKT) signaling pathway, the main positive regulator of muscle protein synthesis. We hypothesized that a single intravenous EPO injection combined with acute resistance exercise would have a synergistic effect on skeletal muscle protein synthesis via activation of the AKT pathway. Methods: Ten young (24.2 ± 0.9 years) and 10 older (66.6 ± 1.1 years) healthy subjects received a primed, constant infusion of [ring-13C6] L-phenylalanine and a single injection of 10,000 IU epoetin-beta or placebo in a double-blind randomized, cross-over design. 2 h after the injection, the subjects completed an acute bout of leg extension resistance exercise to stimulate skeletal muscle protein synthesis. Results: Significant interaction effects in the phosphorylation levels of the members of the AKT signaling pathway indicated a differential activation of protein synthesis signaling in older subjects when compared to young subjects. However, EPO offered no synergistic effect on vastus lateralis mixed muscle protein synthesis rate in young or older subjects. Conclusions: Despite its ability to activate the AKT pathway in skeletal muscle, an acute EPO injection had no additive or synergistic effect on the exercise-induced activation of muscle protein synthesis or muscle protein synthesis signaling pathways.
Collapse
Affiliation(s)
- Séverine Lamon
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University Geelong, VIC, Australia
| | - Evelyn Zacharewicz
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University Geelong, VIC, Australia
| | - Emily Arentson-Lantz
- Department of Nutrition and Metabolism, University of Texas Medical Branch Galveston, TX, USA
| | - Paul A Della Gatta
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University Geelong, VIC, Australia
| | - Lobna Ghobrial
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University Geelong, VIC, Australia
| | - Frederico Gerlinger-Romero
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University Geelong, VIC, Australia
| | - Andrew Garnham
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University Geelong, VIC, Australia
| | - Douglas Paddon-Jones
- Department of Nutrition and Metabolism, University of Texas Medical Branch Galveston, TX, USA
| | - Aaron P Russell
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University Geelong, VIC, Australia
| |
Collapse
|
23
|
Søndergård SD, Dela F, Helge JW, Larsen S. Actovegin, a non-prohibited drug increases oxidative capacity in human skeletal muscle. Eur J Sport Sci 2016; 16:801-7. [PMID: 26744809 DOI: 10.1080/17461391.2015.1130750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Actovegin, a deproteinized haemodialysate of calf blood, is suggested to have ergogenic properties, but this potential effect has never been investigated in human skeletal muscle. To investigate this purported ergogenic effect, we measured the mitochondrial respiratory capacity in permeabilized human skeletal muscle fibres acutely exposed to Actovegin in a low and in a high dose. We found that Actovegin, in the presence of complex I-linked substrates increased the oxidative phosphorylation (OXPHOS) capacity significantly in a concentration-dependent manner (19 ± 3, 31 ± 4 and 45 ± 4 pmol/mg/s). Maximal OXPHOS capacity with complex I and II-linked substrate was increased when the fibres were exposed to the high dose of Actovegin (62 ± 6 and 77 ± 6 pmol/mg/s) (p < .05). The respiratory capacity of the electron transfer system as well as Vmax and Km were also increased in a concentration-dependent manner after Actovegin exposure (70 ± 6, 79 ± 6 and 88 ± 7 pmol/mg/s; 13 ± 2, 25 ± 3 and 37 ± 4 pmol/mg/s; 0.08 ± 0.02, 0.21 ± 0.03 and 0.36 ± 0.03 mM, respectively) (p < .05). In summary, we report for the first time that Actovegin has a marked effect on mitochondrial oxidative function in human skeletal muscle. Mitochondrial adaptations like this are also seen after a training program in human subjects. Whether this improvement translates into an ergogenic effect in athletes and thus reiterates the need to include Actovegin on the World Anti-Doping Agency's active list remains to be investigated.
Collapse
Affiliation(s)
- Stine D Søndergård
- a Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Flemming Dela
- a Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Jørn W Helge
- a Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Steen Larsen
- a Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
24
|
Annaheim S, Jacob M, Krafft A, Breymann C, Rehm M, Boutellier U. RhEPO improves time to exhaustion by non-hematopoietic factors in humans. Eur J Appl Physiol 2016; 116:623-33. [PMID: 26729211 DOI: 10.1007/s00421-015-3322-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/17/2015] [Indexed: 02/07/2023]
Abstract
PURPOSE Erythropoietin (EPO) controls red cell volume (RCV) and plasma volume (PV). Therefore, injecting recombinant human EPO (rhEPO) increases RCV and most likely reduces PV. RhEPO-induced endurance improvements are explained by an increase in blood oxygen (O2) transport capacity, which increases maximum O2 uptake ([Formula: see text]O2max). However, it is debatable whether increased RCV or [Formula: see text]O2max are the main reasons for the prolongation of the time to exhaustion (t lim) at submaximal intensity. We hypothesized that high rhEPO doses in particular contracts PV such that the improvement in t lim is not as strong as at lower doses while [Formula: see text]O2max increases in a dose-dependent manner. METHODS We investigated the effects of different doses of rhEPO given during 4 weeks [placebo (P), low (L), medium (M), and high (H) dosage] on RCV, PV, [Formula: see text]O2max and t lim in 40 subjects. RESULTS While RCV increased in a dose-dependent manner, PV decreased independent of the rhEPO dose. The improvements in t lim (P +21.4 ± 23.8%; L +16.7 ± 29.8%; M +44.8 ± 62.7%; H +69.7 ± 73.4%) depended on the applied doses (R (2) = 0.89) and clearly exceeded the dose-independent [Formula: see text]O2max increases (P -1.7 ± 3.2%; L +2.6 ± 6.8%; M +5.7 ± 5.1 %; H +5.6 ± 4.3 %) after 4 weeks of rhEPO administration. Furthermore, the absolute t lim was not related (R (2) ≈ 0) to RCV or to [Formula: see text]O2max. CONCLUSIONS We conclude that a contraction in PV does not negatively affect t lim and that rhEPO improves t lim by additional, non-hematopoietic factors.
Collapse
Affiliation(s)
- Simon Annaheim
- Exercise Physiology, Institute of Human Movement Sciences, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Laboratory for Protection and Physiology, EMPA, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland.,Exercise Physiology, Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Matthias Jacob
- Department of Anaesthesiology, University Hospital, Nussbaumstrasse 20, 80336, Munich, Germany
| | - Alexander Krafft
- Division of Obstetrics, Department of Obstetrics and Gynaecology, University Hospital, 8000, Zurich, Switzerland
| | - Christian Breymann
- Division of Obstetrics, Department of Obstetrics and Gynaecology, University Hospital, 8000, Zurich, Switzerland
| | - Markus Rehm
- Department of Anaesthesiology, University Hospital, Nussbaumstrasse 20, 80336, Munich, Germany
| | - Urs Boutellier
- Exercise Physiology, Institute of Human Movement Sciences, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland. .,Exercise Physiology, Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland. .,Exercise Physiology, ETH Zurich, Rychenbergstr. 49a, 8400, Winterthur, Switzerland.
| |
Collapse
|
25
|
Abstract
In addition to oxidative phosphorylation (OXPHOS), mitochondria perform other functions such as heme biosynthesis and oxygen sensing and mediate calcium homeostasis, cell growth, and cell death. They participate in cell communication and regulation of inflammation and are important considerations in aging, drug toxicity, and pathogenesis. The cell's capacity to maintain its mitochondria involves intramitochondrial processes, such as heme and protein turnover, and those involving entire organelles, such as fusion, fission, selective mitochondrial macroautophagy (mitophagy), and mitochondrial biogenesis. The integration of these processes exemplifies mitochondrial quality control (QC), which is also important in cellular disorders ranging from primary mitochondrial genetic diseases to those that involve mitochondria secondarily, such as neurodegenerative, cardiovascular, inflammatory, and metabolic syndromes. Consequently, mitochondrial biology represents a potentially useful, but relatively unexploited area of therapeutic innovation. In patients with genetic OXPHOS disorders, the largest group of inborn errors of metabolism, effective therapies, apart from symptomatic and nutritional measures, are largely lacking. Moreover, the genetic and biochemical heterogeneity of these states is remarkably similar to those of certain acquired diseases characterized by metabolic and oxidative stress and displaying wide variability. This biologic variability reflects cell-specific and repair processes that complicate rational pharmacological approaches to both primary and secondary mitochondrial disorders. However, emerging concepts of mitochondrial turnover and dynamics along with new mitochondrial disease models are providing opportunities to develop and evaluate mitochondrial QC-based therapies. The goals of such therapies extend beyond amelioration of energy insufficiency and tissue loss and entail cell repair, cell replacement, and the prevention of fibrosis. This review summarizes current concepts of mitochondria as disease elements and outlines novel strategies to address mitochondrial dysfunction through the stimulation of mitochondrial biogenesis and quality control.
Collapse
Affiliation(s)
- Hagir B Suliman
- Departments of Medicine (C.A.P.), Anesthesiology (H.B.S.), Duke Cancer Institute (H.B.S.), and Pathology (C.A.P.), Duke University Medical Center, Durham North Carolina
| | - Claude A Piantadosi
- Departments of Medicine (C.A.P.), Anesthesiology (H.B.S.), Duke Cancer Institute (H.B.S.), and Pathology (C.A.P.), Duke University Medical Center, Durham North Carolina
| |
Collapse
|
26
|
Pin F, Busquets S, Toledo M, Camperi A, Lopez-Soriano FJ, Costelli P, Argilés JM, Penna F. Combination of exercise training and erythropoietin prevents cancer-induced muscle alterations. Oncotarget 2015; 6:43202-15. [PMID: 26636649 PMCID: PMC4791226 DOI: 10.18632/oncotarget.6439] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/21/2015] [Indexed: 12/11/2022] Open
Abstract
Cancer cachexia is a syndrome characterized by loss of skeletal muscle mass, inflammation, anorexia and anemia, contributing to patient fatigue and reduced quality of life. In addition to nutritional approaches, exercise training (EX) has been proposed as a suitable tool to manage cachexia. In the present work the effect of mild exercise training, coupled to erythropoietin (EPO) administration to prevent anemia, has been tested in tumor-bearing mice. In the C26 hosts, acute exercise does not prevent and even worsens muscle wasting. Such pattern is prevented by EPO co-administration or by the adoption of a chronic exercise protocol. EX and EPO co-treatment spares oxidative myofibers from atrophy and counteracts the oxidative to glycolytic shift, inducing PGC-1α. LLC hosts are responsive to exercise and their treatment with the EX-EPO combination prevents the loss of muscle strength and the onset of mitochondrial ultrastructural alterations, while increases muscle oxidative capacity and intracellular ATP content, likely depending on PGC-1α induction and mitophagy promotion. Consistently, muscle-specific PGC-1α overexpression prevents LLC-induced muscle atrophy and Atrogin-1 hyperexpression. Overall, the present data suggest that low intensisty exercise can be an effective tool to be included in combined therapeutic approaches against cancer cachexia, provided that anemia is coincidently treated in order to enhance the beneficial action of exercise.
Collapse
MESH Headings
- Anemia/drug therapy
- Anemia/etiology
- Animals
- Blotting, Western
- Cachexia/etiology
- Cachexia/prevention & control
- Disease Models, Animal
- Epoetin Alfa/pharmacology
- Exercise Therapy/methods
- Female
- Hematinics/pharmacology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Electron, Transmission
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/pathology
- Muscular Atrophy/etiology
- Muscular Atrophy/prevention & control
- Neoplasms, Experimental/complications
- Physical Conditioning, Animal
- Real-Time Polymerase Chain Reaction
Collapse
Affiliation(s)
- Fabrizio Pin
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Silvia Busquets
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Miriam Toledo
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Andrea Camperi
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Francisco J. Lopez-Soriano
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Josep M. Argilés
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Fabio Penna
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| |
Collapse
|
27
|
Christensen B, Nellemann B, Thorsen K, Nielsen MM, Pedersen SB, Ornstrup MJ, JØrgensen JOL, Jessen N. Prolonged erythropoietin treatment does not impact gene expression in human skeletal muscle. Muscle Nerve 2015; 51:554-61. [PMID: 25088500 DOI: 10.1002/mus.24355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2014] [Indexed: 01/12/2023]
Abstract
INTRODUCTION We tested for the presence of erythropoietin receptor (Epo-R) in human skeletal muscle and alterations in gene expression after prolonged use of an erythropoiesis-stimulating agent (ESA). METHODS Nine healthy men were treated with ESA for 10 weeks (darbepoietin alfa). Muscle biopsies were collected before and after treatment. Alterations in gene expression were evaluated by gene array. Western blot and PCR analysis were used to test for Epo-R presence in human skeletal muscle. RESULTS Very low Epo-R mRNA levels were found, but a new and sensitive antibody did not identify Epo-R protein in human skeletal muscle. The between-subject variation in skeletal muscle gene expression was greater than that observed in response to prolonged ESA treatment. CONCLUSIONS Erythropoietin is unlikely to exert direct effects in human skeletal muscle due to a lack of Epo-R protein. Furthermore, prolonged ESA treatment does not seem to exert either direct or indirect effects on skeletal muscle gene expression.
Collapse
Affiliation(s)
- Britt Christensen
- Department of Endocrinology and Internal Medicine, NBG/THG, Aarhus University Hospital, Aarhus, Denmark; Medical Research Laboratories, Aarhus University, Aarhus, Denmark; Section of Sports Sciences, Institute of Public Health, Aarhus University, Aarhus, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Guadalupe-Grau A, Plenge U, Helbo S, Kristensen M, Andersen PR, Fago A, Belhage B, Dela F, Helge JW. Effects of an 8-weeks erythropoietin treatment on mitochondrial and whole body fat oxidation capacity during exercise in healthy males. J Sports Sci 2014; 33:570-8. [DOI: 10.1080/02640414.2014.951872] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
29
|
Wang L, Di L, Noguchi CT. Erythropoietin, a novel versatile player regulating energy metabolism beyond the erythroid system. Int J Biol Sci 2014; 10:921-39. [PMID: 25170305 PMCID: PMC4147225 DOI: 10.7150/ijbs.9518] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 06/04/2014] [Indexed: 12/12/2022] Open
Abstract
Erythropoietin (EPO), the required cytokine for promoting the proliferation and differentiation of erythroid cells to stimulate erythropoiesis, has been reported to act as a pleiotropic cytokine beyond hematopoietic system. The various activities of EPO are determined by the widespread distribution of its cell surface EPO receptor (EpoR) in multiple tissues including endothelial, neural, myoblasts, adipocytes and other cell types. EPO activity has been linked to angiogenesis, neuroprotection, cardioprotection, stress protection, anti-inflammation and especially the energy metabolism regulation that is recently revealed. The investigations of EPO activity in animals and the expression analysis of EpoR provide more insights on the potential of EPO in regulating energy metabolism and homeostasis. The findings of crosstalk between EPO and some important energy sensors and the regulation of EPO in the cellular respiration and mitochondrial function further provide molecular mechanisms for EPO activity in metabolic activity regulation. In this review, we will summarize the roles of EPO in energy metabolism regulation and the activity of EPO in tissues that are tightly associated with energy metabolism. We will also discuss the effects of EPO in regulating oxidative metabolism and mitochondrial function, the interactions between EPO and important energy regulation factors, and the protective role of EPO from stresses that are related to metabolism, providing a brief overview of previously less appreciated EPO biological function in energy metabolism and homeostasis.
Collapse
Affiliation(s)
- Li Wang
- 1. Faculty of Health Sciences, University of Macau, SAR of People's Republic of China
| | - Lijun Di
- 1. Faculty of Health Sciences, University of Macau, SAR of People's Republic of China
| | - Constance Tom Noguchi
- 2. Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, U.S.A
| |
Collapse
|
30
|
Larsen MS, Vissing K, Thams L, Sieljacks P, Dalgas U, Nellemann B, Christensen B. Erythropoietin administration alone or in combination with endurance training affects neither skeletal muscle morphology nor angiogenesis in healthy young men. Exp Physiol 2014; 99:1409-20. [PMID: 25128327 DOI: 10.1113/expphysiol.2014.080606] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim was to investigate the ability of an erythropoiesis-stimulating agent (ESA), alone or in combination with endurance training, to induce changes in human skeletal muscle fibre and vascular morphology. In a comparative study, 36 healthy untrained men were randomly dispersed into the following four groups: sedentary-placebo (SP, n = 9); sedentary-ESA (SE, n = 9); training-placebo (TP, n = 10); or training-ESA (TE, n = 8). The ESA or placebo was injected once weekly. Training consisted of progressive bicycling three times per week for 10 weeks. Before and after the intervention period, muscle biopsies and magnetic resonance images were collected from the thigh muscles, blood was collected, body composition measured and endurance exercise performance evaluated. The ESA treatment (SE and TE) led to elevated haematocrit, and both ESA treatment and training (SE, TP and TE) increased maximal O2 uptake. With regard to skeletal muscle morphology, TP alone exhibited increases in whole-muscle cross-sectional area and fibre diameter of all fibre types. Also exclusively for TP was an increase in type IIa fibres and a corresponding decrease in type IIx fibres. Furthermore, an overall training effect (TP and TE) was statistically demonstrated in whole-muscle cross-sectional area, muscle fibre diameter and type IIa and type IIx fibre distribution. With regard to muscle vascular morphology, TP and TE both promoted a rise in capillary to muscle fibre ratio, with no differences between the two groups. There were no effects of ESA treatment on any of the muscle morphological parameters. Despite the haematopoietic effects of ESA, we provide novel evidence that endurance training rather than ESA treatment induces adaptational changes in angiogenesis and muscle morphology.
Collapse
Affiliation(s)
- Mads S Larsen
- Section of Sports Science, Institute of Public Health, Aarhus University, Aarhus, Denmark
| | - Kristian Vissing
- Section of Sports Science, Institute of Public Health, Aarhus University, Aarhus, Denmark
| | - Line Thams
- Section of Sports Science, Institute of Public Health, Aarhus University, Aarhus, Denmark
| | - Peter Sieljacks
- Section of Sports Science, Institute of Public Health, Aarhus University, Aarhus, Denmark
| | - Ulrik Dalgas
- Section of Sports Science, Institute of Public Health, Aarhus University, Aarhus, Denmark
| | - Birgitte Nellemann
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Britt Christensen
- Section of Sports Science, Institute of Public Health, Aarhus University, Aarhus, Denmark Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
31
|
Christensen B, Nellemann B, Larsen MS, Thams L, Sieljacks P, Vestergaard PF, Bibby BM, Vissing K, Stødkilde-Jørgensen H, Pedersen SB, Møller N, Nielsen S, Jessen N, Jørgensen JOL. Whole body metabolic effects of prolonged endurance training in combination with erythropoietin treatment in humans: a randomized placebo controlled trial. Am J Physiol Endocrinol Metab 2013; 305:E879-89. [PMID: 23921143 DOI: 10.1152/ajpendo.00269.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
UNLABELLED Erythropoietin (Epo) administration improves aerobic exercise capacity and insulin sensitivity in renal patients and also increases resting energy expenditure (REE). Similar effects are observed in response to endurance training. The aim was to compare the effects of endurance training with erythropoiesis-stimulating agent (ESA) treatment in healthy humans. Thirty-six healthy untrained men were randomized to 10 wk of either: 1) placebo (n = 9), 2) ESA (n = 9), 3) endurance training (n = 10), or 4) ESA and endurance training (n = 8). In a single-blinded design, ESA/placebo was injected one time weekly. Training consisted of biking for 1 h at 65% of wattmax three times per week. Measurements performed before and after the intervention were as follows: body composition, maximal oxygen uptake, insulin sensitivity, REE, and palmitate turnover. Uncoupling protein 2 (UCP2) mRNA levels were assessed in skeletal muscle. Fat mass decreased after training (P = 0.003), whereas ESA induced a small but significant increase in intrahepatic fat (P = 0.025). Serum free fatty acid (FFA) levels and palmitate turnover decreased significantly in response to training, whereas the opposite pattern was found after ESA. REE corrected for lean body mass increased in response to ESA and training, and muscle UCP2 mRNA levels increased after ESA (P = 0.035). Insulin sensitivity increased only after training (P = 0.011). IN CONCLUSION 1) insulin sensitivity is not improved after ESA treatment despite improved exercise capacity, 2) the calorigenic effects of ESA may be related to increased UCP2 gene expression in skeletal muscle, and 3) training and ESA exert opposite effects on lipolysis under basal conditions, increased FFA levels and liver fat fraction was observed after ESA treatment.
Collapse
Affiliation(s)
- Britt Christensen
- Department of Endocrinology and Internal Medicine, NBG/THG, Aarhus University Hospital, Aarhus, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lamon S, Russell AP. The role and regulation of erythropoietin (EPO) and its receptor in skeletal muscle: how much do we really know? Front Physiol 2013; 4:176. [PMID: 23874302 PMCID: PMC3710958 DOI: 10.3389/fphys.2013.00176] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/22/2013] [Indexed: 12/22/2022] Open
Abstract
Erythropoietin (EPO) primarily activates erythroid cell proliferation and growth and is active in several types of non-hematopoietic cells via its interaction with the EPO-receptor (EPO-R). This review focuses on the role of EPO in skeletal muscle. The EPO-R is expressed in skeletal muscle cells and EPO may promote myoblast differentiation and survival via the activation of the same signaling cascades as in hematopoietic cells, such as STAT5, MAPK and Akt. Inconsistent results exist with respect to the detection of the EPO-R mRNA and protein in muscle cells, tissue and across species and the use of non-specific EPO-R antibodies contributes to this problem. Additionally, the inability to reproducibly detect an activation of the known EPO-induced signaling pathways in skeletal muscle questions the functionality of the EPO-R in muscle in vivo. These equivocal findings make it difficult to distinguish between a direct effect of EPO on skeletal muscle, via the activation of its receptor, and an indirect effect resulting from a better oxygen supply to the muscle. Consequently, the precise role of EPO in skeletal muscle and its regulatory mechanism/s remain to be elucidated. Further studies are required to comprehensively establish the importance of EPO and its function in skeletal muscle health.
Collapse
Affiliation(s)
- Séverine Lamon
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University Burwood, VIC, Australia
| | | |
Collapse
|
33
|
Porter C, Herndon DN, Sidossis LS, Børsheim E. The impact of severe burns on skeletal muscle mitochondrial function. Burns 2013; 39:1039-47. [PMID: 23664225 DOI: 10.1016/j.burns.2013.03.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/09/2013] [Accepted: 03/27/2013] [Indexed: 01/03/2023]
Abstract
Severe burns induce a pathophysiological response that affects almost every physiological system within the body. Inflammation, hypermetabolism, muscle wasting, and insulin resistance are all hallmarks of the pathophysiological response to severe burns, with perturbations in metabolism known to persist for several years post injury. Skeletal muscle is the principal depot of lean tissue within the body and as the primary site of peripheral glucose disposal, plays an important role in metabolic regulation. Following a large burn, skeletal muscle functions as and endogenous amino acid store, providing substrates for more pressing functions, such as the synthesis of acute phase proteins and the deposition of new skin. Subsequently, burn patients become cachectic, which is associated with poor outcomes in terms of metabolic health and functional capacity. While a loss of skeletal muscle contractile proteins per se will no doubt negatively impact functional capacity, detriments in skeletal muscle quality, i.e. a loss in mitochondrial number and/or function may be quantitatively just as important. The goal of this review article is to summarise the current understanding of the impact of thermal trauma on skeletal muscle mitochondrial content and function, to offer direction for future research concerning skeletal muscle mitochondrial function in patients with severe burns, and to renew interest in the role of these organelles in metabolic dysfunction following severe burns.
Collapse
Affiliation(s)
- Craig Porter
- Metabolism Unit, Shriners Hospitals for Children, Galveston, TX, United States.
| | | | | | | |
Collapse
|
34
|
Latunde-Dada GO. Iron metabolism in athletes - achieving a gold standard. Eur J Haematol 2012; 90:10-5. [DOI: 10.1111/ejh.12026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2012] [Indexed: 01/01/2023]
Affiliation(s)
- Gladys O. Latunde-Dada
- Diabetes and Nutritional Sciences Division; School of Medicine; King's College London; London; UK
| |
Collapse
|