1
|
Miyachi R, Nishimura T, Noguchi M, Goda A, Takeda H, Takeshima E, Kanazawa Y, Imai T, Tanaka W. Subgroup Characteristics of Middle-Aged and Older Women with Chronic Low Back Pain by Multiple Factors: A Hierarchical Cluster Analysis. J Funct Morphol Kinesiol 2025; 10:30. [PMID: 39846671 PMCID: PMC11755572 DOI: 10.3390/jfmk10010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND/OBJECTIVES Chronic low back pain (CLBP) after middle age is a complex multifactorial condition, and subgrouping is recommended to determine effective treatment strategies. Multidimensional data help create new groupings to increase the effectiveness of interventions in middle-aged and older adults with CLBP. This study aimed to investigate the relationship between the factors associated with CLBP after middle age and to create and characterize a new subgroup based on these factors. METHODS A cross-sectional observational study was conducted and included 46 women aged ≥40 years with CLBP who participated in health events. Trunk muscle mass, lumbar movement control ability, autonomic balance, lumbar tenderness threshold, lumbar proprioception, and severity of central sensitization were assessed. RESULTS Partial correlation analysis revealed a significant negative correlation between lumbar movement control ability and autonomic balance. A significant positive correlation was observed between trunk muscle mass and the lumbar tenderness threshold. Hierarchical clustering analysis identified three subgroups. The cluster 1 participants had low trunk muscle mass, low tenderness threshold, and low severity of central sensitization. The cluster 2 participants had low trunk muscle mass and tenderness threshold and high severity of central sensitization. The cluster 3 participants had high trunk muscle mass and tenderness threshold and were sympathetically predominant. Trunk muscle mass, pressure pain threshold, severity of central sensitization, and autonomic balance were significantly different between the clusters. CONCLUSIONS Three characteristic subgroups were identified. The results contribute to treatment and prevention strategies for middle-aged and older adults with CLBP based on the characteristics of the subgroups rather than a uniform approach.
Collapse
Affiliation(s)
- Ryo Miyachi
- Faculty of Health and Medical Sciences, Hokuriku University, 1-1 Taiyogaoka, Kanazawa 920-1180, Japan; (T.N.); (M.N.); (A.G.); (H.T.); (E.T.); (Y.K.)
| | - Takaaki Nishimura
- Faculty of Health and Medical Sciences, Hokuriku University, 1-1 Taiyogaoka, Kanazawa 920-1180, Japan; (T.N.); (M.N.); (A.G.); (H.T.); (E.T.); (Y.K.)
| | - Masahiro Noguchi
- Faculty of Health and Medical Sciences, Hokuriku University, 1-1 Taiyogaoka, Kanazawa 920-1180, Japan; (T.N.); (M.N.); (A.G.); (H.T.); (E.T.); (Y.K.)
| | - Akio Goda
- Faculty of Health and Medical Sciences, Hokuriku University, 1-1 Taiyogaoka, Kanazawa 920-1180, Japan; (T.N.); (M.N.); (A.G.); (H.T.); (E.T.); (Y.K.)
| | - Hiromichi Takeda
- Faculty of Health and Medical Sciences, Hokuriku University, 1-1 Taiyogaoka, Kanazawa 920-1180, Japan; (T.N.); (M.N.); (A.G.); (H.T.); (E.T.); (Y.K.)
| | - Eisuke Takeshima
- Faculty of Health and Medical Sciences, Hokuriku University, 1-1 Taiyogaoka, Kanazawa 920-1180, Japan; (T.N.); (M.N.); (A.G.); (H.T.); (E.T.); (Y.K.)
| | - Yuji Kanazawa
- Faculty of Health and Medical Sciences, Hokuriku University, 1-1 Taiyogaoka, Kanazawa 920-1180, Japan; (T.N.); (M.N.); (A.G.); (H.T.); (E.T.); (Y.K.)
| | - Tadashi Imai
- Rehabilitation Center, Kanazawa Nishi Hospital, 6-15-41 Ekinishihonmachi, Kanazawa 920-0025, Japan;
| | - Wataru Tanaka
- Department of Rehabilitation, Komatsu Sophia Hospital, 478 Okimachi, Komatsu 923-0861, Japan;
| |
Collapse
|
2
|
Zhao Z, Yan K, Guan Q, Guo Q, Zhao C. Mechanism and physical activities in bone-skeletal muscle crosstalk. Front Endocrinol (Lausanne) 2024; 14:1287972. [PMID: 38239981 PMCID: PMC10795164 DOI: 10.3389/fendo.2023.1287972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/05/2023] [Indexed: 01/22/2024] Open
Abstract
Bone and skeletal muscle work in coordination to maintain the function of the musculoskeletal system, in which skeletal muscle contraction drives the movement of the bone lever system while bone provides insert sites for skeletal muscle through the bone-muscle junction. Existing evidence suggests that factors secreted by skeletal muscle and bone mediate the interaction between the two tissues. Herein, we focused on the relationship between skeletal muscle and bone and the underlying mechanism of the interaction. Exercise can promote bone strength and secrete osteocalcin and insulin-like growth factor I into the blood, thus improving muscle quality. In addition, exercise can also promote myostatin, interleukin-6, Irisin, and apelin in muscles to enter the blood so that they can act on bones to maintain the balance between bone absorption and bone formation. There is a special regulatory axis interleukin-6/osteocalcin between myokines and osteokines, which is mainly influenced by exercise. Therefore, we pay attention to the important factors in the bone-muscle intersection that are affected by exercise, which were found or their functions were expanded, which strengthened the connection between organs of the whole body, highlighting the importance of exercise and contributing to the diagnosis, prevention, and treatment of osteoporosis and sarcopenia in the clinic.
Collapse
Affiliation(s)
- Zhonghan Zhao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Kai Yan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Qiao Guan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Qiang Guo
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Can Zhao
- College of Athletic Performance, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
3
|
Konstantinidis I, Sætrom P, Brieuc S, Jakobsen KS, Liedtke H, Pohlmann C, Tsoulia T, Fernandes JMO. DNA hydroxymethylation differences underlie phenotypic divergence of somatic growth in Nile tilapia reared in common garden. Epigenetics 2023; 18:2282323. [PMID: 38010265 PMCID: PMC10732659 DOI: 10.1080/15592294.2023.2282323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Phenotypic plasticity of metabolism and growth are essential for adaptation to new environmental conditions, such as those experienced during domestication. Epigenetic regulation plays a key role in this process but the underlying mechanisms are poorly understood, especially in the case of hydroxymethylation. Using reduced representation 5-hydroxymethylcytosine profiling, we compared the liver hydroxymethylomes in full-sib Nile tilapia with distinct growth rates (3.8-fold difference) and demonstrated that DNA hydroxymethylation is strongly associated with phenotypic divergence of somatic growth during the early stages of domestication. The 2677 differentially hydroxymethylated cytosines between fast- and slow-growing fish were enriched within gene bodies (79%), indicating a pertinent role in transcriptional regulation. Moreover, they were found in genes involved in biological processes related to skeletal system and muscle structure development, and there was a positive association between somatic growth and 5hmC levels in genes coding for growth factors, kinases and receptors linked to myogenesis. Single nucleotide polymorphism analysis revealed no genetic differentiation between fast- and slow-growing fish. In addition to unveiling a new link between DNA hydroxymethylation and epigenetic regulation of growth in fish during the initial stages of domestication, this study suggests that epimarkers may be applied in selective breeding programmes for superior phenotypes.
Collapse
Affiliation(s)
| | - Pål Sætrom
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway
- Bioinformatics core facility-BioCore, Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, Trondheim, Norway
| | - S.O. Brieuc
- Center for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kjetill S. Jakobsen
- Center for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Hannes Liedtke
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Caroline Pohlmann
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Thomais Tsoulia
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | |
Collapse
|
4
|
Moretti A, Iolascon G. Sclerostin: clinical insights in muscle-bone crosstalk. J Int Med Res 2023; 51:3000605231193293. [PMID: 37632438 PMCID: PMC10467411 DOI: 10.1177/03000605231193293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/21/2023] [Indexed: 08/28/2023] Open
Abstract
Sclerostin, a protein encoded by the sclerostin (SOST) gene, is mostly expressed in osteocytes. First described in the pathogenesis of three disorders, sclerosteosis, van Buchem's disease, and craniodiaphyseal dysplasia, sclerostin has been identified as an important regulator of bone homeostasis, controlling bone formation by osteoblasts through inhibition of the canonical Wnt signaling pathway. Recent studies have highlighted a hypothetical role of sclerostin in myogenesis, thus modulating the interaction between bone and muscle. This narrative review provides an overview of the clinical implications of sclerostin modulation on skeletal muscle mass and function, and bone metabolism. Improving knowledge about muscle-bone crosstalk may represent a turning point in the development of therapeutic strategies for musculoskeletal disorders, particularly osteosarcopenia.
Collapse
Affiliation(s)
- Antimo Moretti
- Department of Medical and Surgical Specialties and Dentistry, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Giovanni Iolascon
- Department of Medical and Surgical Specialties and Dentistry, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| |
Collapse
|
5
|
Duarte Martins A, Paulo Brito J, Batalha N, Oliveira R, Parraca JA, Fernandes O. Phase angle as a key marker of muscular and bone quality in community-dwelling independent older adults: A cross-sectional exploratory pilot study. Heliyon 2023; 9:e17593. [PMID: 37539181 PMCID: PMC10395046 DOI: 10.1016/j.heliyon.2023.e17593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 08/05/2023] Open
Abstract
The aim of the present cross-sectional exploratory pilot study was to analyze the ability of the Phase Angle (PhA) to predict physical function, muscle strength and bone indicators, upon adjusting for potential confounders [age, sex, lean mass, and body mass index (BMI)]. This study included 56 physically independent older adults (age, 68.29 ± 3.01 years; BMI, 28.09 ± 4.37 kg/m2). A multi-frequency segmental bioelectrical impedance analysis was used to measure PhA at 50 KHz. Additionally, physical function was assessed through four functional capacity tests [30-sec chair-stand; seated medicine ball throw (SMBT); timed up & go; and 6-min walking test (6 MWT)], muscle strength through the handgrip test (dominant side) and maximal isokinetic strength of the dominant knee flexor and extensor. Moreover, bone indicators and body composition were assessed through the dual energy X-ray absorptiometry. PhA was significantly associated with SMBT (r = 0.375, effect size (ES) = moderate); 6 MWT (r = 0.396, ES = moderate); 30-sec chair-stand (rho = 0.314, ES = moderate); knee extension (rho = 0.566, ES = large) and flexion (r = 0.459, ES = moderate); handgrip (rho = 0.432, ES = moderate); whole-body bone mineral content (BMC) (r = 0.316, ES = moderate); femoral neck BMC (r = 0.469, ES = moderate); and femoral neck bone mineral density (BMD) (rho = 0.433, ES = moderate). Additionally, the results of multiple regression analysis demonstrated that PhA is significantly associated with SMBT (p < 0.001; R2 = 0.629), 6 MWT (p = 0.004; R2 = 0.214), knee extension (p < 0.001; R2 = 0.697), knee flexion (p < 0.001; R2 = 0.355), handgrip test (p < 0.001; R2 = 0.774), whole-body BMC (p < 0.001; R2 = 0.524), femoral neck BMC (p = 0.001; R2 = 0.249), and femoral neck BMD (p = 0.020; R2 = 0.153). The results of the preliminary analysis suggested that PhA is linked to muscle strength and some factors related to physical function and bone quality in community-dwelling older adults.
Collapse
Affiliation(s)
- Alexandre Duarte Martins
- Comprehensive Health Research Centre (CHRC), Departamento de Desporto e Saúde, Escola de Saúde e Desenvolvimento Humano, Universidade de Évora, Largo Dos Colegiais, 7000-727, Évora, Portugal
- Life Quality Research Centre, 2040-413, Rio Maior, Portugal
| | - João Paulo Brito
- Life Quality Research Centre, 2040-413, Rio Maior, Portugal
- Sports Science School of Rio Maior, Polytechnic Institute of Santarém, 2040-413, Rio Maior, Portugal
- Research Centre in Sport Sciences, Health Sciences and Human Development, 5001-801, Vila Real, Portugal
| | - Nuno Batalha
- Comprehensive Health Research Centre (CHRC), Departamento de Desporto e Saúde, Escola de Saúde e Desenvolvimento Humano, Universidade de Évora, Largo Dos Colegiais, 7000-727, Évora, Portugal
| | - Rafael Oliveira
- Life Quality Research Centre, 2040-413, Rio Maior, Portugal
- Sports Science School of Rio Maior, Polytechnic Institute of Santarém, 2040-413, Rio Maior, Portugal
- Research Centre in Sport Sciences, Health Sciences and Human Development, 5001-801, Vila Real, Portugal
| | - Jose A. Parraca
- Comprehensive Health Research Centre (CHRC), Departamento de Desporto e Saúde, Escola de Saúde e Desenvolvimento Humano, Universidade de Évora, Largo Dos Colegiais, 7000-727, Évora, Portugal
| | - Orlando Fernandes
- Comprehensive Health Research Centre (CHRC), Departamento de Desporto e Saúde, Escola de Saúde e Desenvolvimento Humano, Universidade de Évora, Largo Dos Colegiais, 7000-727, Évora, Portugal
| |
Collapse
|
6
|
Chen L, Wu J, Ren W, Li X, Luo M, Hu Y. Association of osteoporosis and skeletal muscle loss with serum type I collagen carboxyl-terminal peptide β glypeptide: A cross-sectional study in elder Chinese population. Open Med (Wars) 2023; 18:20230642. [PMID: 36820065 PMCID: PMC9938641 DOI: 10.1515/med-2023-0642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 02/17/2023] Open
Abstract
Type I collagen carboxyl-terminal peptide β (β-CTX) increases in osteoporosis. The study aimed to explore the relationship between serum β-CTX and the risk of osteoporosis as well as sarcopenia in Chinese elderly inpatients. Around 228 patients whose age >65 years were recruited in this cross-sectional study. Dual-energy X-ray scanning was used to access skeletal muscle and bone mass. Serum concentration of β-CTX as well as the prevalence of osteoporosis were significantly higher in low skeletal muscle index (SMI) group than that in the normal SMI group (P < 0.05). Serum β-CTX levels negatively correlated with SMI and bone mass (P < 0.05). Total muscle mass, appendicular skeletal muscle mass, SMI, total bone mass, and bone mass at various sites including the limbs, spine, and pelvis decreased significantly, and the prevalence of low SMI increased with the increase of the quartiles of β-CTX. Higher serum β-CTX had an increased risk of low SMI and osteoporosis (P < 0.05). Summarily, with increasing serum β-CTX levels, both muscle and bone mass decreased in Chinese elderly inpatients. Serum β-CTX was positively associated with the risk of not only osteoporosis but also skeletal muscle loss.
Collapse
Affiliation(s)
- Lingyan Chen
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai200032, China
| | - Jiayu Wu
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai200032, China
| | - Weiying Ren
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai200032, China
| | - Xi Li
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai200032, China
| | - Man Luo
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Fenglin Road 180, Shanghai200032, China
| | - Yu Hu
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Fenglin Road 180, Shanghai200032, China
| |
Collapse
|
7
|
Lee JY, Davis I, Youth EHH, Kim J, Churchill G, Godwin J, Korstanje R, Beck S. Misexpression of genes lacking CpG islands drives degenerative changes during aging. SCIENCE ADVANCES 2021; 7:eabj9111. [PMID: 34910517 PMCID: PMC8673774 DOI: 10.1126/sciadv.abj9111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/26/2021] [Indexed: 05/14/2023]
Abstract
Cellular aging is characterized by disruption of the nuclear lamina and its associated heterochromatin. How these structural changes within the nucleus contribute to age-related degeneration of the organism is unclear. Genes lacking CpG islands (CGI− genes) generally associate with heterochromatin when they are inactive. Here, we show that the expression of these genes is globally activated in aged cells and tissues. This CGI− gene misexpression is a common feature of normal and pathological aging in mice and humans. We report evidence that CGI− gene up-regulation is directly responsible for age-related physiological deterioration, notably for increased secretion of inflammatory mediators.
Collapse
Affiliation(s)
- Jun-Yeong Lee
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Bar Harbor, ME 04609, USA
| | - Ian Davis
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Bar Harbor, ME 04609, USA
| | - Elliot H. H. Youth
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Bar Harbor, ME 04609, USA
- Brown University, Providence, RI 02912, USA
| | - Jonghwan Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - James Godwin
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Bar Harbor, ME 04609, USA
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | - Samuel Beck
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Bar Harbor, ME 04609, USA
| |
Collapse
|
8
|
Influence of Polymorphism on the NFkB1 Gene (rs28362491) on the Susceptibility to Sarcopenia in the Elderly of the Brazilian Amazon. J Pers Med 2021; 11:jpm11101045. [PMID: 34683186 PMCID: PMC8537608 DOI: 10.3390/jpm11101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Sarcopenia is a disease characterized by progressive reduction in muscle mass and strength or function. Although it is known that sarcopenia may be associated with environmental factors, studies suggest the identification of genes related to skeletal muscle maintenance that explain the susceptibility to the disease. OBJECTIVE To analyze the influence of NFkB1 gene polymorphism on susceptibility to sarcopenia in the elderly. METHODS This is a case-control study, which included 219 elderly people, 74 elderly people with sarcopenia, and 145 without sarcopenia. Samples were analyzed for NFkB1 gene polymorphism (rs28362491), genotyped in PCR, and followed by fragment analysis. To avoid misinterpretation due to population substructure, we applied a previously developed set of 61 informative ancestral markers that were genotyped by multiplex PCR. We used logistic regression to identify differences in genotypic frequencies between elderly people with and without sarcopenia. RESULTS It was observed that the NFkB1 gene polymorphism presented frequencies of 24%, 50%, and 26% for the genotype DEL/DEL, DEL/INS, and INS/INS, respectively. Furthermore, elderly individuals with the INS/INS genotype had increased chances (p = 0.010; OR:2.943; 95%CI:1.301-6.654) for the development of sarcopenia. CONCLUSION The INDEL polymorphism of the NFkB1 gene (rs28362491) may influence the susceptibility to sarcopenia in the elderly in elderly people in the Amazon.
Collapse
|
9
|
Saeki C, Tsubota A. Influencing Factors and Molecular Pathogenesis of Sarcopenia and Osteosarcopenia in Chronic Liver Disease. Life (Basel) 2021; 11:life11090899. [PMID: 34575048 PMCID: PMC8468289 DOI: 10.3390/life11090899] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
The liver plays a pivotal role in nutrient/energy metabolism and storage, anabolic hormone regulation, ammonia detoxification, and cytokine production. Impaired liver function can cause malnutrition, hyperammonemia, and chronic inflammation, leading to an imbalance between muscle protein synthesis and proteolysis. Patients with chronic liver disease (CLD) have a high prevalence of sarcopenia, characterized by progressive loss of muscle mass and function, affecting health-related quality of life and prognosis. Recent reports have revealed that osteosarcopenia, defined as the concomitant occurrence of sarcopenia and osteoporosis, is also highly prevalent in patients with CLD. Since the differentiation and growth of muscles and bones are closely interrelated through mechanical and biochemical communication, sarcopenia and osteoporosis often progress concurrently and affect each other. Osteosarcopenia further exacerbates unfavorable health outcomes, such as vertebral fracture and frailty. Therefore, a comprehensive assessment of sarcopenia, osteoporosis, and osteosarcopenia, and an understanding of the pathogenic mechanisms involving the liver, bones, and muscles, are important for prevention and treatment. This review summarizes the molecular mechanisms of sarcopenia and osteosarcopenia elucidated to data in hopes of promoting advances in treating these musculoskeletal disorders in patients with CLD.
Collapse
Affiliation(s)
- Chisato Saeki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan;
| | - Akihito Tsubota
- Core Research Facilities, Research Center for Medical Science, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
- Correspondence: ; Tel.: +81-3-3433-1111
| |
Collapse
|
10
|
Yang YJ, Kim DJ. An Overview of the Molecular Mechanisms Contributing to Musculoskeletal Disorders in Chronic Liver Disease: Osteoporosis, Sarcopenia, and Osteoporotic Sarcopenia. Int J Mol Sci 2021; 22:ijms22052604. [PMID: 33807573 PMCID: PMC7961345 DOI: 10.3390/ijms22052604] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
The prevalence of osteoporosis and sarcopenia is significantly higher in patients with liver disease than in those without liver disease and osteoporosis and sarcopenia negatively influence morbidity and mortality in liver disease, yet these musculoskeletal disorders are frequently overlooked in clinical practice for patients with chronic liver disease. The objective of this review is to provide a comprehensive understanding of the molecular mechanisms of musculoskeletal disorders accompanying the pathogenesis of liver disease. The increased bone resorption through the receptor activator of nuclear factor kappa (RANK)-RANK ligand (RANKL)-osteoprotegerin (OPG) system and upregulation of inflammatory cytokines and decreased bone formation through increased bilirubin and sclerostin and lower insulin-like growth factor-1 are important mechanisms for osteoporosis in patients with liver disease. Sarcopenia is associated with insulin resistance and obesity in non-alcoholic fatty liver disease, whereas hyperammonemia, low amount of branched chain amino acids, and hypogonadism contributes to sarcopenia in liver cirrhosis. The bidirectional crosstalk between muscle and bone through myostatin, irisin, β-aminoisobutyric acid (BAIBA), osteocalcin, as well as the activation of the RANK and the Wnt/β-catenin pathways are associated with osteosarcopenia. The increased understandings for these musculoskeletal disorders would be contributes to the development of effective therapies targeting the pathophysiological mechanism involved.
Collapse
Affiliation(s)
- Young Joo Yang
- Department of Internal Medicine, Hallym University College of Medicine, Gangwon-do, Chuncheon 24252, Korea;
- Institute for Liver and Digestive Diseases, Hallym University, Gangwon-do, Chuncheon 24253, Korea
| | - Dong Joon Kim
- Department of Internal Medicine, Hallym University College of Medicine, Gangwon-do, Chuncheon 24252, Korea;
- Institute for Liver and Digestive Diseases, Hallym University, Gangwon-do, Chuncheon 24253, Korea
- Correspondence:
| |
Collapse
|
11
|
Huang J, He F, Gu X, Chen S, Tong Z, Zhong S. Estimation of sarcopenia prevalence in individuals at different ages from Zheijang province in China. Aging (Albany NY) 2021; 13:6066-6075. [PMID: 33601336 PMCID: PMC7950223 DOI: 10.18632/aging.202567] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/13/2021] [Indexed: 04/24/2023]
Abstract
In this study, we analyzed sarcopenia prevalence and the cut-off points for skeletal muscle mass index (SMI), gait speed, and handgrip strength in young (18-39 years), middle-aged (40-59 years), and elderly (>60 years) individuals (n=1685) from Zhejiang Province in China. The prevalence of sarcopenia among individuals above 65 years was 2.21%, 4.87%, 5.31%, 14.16%, and 16.37% according to five diagnostic criteria (AWGS2019, AWGS2014, EWGSOP1, EWGSOP2, and local standard). The mean SMI (Kg/m2) was 7.961±0.7966, 7.801±0.7276, and 7.544±0.7493, respectively, in young, middle-aged, and elderly males. The mean SMI in young, middle-aged, and elderly females was 6.1570±0.5658, 6.604±0.5658, and 6.248±0.7483, respectively. SMI correlated negatively with age (r=-0.2344, P<0.001), but was not associated with age in females (r=0.0573, P=0.1463). The cut-off point of SMI for sarcopenia was ≤6.3678 kg/m2 in males and ≤5.0254 kg/m2 in females. These findings shows that the prevalence of sarcopenia increased gradually with age and varied significantly based on the diagnostic criteria used for this analysis. The mean SMI of young women was lower than in middle-aged women, making them an unsuitable reference population for determining cut-off values for sarcopenia diagnosis.
Collapse
Affiliation(s)
- Jie Huang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Fan He
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Xue Gu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Shoushun Chen
- Putuo Mountain Community Center for Health and Service, Zhoushan, Zhejiang, China
| | - Zhendong Tong
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang, China
| | - Suya Zhong
- Putuo Mountain Community Center for Health and Service, Zhoushan, Zhejiang, China
| |
Collapse
|
12
|
Chae SH, Lee C, Yoon SH, Shim SH, Lee SJ, Kim SN, Chung S, Lee JY. Sarcopenia as a Predictor of Prognosis in Early Stage Ovarian Cancer. J Korean Med Sci 2021; 36:e2. [PMID: 33398939 PMCID: PMC7781849 DOI: 10.3346/jkms.2021.36.e2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND To identify sarcopenia as a predictive prognostic factor of ovarian cancer in terms of survival outcome in patients with early-stage ovarian cancer. METHODS Data of Konkuk University Medical Center from March 2002 to December 2017 were reviewed retrospectively. Eighty-two patients who underwent surgery due to early-stage (International Federation of Gynecology and Obstetrics stage I/II) ovarian cancer and had computed tomography (CT) images taken at the initial diagnosis were included. The initial CT scan images were analyzed with SliceOmatic software (TomoVision). A sarcopenia cutoff value was defined as a skeletal muscle index of ≤ 38.7 cm²/m². Overall survival (OS) times were compared according to the existence of sarcopenia, and subgroup analyses were performed. RESULTS A Kaplan-Meier analysis showed a significant survival disadvantage for patients with early-stage ovarian cancer when they had sarcopenia (P < 0.001; log-rank test). Sarcopenia remained a significant prognostic factor for OS in early-stage ovarian cancer, in a Cox proportional hazards model regression analysis (HR, 21.9; 95% CI, 2.0-199.9; P = 0.006). CONCLUSION This study demonstrated that sarcopenia was predictive of OS in patients with early-stage ovarian cancer. Further prospective studies with a larger number of patients are warranted to determine the extent to which sarcopenia can be used as a prognostic factor in ovarian cancer.
Collapse
Affiliation(s)
- Su Hyun Chae
- Department of Obstetrics and Gynecology, Konkuk Medical Center, Konkuk University School of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Korea University Anam Medical Center, Korea University College of Medicine, Seoul, Korea
| | - Chulmin Lee
- Department of Obstetrics and Gynecology, Cha University Ilsan Medical Center, Goyang, Korea
| | - Sang Hee Yoon
- Department of Obstetrics and Gynecology, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Seung Hyuk Shim
- Department of Obstetrics and Gynecology, Konkuk Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Sun Joo Lee
- Department of Obstetrics and Gynecology, Konkuk Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Soo Nyung Kim
- Department of Obstetrics and Gynecology, Konkuk Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Sochung Chung
- Department of Pediatrics, Konkuk Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Ji Young Lee
- Department of Obstetrics and Gynecology, Konkuk Medical Center, Konkuk University School of Medicine, Seoul, Korea.
| |
Collapse
|
13
|
Shochat C, Wang Z, Mo C, Nelson S, Donaka R, Huang J, Karasik D, Brotto M. Deletion of SREBF1, a Functional Bone-Muscle Pleiotropic Gene, Alters Bone Density and Lipid Signaling in Zebrafish. Endocrinology 2021; 162:5929645. [PMID: 33068391 PMCID: PMC7745669 DOI: 10.1210/endocr/bqaa189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Indexed: 12/30/2022]
Abstract
Through a genome-wide analysis of bone mineral density (BMD) and muscle mass, identification of a signaling pattern on 17p11.2 recognized the presence of sterol regulatory element-binding factor 1 (SREBF1), a gene responsible for the regulation of lipid homeostasis. In conjunction with lipid-based metabolic functions, SREBF1 also codes for the protein, SREBP-1, a transcription factor known for its role in adipocyte differentiation. We conducted a quantitative correlational study. We established a zebrafish (ZF) SREBF1 knockout (KO) model and used a targeted customized lipidomics approach to analyze the extent of SREBF1 capabilities. For lipidomics profiling, we isolated the dorsal muscles of wild type (WT) and KO fishes, and we performed liquid chromatography-tandem mass spectrometry screening assays of these samples. In our analysis, we profiled 48 lipid mediators (LMs) derived from various essential polyunsaturated fatty acids to determine potential targets regulated by SREBF1, and we found that the levels of 11,12 epoxyeicosatrienoic acid (11,12-EET) were negatively associated with the number of SREBF1 alleles (P = 0.006 for a linear model). We also compared gene expression between KO and WT ZF by genome-wide RNA-sequencing. Significantly enriched pathways included fatty acid elongation, linoleic acid metabolism, arachidonic acid metabolism, adipocytokine signaling, and DNA replication. We discovered trends indicating that BMD in adult fish was significantly lower in the KO than in the WT population (P < 0.03). These studies reinforce the importance of lipidomics investigation by detailing how the KO of SREBF1 affects both BMD and lipid-signaling mediators, thus confirming the importance of SREBF1 for musculoskeletal homeostasis.
Collapse
Affiliation(s)
- Chen Shochat
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Zhiying Wang
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington-UTA, Arlington, Texas
| | - Chenglin Mo
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington-UTA, Arlington, Texas
| | - Sarah Nelson
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington-UTA, Arlington, Texas
| | | | - Jian Huang
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington-UTA, Arlington, Texas
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Correspondence: David Karasik, Azrieli Faculty of Medicine, Bar-Ilan university, Safed, 1311502, Israel. E-mail:
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington-UTA, Arlington, Texas
| |
Collapse
|
14
|
Su H, Ruan J, Chen T, Lin E, Shi L. CT-assessed sarcopenia is a predictive factor for both long-term and short-term outcomes in gastrointestinal oncology patients: a systematic review and meta-analysis. Cancer Imaging 2019; 19:82. [PMID: 31796090 PMCID: PMC6892174 DOI: 10.1186/s40644-019-0270-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/22/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The impact of sarcopenia on the outcome of gastrointestinal (GI) oncological patients is still controversial. We aim to discuss the prevalence of sarcopenia and its relation to the oncological outcome. METHODS Embase, Medline, PubMed, and the Cochrane library were systematically searched for related keywords. Studies using CT to assess sarcopenia and evaluate its relationship with the outcome of GI oncological patients were included. Long-term outcomes, including overall survival and disease-free survival, were compared by hazard ratios (HRs) with 95% confidence intervals (CIs). Short-term outcomes, including total complications and major complications (Clavien-Dindo ≥IIIa) after curable surgery, were compared by the risk ratio (RR) and 95% CI. RESULTS A total of 70 studies including 21,875 patients were included in our study. The median incidence of sarcopenia was 34.7% (range from 2.1 to 83.3%). A total of 88.4% of studies used skeletal muscle index (SMI) in the third lumbar level on CT to define sarcopenia, and a total of 19 cut-offs were used to define sarcopenia. An increasing trend was found in the prevalence of sarcopenia when the cut-off of SMI increased (β = 0.22, 95% CI = 0.12-0.33, p < 0.001). The preoperative incidence of sarcopenia was associated both with an increased risk of overall mortality (HR = 1.602, 95% CI = 1.369-1.873, P < 0.001) and with disease-free mortality (HR = 1.461, 95% CI = 1.297-1.646, P < 0.001). Moreover, preoperative sarcopenia was a risk factor for both total complications (RR = 1.188, 95% CI = 1.083-1.303, P < 0.001) and major complications (RR = 1.228, 95% CI = 1.042-1.448, P = 0.014). CONCLUSION The prevalence of sarcopenia depends mostly on the diagnostic cut-off points of different criteria. Preoperative sarcopenia is a risk factor for both long-term and short-term outcomes.
Collapse
Affiliation(s)
- Huaiying Su
- Department of Radiology, Quanzhou First Hospital Fujian, Quanzhou, Fujian Province, People's Republic of China
| | - Junxian Ruan
- Department of Ultrasonic, Quanzhou Women's and Children's Hospital, 700 Fengze Road, Quanzhou, 362000, Fujian Province, People's Republic of China.
| | - Tianfeng Chen
- Department of Radiology, Quanzhou Women's and Children's Hospital, Quanzhou, Fujian Province, People's Republic of China
| | - Enyi Lin
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Lijing Shi
- Department of Ultrasonic, Quanzhou Women's and Children's Hospital, 700 Fengze Road, Quanzhou, 362000, Fujian Province, People's Republic of China
| |
Collapse
|
15
|
Chen F, Wang Y, Guo Y, Wang J, Yang A, Lv Q, Liu Y, Ma G, Liu Y, Wang D. Specific higher levels of serum uric acid might have a protective effect on bone mineral density within a Chinese population over 60 years old: a cross-sectional study from northeast China. Clin Interv Aging 2019; 14:1065-1073. [PMID: 31354250 PMCID: PMC6572710 DOI: 10.2147/cia.s186500] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/17/2019] [Indexed: 12/13/2022] Open
Abstract
Background and objective: Oxidative stress has been demonstrated to be a mechanism that leads to bone mass reduction, and according to many studies, serum uric acid (UA) is a strong endogenous antioxidant that can protect bone mineral density (BMD). To date, there have been no large-scale, cross-sectional studies based on the population in northeast China to assess the relationship between serum UA and BMD. Therefore, we examined the association between serum UA and BMD among a Chinese population older than 60 years old in northeast China. Methods: This research was a cross-sectional study of 3465 Chinese individuals over 60 years old in nine communities from the city of Shenyang, which is the capital of northeast China’s Liaoning Province. Participants were stratified into three groups by serum UA or BMD levels, and then Pearson’s correlation analysis and multiple regression analysis were used to study the relationship between serum UA and BMD. Results: We found that participants with higher serum UA levels had significantly greater BMD and T-values compared to those of participants with lower serum UA levels. After adjusting for confounding factors, Pearson’s correlation analysis and multiple regression analysis showed that higher serum UA levels remained associated with higher BMD levels (P<0.05). In different models, the prevalence of osteoporosis (OP) among participants with higher serum UA levels was reduced by 23% to 26% (P<0.05) compared to that in individuals with lower serum UA levels. In addition, serum UA levels were negatively correlated with estimated glomerular filtration rate (eGFR) and positively correlated with 25-hydroxy vitamin D3 [25-(OH)D3] (P<0.05). Conclusion: We concluded that higher serum UA levels are associated with greater BMD, and serum UA might have a protective effect on bone metabolism due to its antioxidant properties.
Collapse
Affiliation(s)
- Feng Chen
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Yingfang Wang
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Yan Guo
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Jiabei Wang
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Aolin Yang
- Department of Nutrition, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Qingqing Lv
- Department of Nutrition, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Yixuan Liu
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Guojing Ma
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Ying Liu
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, People's Republic of China
| | - Difei Wang
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| |
Collapse
|
16
|
Li G, Zhang L, Wang D, AIQudsy L, Jiang JX, Xu H, Shang P. Muscle-bone crosstalk and potential therapies for sarco-osteoporosis. J Cell Biochem 2019; 120:14262-14273. [PMID: 31106446 DOI: 10.1002/jcb.28946] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 12/17/2022]
Abstract
The nature of muscle-bone crosstalk has been historically considered to be only mechanical, where the muscle is the load applier while bone provides the attachment sites. However, this dogma has been challenged with the emerging notion that bone and muscle act as secretory endocrine organs affect the function of each other. Biochemical crosstalk occurs through myokines such as myostatin, irisin, interleukin (IL)-6, IL-7, IL-15, insulin-like growth factor-1, fibroblast growth factor (FGF)-2, and β-aminoisobutyric acid and through bone-derived factors including FGF23, prostaglandin E2 , transforming growth factor β, osteocalcin, and sclerostin. Aside from the biochemical and mechanical interaction, additional factors including aging, circadian rhythm, nervous system network, nutrition intake, and exosomes also have effects on bone-muscle crosstalk. Here, we summarize the current research progress in the area, which may be conductive to identify potential novel therapies for the osteoporosis and sarcopenia, especially when they develop in parallel.
Collapse
Affiliation(s)
- GuoBin Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Lan Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - DongEn Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Luban AIQudsy
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - HuiYun Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Peng Shang
- Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, Guangdong, China
| |
Collapse
|
17
|
Zhang X, Hua T, Zhu J, Peng K, Yang J, Kang S, Xu T, Hu J, Tang G. Body compositions differently contribute to BMD in different age and gender: a pilot study by QCT. Arch Osteoporos 2019; 14:31. [PMID: 30847583 DOI: 10.1007/s11657-019-0574-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/29/2019] [Indexed: 02/03/2023]
Abstract
UNLABELLED The study was to investigate the correlation between body compositions and bone mineral density (BMD) and to evaluate the body composition contribution to BMD. In male, LM showed positive effect on BMD. In female, SAT showed positive, and FM and F/L showed negative effect on BMD. PURPOSE The purpose of the study was to investigate the correlation between body compositions and bone mineral density (BMD) performed by quantitative computed tomography (QCT), and to evaluate the body composition contribution to BMD. METHODS Three hundred ninety-four participants, including 122 male (31%) and 272 female (69%), were divided into groups by gender, age, and BMD. BMD and body compositions [including fat mass (FM), lean mass (LM), bone mass/lean mass ratio (B/L), fat mass/lean mass ratio (F/L), total adipose tissue (TAT), subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT)] were retrospectively compared among groups using one-way ANOVA or t test. A stepwise multivariate analysis was used to evaluate the body composition contribution to BMD and produced models. RESULTS In male, BMD got decreased with age (P < 0.05). LM increased before 30-49 years, then decreased (P < 0.05). TAT and SAT decreased with age (P < 0.05). LM in OP group was lower than those in the other two groups (P < 0.05). Through stepwise multivariate analysis, LM firstly got into model 1 (M1, β = 0.589). In female, BMD, LM TAT, and VAT were increased before 30-49 years, then decreased (P < 0.05). FM and F/L increased with age (P < 0.05). SAT decreased with age (P < 0.05). FM and F/L in OP group were higher than those in other groups. LM, B/L, TAT, and SAT in the OP group were lower than those in the other groups (P < 0.05). SAT entered the M1 with a maximum β value (β = 0.584). CONCLUSIONS BMD and body compositions displayed different characteristics with age. In male, LM showed positive effect on BMD. In female, SAT showed positive, and FM and F/L showed negative effect on BMD.
Collapse
Affiliation(s)
- Xueli Zhang
- Department of Radiology, Shanghai TenthPeople's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Ting Hua
- Department of Radiology, Shanghai TenthPeople's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Jingqi Zhu
- Department of Radiology, Shanghai TenthPeople's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Kun Peng
- Department of Radiology, Shanghai TenthPeople's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Jun Yang
- Department of Radiology, Tongren Hospital, Shanghai Jiaotong University School of Medical, Shanghai, 200336, China
| | - Sifeng Kang
- Department of Radiology, Shanghai TenthPeople's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Tingting Xu
- Department of Radiology, Shanghai TenthPeople's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Jian Hu
- Department of Radiology, Shanghai TenthPeople's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Guangyu Tang
- Department of Radiology, Shanghai TenthPeople's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China.
| |
Collapse
|
18
|
Kaushal N, Vohora D, Jalali RK, Jha S. Raised serum uric acid is associated with higher bone mineral density in a cross-sectional study of a healthy Indian population. Ther Clin Risk Manag 2018; 14:75-82. [PMID: 29379298 PMCID: PMC5759848 DOI: 10.2147/tcrm.s147696] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Oxidative stress has been implicated as a fundamental mechanism in the decline of bone mass. Reactive oxygen species are reported to suppress osteoblast generation and differentiation and enhance osteoclast development and activity. Increasing evidence suggests favorable effect of serum uric acid (UA) on bone metabolism due to its antioxidant properties. Therefore, we investigated the association between serum UA levels and bone mineral density (BMD) in healthy adult Indian subjects. Materials and methods We reviewed the medical records of 524 subjects who had undergone preventive health check-ups in a tertiary care hospital that included UA and BMD measurements at femur neck, total femur, and lumbar spine. Subjects concomitantly taking drugs or having a medical condition that would affect the bone metabolism or UA levels were excluded. Results The final analysis included 310 subjects (mean age: 47.2±12.2 years; females: 43.5%; males: 56.5%). Study population was categorized into two groups based on the group median value for UA (ie, 5.4 mg/dL). BMD was significantly higher at all skeletal sites in subjects with UA >5.4 mg/dL compared to subjects with UA ≤5.4 mg/dL (p<0.001). On correlation analysis, UA was positively associated with BMD at all skeletal sites (r=0.211–0.277; p<0.05). The correlation remained significant after controlling for age (p<0.05) and lifestyle factors (smoking, alcohol use, physical activity, and diet; p<0.05) independently. UA significantly (p<0.001) accounted for 4.5%–7.7% of the variance in BMD (r2=0.045–0.077) in unadjusted model and 1.6%–3.2% of the variance (p<0.05) when adjusted for age and body mass index combined at lumbar spine and right femur neck, respectively. Conclusion We conclude that raised UA levels are associated with higher BMD at all skeletal sites and UA may have a protective role in bone metabolism owing to its antioxidant effect.
Collapse
Affiliation(s)
- Neelam Kaushal
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi
| | - Divya Vohora
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi
| | - Rajinder K Jalali
- Medical Affairs and Clinical Research, Sun Pharmaceutical Industries Limited, Gurgaon
| | - Sujeet Jha
- Institute of Endocrinology, Diabetes and Metabolism, Max Healthcare Inst. Ltd, New Delhi, India
| |
Collapse
|
19
|
Padilla Colón CJ, Molina-Vicenty IL, Frontera-Rodríguez M, García-Ferré A, Rivera BP, Cintrón-Vélez G, Frontera-Rodríguez S. Muscle and Bone Mass Loss in the Elderly Population: Advances in diagnosis and treatment. JOURNAL OF BIOMEDICINE (SYDNEY, NSW) 2018; 3:40-49. [PMID: 30505650 PMCID: PMC6261527 DOI: 10.7150/jbm.23390] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aging is the result of different functional changes leading to a substantial reduction of all human capabilities. A variety of anatomical and physiological changes occur with advancing age. These changes are more evident in the elderly population. There are various methods to measure muscle and bone mass loss, but the dual X-ray absorptiometry (DXA) is considered one of the most efficient. The elderly population (65 years and older) has been increasing throughout the years. Loss of muscle mass (sarcopenia) and loss bone mass (osteopenia or osteoporosis) with advancing age, when untreated, represent a major public health problem for the elderly population and may result in loss of independence in later life. Untreated age-related sarcopenia and osteopenia/osteoporosis increase the risk for falls and fractures, making older individuals more susceptible to the development of mobility limitations or severe disabilities that ultimately affect their capacity for independence. In this review, we will discuss the muscle and bone mass loss in the elderly population and advances in diagnosis and treatment.
Collapse
Affiliation(s)
- Carlos J. Padilla Colón
- Department of Education, Physical Education and Health Programs, San Juan, PR, USA
- Research and Development Service (151), VA Caribbean Healthcare System, San Juan PR, USA
| | - Irma L. Molina-Vicenty
- Research and Development Service (151), VA Caribbean Healthcare System, San Juan PR, USA
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
- Department of Radiological Sciences, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA
| | - María Frontera-Rodríguez
- Research and Development Service (151), VA Caribbean Healthcare System, San Juan PR, USA
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
| | - Alejandra García-Ferré
- Research and Development Service (151), VA Caribbean Healthcare System, San Juan PR, USA
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
| | | | - Gerardo Cintrón-Vélez
- Research and Development Service (151), VA Caribbean Healthcare System, San Juan PR, USA
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
| | - Sebastián Frontera-Rodríguez
- Research and Development Service (151), VA Caribbean Healthcare System, San Juan PR, USA
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
| |
Collapse
|
20
|
Hart N, Nimphius S, Rantalainen T, Ireland A, Siafarikas A, Newton R. Mechanical basis of bone strength: influence of bone material, bone structure and muscle action. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2017; 17:114-139. [PMID: 28860414 PMCID: PMC5601257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/19/2017] [Indexed: 11/09/2022]
Abstract
This review summarises current understanding of how bone is sculpted through adaptive processes, designed to meet the mechanical challenges it faces in everyday life and athletic pursuits, serving as an update for clinicians, researchers and physical therapists. Bone's ability to resist fracture under the large muscle and locomotory forces it experiences during movement and in falls or collisions is dependent on its established mechanical properties, determined by bone's complex and multidimensional material and structural organisation. At all levels, bone is highly adaptive to habitual loading, regulating its structure according to components of its loading regime and mechanical environment, inclusive of strain magnitude, rate, frequency, distribution and deformation mode. Indeed, the greatest forces habitually applied to bone arise from muscular contractions, and the past two decades have seen substantial advances in our understanding of how these forces shape bone throughout life. Herein, we also highlight the limitations of in vivo methods to assess and understand bone collagen, and bone mineral at the material or tissue level. The inability to easily measure or closely regulate applied strain in humans is identified, limiting the translation of animal studies to human populations, and our exploration of how components of mechanical loading regimes influence mechanoadaptation.
Collapse
Affiliation(s)
- N.H. Hart
- Exercise Medicine Research Institute, Edith Cowan University, Perth, W.A., Australia
- Western Australian Bone Research Collaboration, Perth, W.A., Australia
| | - S. Nimphius
- Western Australian Bone Research Collaboration, Perth, W.A., Australia
- Centre for Exercise and Sport Science Research, Edith Cowan University, Perth, W.A., Australia
| | - T. Rantalainen
- Western Australian Bone Research Collaboration, Perth, W.A., Australia
- School of Exercise and Nutrition Sciences, Deakin University, Melbourne, VIC, Australia
| | - A. Ireland
- School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom
| | - A. Siafarikas
- Western Australian Bone Research Collaboration, Perth, W.A., Australia
- Department of Endocrinology, Princess Margaret Hospital, Perth, W.A., Australia
- School of Paediatrics and Child Health, University of Western Australia, Perth, W.A., Australia
- Institute of Health Research, University of Notre Dame Australia, Perth, W.A., Australia
| | - R.U. Newton
- Exercise Medicine Research Institute, Edith Cowan University, Perth, W.A., Australia
| |
Collapse
|
21
|
Effects of myokines on bone. BONEKEY REPORTS 2016; 5:826. [PMID: 27579164 DOI: 10.1038/bonekey.2016.48] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 05/01/2016] [Indexed: 12/22/2022]
Abstract
The links between muscle and bone have been recently examined because of the increasing number of patients with osteoporosis and sarcopenia. Myokines are skeletal muscle-derived humoral cytokines and growth factors, which exert physiological and pathological functions in various distant organs, including the regulation of glucose, energy and bone metabolism. Myostatin is a crucial myokine, the expression of which is mainly limited to muscle tissues. The inhibition of myostatin signaling increases bone remodeling, bone mass and muscle mass, and it may provide a target for the treatment of both sarcopenia and osteoporosis. As myostatin is involved in osteoclast formation and bone destruction in rheumatoid arthritis, myostatin may be a target myokine for the treatment of accelerated bone resorption and joint destruction in rheumatoid arthritis. Numerous other myokines, including transforming growth factor-β, follistatin, insulin-like growth factor-I, fibroblast growth factor-2, osteoglycin, FAM5C, irisin, interleukin (IL)-6, leukemia inhibitory factor, IL-7, IL-15, monocyte chemoattractant protein-1, ciliary neurotrophic factor, osteonectin and matrix metalloproteinase 2, also affect bone cells in various manners. However, the effects of myokines on bone metabolism are largely unknown. Further research is expected to clarify the interaction between muscle and bone, which may lead to greater diagnosis and the development of the treatment for muscle and bone disorders, such as osteoporosis and sarcopenia.
Collapse
|
22
|
Elevated Serum Uric Acid Is Associated with Greater Bone Mineral Density and Skeletal Muscle Mass in Middle-Aged and Older Adults. PLoS One 2016; 11:e0154692. [PMID: 27144737 PMCID: PMC4856375 DOI: 10.1371/journal.pone.0154692] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/18/2016] [Indexed: 12/25/2022] Open
Abstract
Background and objective Previous studies have suggested a positive link between serum uric acid (UA) and bone mineral density (BMD). In this study, we re-examined the association between UA and BMD and further explored whether this was mediated by skeletal muscle mass in a general Chinese population. Method This community-based cross-sectional study was conducted among 3079 (963 men and 2116 women) Chinese adults aged 40–75 years. Face-to-face interviews and laboratory analyses were performed to determine serum UA and various covariates. Dual-energy X-ray absorptiometry was used to assess the BMD and appendicular skeletal muscle mass. The skeletal muscle mass index (SMI = ASM/Height2, kg/m2) for the total limbs, arms, and legs was then calculated. Results The serum UA was graded and, in general, was significantly and positively associated with the BMD and muscle mass, after adjustment for multiple covariates in the total sample. Compared with participants in lowest quartile of UA, those participants in highest quartile showed a 2.3%(whole body), 4.1%(lumbar spine), 2.4%(total hip), and 2.0% (femoral neck) greater BMDs. The mean SMIs in the highest (vs. lowest) quartile increased by 2.7% (total), 2.5% (arm), 2.7% (leg) respectively. In addition, path analysis suggested that the favorable association between UA and BMD might be mediated by increasing SMI. Conclusion The elevated serum UA was associated with a higher BMD and a greater muscle mass in a middle-aged and elderly Chinese population and the UA-BMD association was partly mediated by muscle mass.
Collapse
|
23
|
Abstract
Osteoporosis is characterized by low bone mass and an increased risk of fracture. Genetic factors, environmental factors and gene-environment interactions all contribute to a person's lifetime risk of developing an osteoporotic fracture. This Review summarizes key advances in understanding of the genetics of bone traits and their role in osteoporosis. Candidate-gene approaches dominated this field 20 years ago, but clinical and preclinical genetic studies published in the past 5 years generally utilize more-sophisticated and better-powered genome-wide association studies (GWAS). High-throughput DNA sequencing, large genomic databases and improved methods of data analysis have greatly accelerated the gene-discovery process. Linkage analyses of single-gene traits that segregate in families with extreme phenotypes have led to the elucidation of critical pathways controlling bone mass. For example, components of the Wnt-β-catenin signalling pathway have been validated (in both GWAS and functional studies) as contributing to various bone phenotypes. These notable advances in gene discovery suggest that the next decade will witness cataloguing of the hundreds of genes that influence bone mass and osteoporosis, which in turn will provide a roadmap for the development of new drugs that target diseases of low bone mass, including osteoporosis.
Collapse
|
24
|
Kawao N, Kaji H. Interactions Between Muscle Tissues and Bone Metabolism. J Cell Biochem 2015; 116:687-95. [DOI: 10.1002/jcb.25040] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/15/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Naoyuki Kawao
- Department of Physiology and Regenerative Medicine; Kinki University Faculty of Medicine; Osakasayama Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine; Kinki University Faculty of Medicine; Osakasayama Japan
| |
Collapse
|
25
|
Abstract
There is growing interest in the interaction between skeletal muscle and bone, particularly at the genetic and molecular levels. However, the genetic and molecular linkages between muscle and bone are achieved only within the context of the essential mechanical coupling of the tissues. This biomechanical and physiological linkage is readily evident as muscles attach to bone and induce exposure to varied mechanical stimuli via functional activity. The responsiveness of bone cells to mechanical stimuli, or their absence, is well established. However, questions remain regarding how muscle forces applied to bone serve to modulate bone homeostasis and adaptation. Similarly, the contributions of varied, but unique, stimuli generated by muscle to bone (such as low-magnitude, high-frequency stimuli) remains to be established. The current article focuses upon the mechanical relationship between muscle and bone. In doing so, we explore the stimuli that muscle imparts upon bone, models that enable investigation of this relationship, and recent data generated by these models.
Collapse
Affiliation(s)
- Keith G. Avin
- Center for Translational Musculoskeletal Research and Department of Physical Therapy, School of the Health and Rehabilitation Sciences, Indiana University, 1140 W. Michigan St., CF-120, Indianapolis, IN, USA,
| | - Susan A. Bloomfield
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA,
| | - Ted S. Gross
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA,
| | - Stuart J. Warden
- Center for Translational Musculoskeletal Research and Department of Physical Therapy, School of the Health and Rehabilitation Sciences, Indiana University, 1140 W. Michigan St., CF-120, Indianapolis, IN, USA
| |
Collapse
|
26
|
Cianferotti L, Brandi ML. Muscle-bone interactions: basic and clinical aspects. Endocrine 2014; 45:165-77. [PMID: 23990248 DOI: 10.1007/s12020-013-0026-8] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/25/2013] [Indexed: 12/19/2022]
Abstract
Muscle and bone are anatomically and functionally closely connected. The traditional concept that skeletal muscles serve to load bone and transform skeletal segments into a system of levers has been further refined into the mechanostat theory, according to which striated muscle is essential for bone development and maintenance, modelling and remodelling. Besides biomechanical function, skeletal muscle and bone are endocrine organs able to secrete factors capable of modulating biological function within their microenvironment, in nearby tissues or in distant organs. The endocrine properties of muscle and bone may serve to sense and transduce biomechanical signals such as loading, unloading or exercise, or systemic hormonal stimuli into biochemical signals. Nonetheless, given the close anatomical relationship between skeletal muscle and bone, paracrine interactions particularly at the periosteal interface can be hypothesized. These mechanisms can assume particular importance during bone and muscle healing after musculoskeletal injury. Basic studies in vitro and in rodents have helped to dissect the multiple influences of skeletal muscle on bone and/or expression of inside-organ metabolism and have served to explain clinical observations linking muscle-to-bone quality. Recent evidences pinpoint that also bone tissue is able to modulate directly or indirectly skeletal muscle metabolism, thus empowering the crosstalk hypothesis to be further tested in humans in vivo.
Collapse
Affiliation(s)
- Luisella Cianferotti
- Unit of Bone and Mineral Metabolism, Department of Surgery and Translational Medicine, Section of Endocrinology and Metabolism, School of Human Health Sciences, University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | | |
Collapse
|
27
|
Abstract
The clinical significance of sarcopenia and osteoporosis has increased with the increase in the population of older people. Sarcopenia is defined by decreased muscle mass and impaired muscle function, which is related to osteoporosis independently and dependently. Numerous lines of clinical evidence suggest that lean body mass is positively related to bone mass, which leads to reduced fracture risk. Genetic, endocrine and mechanical factors affect both muscle and bone simultaneously. Vitamin D, the growth hormone/insulin-like growth factor I axis and testosterone are physiologically and pathologically important as endocrine factors. These findings suggest the presence of interactions between muscle and bone, which might be very important for understanding the physiology and pathophysiology of sarcopenia and osteoporosis. Muscle/bone relationships include two factors: local control of muscle to bone and systemic humoral interactions between muscle and bone. As a putative local inducer of muscle ossification, we found Tmem119, a parathyroid hormone-responsive osteoblast differentiation factor. Moreover, osteoglycin might be one of the muscle-derived humoral bone anabolic factors. This issue may be important for the development of novel drugs and biomarkers for osteoporosis and sarcopenia. Further research will be necessary to clarify the details of the linkage of muscle and bone.
Collapse
Affiliation(s)
- Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
28
|
Runeson-Broberg R, Lindgren T, Norbäck D. Musculoskeletal symptoms and psychosocial work environment, among Swedish commercial pilots. Int Arch Occup Environ Health 2013; 87:685-93. [PMID: 24091838 DOI: 10.1007/s00420-013-0911-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 09/19/2013] [Indexed: 11/30/2022]
Abstract
PURPOSE The associations between psychosocial work conditions and health in pilots are understudied, and therefore, the associations between the psychosocial work conditions and musculoskeletal problems among Swedish commercial pilots were investigated. METHODS In 2010, a self-administered questionnaire study was performed among pilots in one Swedish commercial airline: 354 pilots participated (61 %). Musculoskeletal symptoms and the psychosocial work conditions measured by the demand control social support model were investigated. Odds ratios (OR) with 95 % confidence interval (95 % CI) were expressed per change of one unit on the interquartile score scale. RESULTS Pilots on long-haul flights had less elbow symptoms (OR 0.34, 95 % CI 0.14-0.85), and women had more hand symptoms (OR 2.90, 95 % CI 1.11-7.52). There were associations between high work demands and symptoms from the neck (OR 2.04, 95 % CI 1.45-2.88), shoulders (OR 1.46, 95 % 1.05-2.03), elbows (OR 1.79, 95 % CI 1.10-2.90) and low back (OR 1.42, 95 % CI 1.02-1.96) in pilots. Low social support was associated with symptoms from the neck (OR 1.87, 95 % 1.35-2.58), shoulders (OR 1.56, 95 % CI 1.14-2.14) and low back (OR 1.63, 95 % CI 1.18-2.24). Low supervisor support was associated with neck (OR 1.67, 95 % CI 1.22-2.27), shoulders (OR 1.38, 95 % CI 1.02-1.87) and low back symptoms (OR 1.48, 95 % CI 1.09-2.01). The associations were mainly found among first officers. CONCLUSIONS Musculoskeletal symptoms in pilots can be affected by poor psychosocial work conditions such as high demands and low social support, especially for first officers. The psychosocial aspects of organisational changes in commercial airlines should be taken into consideration.
Collapse
Affiliation(s)
- Roma Runeson-Broberg
- Occupational and Environmental Medicine, Uppsala University Hospital, 751 85, Uppsala, Sweden,
| | | | | |
Collapse
|
29
|
Mobasheri A, Mendes AF. Physiology and pathophysiology of musculoskeletal aging: current research trends and future priorities. Front Physiol 2013; 4:73. [PMID: 23576994 PMCID: PMC3620548 DOI: 10.3389/fphys.2013.00073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 03/21/2013] [Indexed: 12/13/2022] Open
Affiliation(s)
- Ali Mobasheri
- Faculty of Medicine and Health Sciences, Medical Research Council-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Arthritis Research UK Pain Centre, Arthritis Research UK Centre for Sport, Exercise, and Osteoarthritis, The University of Nottingham Nottingham, UK
| | | |
Collapse
|