1
|
Johnston J, Jeon H, Choi YY, Kim G, Shi T, Khong C, Chang HC, Myung NV, Wang Y. Stimulative piezoelectric nanofibrous scaffolds for enhanced small extracellular vesicle production in 3D cultures. Biomater Sci 2024. [PMID: 39403853 PMCID: PMC11474809 DOI: 10.1039/d4bm00504j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Small extracellular vesicles (sEVs) have great promise as effective carriers for drug delivery. However, the challenges associated with the efficient production of sEVs hinder their clinical applications. Herein, we report a stimulative 3D culture platform for enhanced sEV production. The proposed platform consists of a piezoelectric nanofibrous scaffold (PES) coupled with acoustic stimulation to enhance sEV production of cells in a 3D biomimetic microenvironment. Combining cell stimulation with a 3D culture platform in this stimulative PES enables a 15.7-fold increase in the production rate per cell with minimal deviations in particle size and protein composition compared with standard 2D cultures. We find that the enhanced sEV production is attributable to the activation and upregulation of crucial sEV production steps through the synergistic effect of stimulation and the 3D microenvironment. Moreover, changes in cell morphology lead to cytoskeleton redistribution through cell-matrix interactions in the 3D cultures. This in turn facilitates intracellular EV trafficking, which impacts the production rate. Overall, our work provides a promising 3D cell culture platform based on piezoelectric biomaterials for enhanced sEV production. This platform is expected to accelerate the potential use of sEVs for drug delivery and broad biomedical applications.
Collapse
Affiliation(s)
- James Johnston
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Hyunsu Jeon
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Yun Young Choi
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Gaeun Kim
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Tiger Shi
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Courtney Khong
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Nosang Vincent Myung
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Yichun Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
2
|
Kerem G, Önder S, Kılıç A. Locally released dexamethasone and its effects on osteogenic activity at implant-tissue interface. J Biomed Mater Res A 2024; 112:1793-1802. [PMID: 38642019 DOI: 10.1002/jbm.a.37722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/22/2024]
Abstract
The osseointegration of titanium implants within the host tissue holds crucial importance. The introduction of functional coatings at tissue-implant interface enhances the bioactivity of titanium implants, improves their therapeutic outcomes, and enhances the effectiveness of treatments. In this study, we focused on enhancing the bioactivity of titanium-based implant materials by coating the titanium surfaces with chitosan microspheres, which are loaded with osseointegration-promoting agent dexamethasone (DEX). Initially, chitosan microspheres were successfully produced, followed by DEX loading through diffusion, resulting in a drug loading efficiency of around 50.2 (wt %). The subsequent drug release profile displayed a 24-hour duration, releasing approximately 32.6 (wt %) of the loaded DEX. In cell proliferation assays using human osteosarcoma (SAOS-2) cells, Ti surfaces coated with DEX-loaded chitosan microspheres initially exhibited lower cell numbers compared with DEX-free ones. This observation was attributed to transient osteogenic differentiation effects of DEX, since a notable increase in cell proliferation was observed on the 7th day. Von Kossa staining revealed mineralization beginning on the 14th day, particularly evident in DEX-loaded samples. Moreover, alkaline phosphatase (ALP) activity displayed a pattern of initial increase and subsequent decrease, with DEX release from chitosan microspheres showing a clear influence on the osteogenic differentiation, especially on the 7th day. These findings align with literature, highlighting DEX's potential to enhance osteogenic differentiation and cellular behavior on chitosan microsphere-coated titanium surfaces. This study emphasizes the promising implications for functionalizing surfaces of implant materials with DEX-loaded chitosan microspheres to improve their biocompatibility and bioactivity.
Collapse
Affiliation(s)
- Gizem Kerem
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Sakip Önder
- Department of Biomedical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Abdulhalim Kılıç
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
3
|
Mancera-López ME, Barrera-Cortés J. Influence of Chitosan on the Viability of Encapsulated and Dehydrated Formulations of Vegetative Cells of Actinomycetes. Polymers (Basel) 2024; 16:2691. [PMID: 39408403 PMCID: PMC11478721 DOI: 10.3390/polym16192691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
This study focuses on developing an encapsulated and dehydrated formulation of vegetative actinobacteria cells for an efficient application in sustainable agriculture, both as a fungicidal agent in crop protection and as a growth-stimulating agent in plants. Three strains of actinobacteria were used: one from a collection (Streptomyces sp.) and two natives to agricultural soil, which were identified as S3 and S6. Vegetative cells propagated in a specific liquid medium for mycelium production were encapsulated in various alginate-chitosan composites produced by extrusion. Optimal conditions for cell encapsulation were determined, and cell damage from air-drying at room temperature was evaluated. The fresh and dehydrated composites were characterized by porosity, functional groups, size and shape, and their ability to protect the immobilized vegetative cells' viability. Actinomycetes were immobilized in capsules of 2.1-2.7 mm diameter with a sphericity index ranging from 0.058 to 0.112. Encapsulation efficiency ranged from 50% to 88%, and cell viability after drying varied between 44% and 96%, depending on the composite type, strain, and airflow. Among the three immobilized and dried strains, S3 and S6 showed greater resistance to encapsulation and drying with a 4 L·min-1 airflow when immobilized in coated and core-shell composites. Encapsulation in alginate-chitosan matrices effectively protects vegetative actinobacteria cells during dehydration, maintaining their viability and functionality for agricultural applications.
Collapse
Affiliation(s)
| | - Josefina Barrera-Cortés
- Biotechnology and Bioengineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute, Zacatenco Unit, Mexico City 07360, Mexico;
| |
Collapse
|
4
|
Devi LC, Putra HSD, Kencana NBW, Olatunji A, Setiawati A. Turning Portunus pelagicus Shells into Biocompatible Scaffolds for Bone Regeneration. Biomedicines 2024; 12:1796. [PMID: 39200260 PMCID: PMC11351815 DOI: 10.3390/biomedicines12081796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Bone tissue engineering (BTE) provides an alternative for addressing bone defects by integrating cells, a scaffold, and bioactive growth factors to stimulate tissue regeneration and repair, resulting in effective bioengineered tissue. This study focuses on repurposing chitosan from blue swimming crab (Portunus pelagicus) shell waste as a composite scaffold combined with HAP and COL I to improve biocompatibility, porosity, swelling, and mechanical properties. The composite scaffold demonstrated nearly 60% porosity with diameters ranging from 100-200 μm with an interconnected network that structurally mimics the extracellular matrix. The swelling ratio of the scaffold was measured at 208.43 ± 14.05%, 248.93 ± 4.32%, 280.01 ± 1.26%, 305.44 ± 20.71%, and 310.03 ± 17.94% at 1, 3, 6, 12, and 24 h, respectively. Thus, the Portunus pelagicus scaffold showed significantly lower degradation ratios of 5.64 ± 1.89%, 14.34 ± 8.59%, 19.57 ± 14.23%, and 29.13 ± 9.87% for 1 to 4 weeks, respectively. The scaffold supports osteoblast attachment and proliferation for 7 days. Waste from Portunus pelagicus shells has emerged as a prospective source of chitosan with potential application in tissue engineering.
Collapse
Affiliation(s)
- Louisa Candra Devi
- Faculty of Pharmacy, Sanata Dharma University, Sleman, Yogyakarta 55281, Indonesia; (L.C.D.); (H.S.D.P.); (N.B.W.K.)
| | - Hendrik Satria Dwi Putra
- Faculty of Pharmacy, Sanata Dharma University, Sleman, Yogyakarta 55281, Indonesia; (L.C.D.); (H.S.D.P.); (N.B.W.K.)
| | - Nyoman Bayu Wisnu Kencana
- Faculty of Pharmacy, Sanata Dharma University, Sleman, Yogyakarta 55281, Indonesia; (L.C.D.); (H.S.D.P.); (N.B.W.K.)
| | - Ajiteru Olatunji
- CURE 3D, Department of Cardiac Surgery, University Hospital Düsseldorf, 40225 Düsseldorf, Germany;
| | - Agustina Setiawati
- Faculty of Pharmacy, Sanata Dharma University, Sleman, Yogyakarta 55281, Indonesia; (L.C.D.); (H.S.D.P.); (N.B.W.K.)
| |
Collapse
|
5
|
Setiawati A, Tricahya K, Dika Octa Riswanto F, Dwiatmaka Y. Towards a sustainable chitosan-based composite scaffold derived from Scylla serrata crab chitosan for bone tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:146-163. [PMID: 37855210 DOI: 10.1080/09205063.2023.2271263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Bone tissue engineering offers a novel therapy for repairing bone defects or fractures. However, it is becoming increasingly challenging because an ideal scaffold should possess a similar porous structure, high biocompatibility, and mechanical properties that match those of natural bone. To fabricate such a scaffold, biodegradable polymers are often preferred due to their degradability and tailored structure. This study involved the isolation of chitosan from crab shells (Scylla serrata) waste to use as a biomaterial in combination with hydroxyapatite (HAP) and collagen I (COL I) to mimic the extracellular matrix (ECM) composition of bone. After being cast and freeze-dried, it resulted in an interconnected porous scaffold with a porosity of 51.44% ± 2.28% and a pore diameter of 109.88 μm ± 49.84 μm. The swelling ratio of the crab scaffold was measured at 358.31% ± 25.23%, 363.04% ± 1.56%, and 370.11% ± 3.7% at 1, 3, and 6 h, respectively. Consequently, the scaffold exhibited a degradation ratio of 8.17% ± 2.59%, 21.62% ± 5.43%, 22.59% ± 14.23%, and 23.12% ± 6.28% over the course of 1 to 4 weeks. It demonstrated excellent biocompatibility with MG-63 osteosarcoma cells. Although the compression strength was lower than 2-12 MPa, the crab scaffold can still be applied effectively for non-load-bearing bone defects. Crab shell waste emerges as a promising source of chitosan for tissue engineering applications.
Collapse
Affiliation(s)
- Agustina Setiawati
- Faculty of Pharmacy, Sanata Dharma University, Paingan, Maguwoharjo, Depok, Sleman, Yogyakarta 55281, Indonesia
| | - Kateri Tricahya
- Faculty of Pharmacy, Sanata Dharma University, Paingan, Maguwoharjo, Depok, Sleman, Yogyakarta 55281, Indonesia
| | | | - Yohanes Dwiatmaka
- Faculty of Pharmacy, Sanata Dharma University, Paingan, Maguwoharjo, Depok, Sleman, Yogyakarta 55281, Indonesia
| |
Collapse
|
6
|
Danaeifar M, Negahdari B, Eslam HM, Zare H, Ghanaat M, Koushali SS, Malekshahi ZV. Polymeric nanoparticles for DNA vaccine-based cancer immunotherapy: a review. Biotechnol Lett 2023; 45:1053-1072. [PMID: 37335426 DOI: 10.1007/s10529-023-03383-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 06/21/2023]
Abstract
Cancer is one of the leading causes of death and mortality in the world. There is an essential need to develop new drugs or therapeutic approaches to manage treatment-resistant cancers. Cancer immunotherapy is a type of cancer treatment that uses the power of the body's immune system to prevent, control, and eliminate cancer. One of the materials used as a vaccine in immunotherapy is DNA. The application of polymeric nanoparticles as carriers for DNA vaccines could be an effective therapeutic approach to activate immune responses and increase antigen presentation efficiency. Various materials have been used as polymeric nanoparticles, including: chitosan, poly (lactic-co-glycolic acid), Polyethylenimine, dendrimers, polypeptides, and polyesters. Application of these polymer nanoparticles has several advantages, including increased vaccine delivery, enhanced antigen presentation, adjuvant effects, and more sustainable induction of the immune system. Besides many clinical trials and commercial products that were developed based on polymer nanoparticles, there is still a need for more comprehensive studies to increase the DNA vaccine efficiency in cancer immunotherapy using this type of carrier.
Collapse
Affiliation(s)
- Mohsen Danaeifar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Houra Mobaleghol Eslam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Zare
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Momeneh Ghanaat
- Department of Microbiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Sekinehe Shokouhi Koushali
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ziba Veisi Malekshahi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Estévez-Martínez Y, Vázquez Mora R, Méndez Ramírez YI, Chavira-Martínez E, Huirache-Acuña R, Díaz-de-León-Hernández JN, Villarreal-Gómez LJ. Antibacterial nanocomposite of chitosan/silver nanocrystals/graphene oxide (ChAgG) development for its potential use in bioactive wound dressings. Sci Rep 2023; 13:10234. [PMID: 37353546 PMCID: PMC10290094 DOI: 10.1038/s41598-023-29015-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/30/2023] [Indexed: 06/25/2023] Open
Abstract
An adequate wound dressing reduces time of healing, provides cost-effective care, thereby improving patients' quality life. An antimicrobial bioactivity is always desired, for that reason, the objective of this work is to design an antimicrobial nanocomposite of chitosan/silver nanocrystals/graphene oxide (ChAgG). ChAgG nanostructured composite material is composed of chitosan from corn (Ch), and silver nanocrystals from garlic (Allium sativum). The nanocomposite obtained is the result of a series of experiments combining the graphene oxide (GrOx) with two members of the Amaryllidaceae family; garlic and onion (Allium cebae), which contain different sulfur materials. The characterization arrays confirmed the successful production of silver crystal, graphene oxidation and the blending of both components. The role of the chitosan as a binder between graphene and silver nanocrystals is proved. Moreover, the study discusses garlic as an optimal source that permits the synthesis of silver nanocrystals (AgNCs) (⁓ 2 to 10 nm) with better thermal and crystallinity properties. It was also confirmed the successful production of the ChAgG nanocomposite. Escherichia coli and Staphylococcus aureus were used to demonstrate the antibacterial bioactivity and L-929 fibroblast cells were utilized to visualize their biocompatibility. The proposed ChAgG nanomaterial will be useful for functionalizing specific fiber network that represents current challenging research in the fabrication of bioactive wound dressings.
Collapse
Affiliation(s)
- Yoxkin Estévez-Martínez
- Tecnológico Nacional de México, Campús Acatlán de Osorio, Unidad Tecnológica Acatlán, Carretera Acatlán-San Juan Ixcaquistla kilómetro 5.5, Del Maestro, 74949, Acatlán, Puebla, Mexico.
| | - Rubí Vázquez Mora
- Tecnológico Nacional de México, Campús Acatlán de Osorio, Unidad Tecnológica Acatlán, Carretera Acatlán-San Juan Ixcaquistla kilómetro 5.5, Del Maestro, 74949, Acatlán, Puebla, Mexico
| | - Yesica Itzel Méndez Ramírez
- Tecnológico Nacional de México, Campús Acatlán de Osorio, Unidad Tecnológica Acatlán, Carretera Acatlán-San Juan Ixcaquistla kilómetro 5.5, Del Maestro, 74949, Acatlán, Puebla, Mexico
| | - Elizabeth Chavira-Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Rafael Huirache-Acuña
- Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, 58060, Morelia, Michoacán, Mexico
| | - Jorge Noé Díaz-de-León-Hernández
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Carretera Tijuana-Ensenada, Km. 107, 22860, Ensenada, Baja California, Mexico
| | - Luis Jesús Villarreal-Gómez
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Unidad Valle de las Palmas, Blvd. Universitario #1000, CP 21500, Tijuana, Baja California, Mexico.
- Facultad de Ciencias Química e Ingeniería, Universidad Autónoma de Baja California, UABC, Parque Internacional Industrial Tijuana, Universidad #14418, 22424, Tijuana, Baja California, Mexico.
| |
Collapse
|
8
|
Hamodin AG, Elgammal WE, Eid AM, Ibrahim AG. Synthesis, characterization, and biological evaluation of new chitosan derivative bearing diphenyl pyrazole moiety. Int J Biol Macromol 2023:125180. [PMID: 37290547 DOI: 10.1016/j.ijbiomac.2023.125180] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
This work reports the synthesis of a new pyrazole derivative by reacting 5-amino-1,3-diphenyl pyrazole with succinic anhydride and bearing the product chemically on the chitosan chains via amide linkage to achieve a new chitosan derivative (DPPS-CH). The prepared chitosan derivative was analyzed by IR, NMR, elemental analysis, XRD, TGA-DTG, and SEM. As compared with chitosan, DPPS-CH showed an amorphous and porous structure. Coats-Redfern results showed that the thermal activation energy for the first decomposition of DPPS-CH is 43.72 KJ mol-1 lower than that required for chitosan (88.32 KJ mol-1), indicating the accelerating effect of DPPS on the thermal decomposition of DPPS-CH. The DPPS-CH manifested a powerful wide spectrum antimicrobial potential against pathogenic gram-positive and gram-negative bacteria and Candida albicans at minute concentrations (MIC = 50 μg mL-1) compared to chitosan (MIC = 100 μg mL-1). The MTT assay proved the toxic properties of DPPS-CH against a cancer cell line (MCF-7) at a minute concentration (IC50 = 15.14 μg mL-1) while affecting normal cells (WI-38) at seven times this concentration (IC50 = 107.8 μg mL-1). According to the current findings, the chitosan derivative developed in this work appears to be a promising material for use in biological domains.
Collapse
Affiliation(s)
- Ahmed G Hamodin
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Walid E Elgammal
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed M Eid
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Ahmed G Ibrahim
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt.
| |
Collapse
|
9
|
Azadbakht A, Alizadeh S, Aliakbar Ahovan Z, Khosrowpour Z, Majidi M, Pakzad S, Shojaei S, Chauhan NPS, Jafari M, Gholipourmalekabadi M. Chitosan-Placental ECM Composite Thermos-Responsive Hydrogel as a Biomimetic Wound Dressing with Angiogenic Property. Macromol Biosci 2023; 23:e2200386. [PMID: 36398565 DOI: 10.1002/mabi.202200386] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/29/2022] [Indexed: 11/19/2022]
Abstract
Attempts are being made to develop an ideal wound dressing with excellent biomechanical and biological properties. Here, a thermos-responsive hydrogel is fabricated using chitosan (CTS) with various concentrations (1%, 2.5%, and 5% w/v) of solubilized placental extracellular matrix (ECM) and 20% β-glycerophosphate to optimize a smart wound dressing hydrogel with improved biological behavior. The thermo-responsive CTS (TCTS) alone or loaded with ECMs (ECM-TCTS) demonstrate uniform morphology using SEM. TCTS and ECM1%-TCTS and ECM2.5%-TCTS show a gelation time of 5 min at 37 °C, while no gel formation is observed at 4 and 25 °C. ECM5%-TCTS forms gel at both 25 and 37 °C. The degradation and swelling ratios increase as the ECM content of the hydrogel increase. All the constructs show excellent biocompatibility in vitro and in vivo, however, the hydrogels with a higher concentration of ECM demonstrate better cell adhesion for fibroblast cells and induce expression of angiogenic factors (VEGF and VEGFR) from HUVEC. Only the ECM5%-TCTS has antibacterial activity against Acinetobacter baumannii ATCC 19606. The data obtained from the current study suggest the ECM2.5%-TCTS as an optimized smart biomimetic wound dressing with improved angiogenic properties now promises to proceed with pre-clinical and clinical investigations.
Collapse
Affiliation(s)
- Abdolnaser Azadbakht
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, 1468763785, Iran
| | - Sanaz Alizadeh
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, 1449614535, Iran.,Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Zahra Aliakbar Ahovan
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Zahra Khosrowpour
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, 1449614535, Iran.,Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Mohammad Majidi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, 1449614535, Iran.,Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Saeedreza Pakzad
- Food and Drug Laboratory Research Center, Food and Drug Administration, Iran Ministry of Health and Medical Education, Tehran, 1113615911, Iran
| | - Shahrokh Shojaei
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, 1468763785, Iran.,Stem cells Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, 1468763785, Iran
| | - Narendra Pal Singh Chauhan
- Department of Chemistry, Faculty of Science, Bhupal Nobles' University, Udaipur, Rajasthan, 313002, India
| | - Marzieh Jafari
- Food and Drug Administration, Iran Ministry of Health and Medical Education, Tehran, 1113615911, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, 1449614535, Iran.,Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran.,Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| |
Collapse
|
10
|
pH-driven continuous stem cell production with enhanced regenerative capacity from polyamide/chitosan surfaces. Mater Today Bio 2023; 18:100514. [DOI: 10.1016/j.mtbio.2022.100514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/16/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
|
11
|
Gao W, Lai JCK, Leung SW. Co-Culturing Rat Dorsal Root Ganglion Neurons With Rat Schwann Cells Protects Them Against the Cytotoxic Effects of Silver and Gold Nanoparticles. Int J Toxicol 2023; 42:4-18. [PMID: 36308016 DOI: 10.1177/10915818221133508] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Previous studies using monotypic nerve cell cultures have shown that nanoparticles induced neurotoxic effects on nerve cells. Interactions between neurons and Schwann cells may protect against the neurotoxicity of nanoparticles. In this study, we developed a co-culture model consisting of immortalized rat dorsal root ganglion (DRG) neurons and rat Schwann cells and employed it to investigate our hypothesis that co-culturing DRG neurons with Schwann cells imparts protection on them against neurotoxicity induced by silver or gold nanoparticles. Our results indicated that neurons survived better in co-cultures when they were exposed to these nanoparticles at the higher concentrations compared to when they were exposed to these nanoparticles at the same concentrations in monotypic cultures. Synapsin I expression was increased in DRG neurons when they were co-cultured with Schwann cells and treated with or without nanoparticles. Glial fibrillary acidic protein (GFAP) expression was increased in Schwann cells when they were co-cultured with DRG neurons and treated with nanoparticles. Furthermore, we found co-culturing with Schwann cells stimulated neurofilament polymerization in DRG neurons and produced the morphological differentiation. Silver nanoparticles induced morphological disorganization in monotypic cultures. However, there were more cells displaying normal morphology in co-cultures than in monotypic cultures. All of these results suggested that co-culturing DRG neurons with Schwann cells imparted some protection on them against neurotoxicity induced by silver or gold nanoparticles, and altering the expression of neurofilament-L, synapsin I, and GFAP could account for the phenomenon of protection in co-cultures.
Collapse
Affiliation(s)
- Wenjuan Gao
- Department of Civil & Environmental Engineering, College of Science & Engineering, 6640Idaho State University, Pocatello, ID, USA
| | - James C K Lai
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Division of Health Sciences, 6640Idaho State University, Pocatello, ID, USA
| | - Solomon W Leung
- Department of Civil & Environmental Engineering, College of Science & Engineering, 6640Idaho State University, Pocatello, ID, USA
| |
Collapse
|
12
|
Abourehab MAS, Baisakhiya S, Aggarwal A, Singh A, Abdelgawad MA, Deepak A, Ansari MJ, Pramanik S. Chondroitin sulfate-based composites: a tour d'horizon of their biomedical applications. J Mater Chem B 2022; 10:9125-9178. [PMID: 36342328 DOI: 10.1039/d2tb01514e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chondroitin sulfate (CS), a natural anionic mucopolysaccharide, belonging to the glycosaminoglycan family, acts as the primary element of the extracellular matrix (ECM) of diverse organisms. It comprises repeating units of disaccharides possessing β-1,3-linked N-acetyl galactosamine (GalNAc), and β-1,4-linked D-glucuronic acid (GlcA), and exhibits antitumor, anti-inflammatory, anti-coagulant, anti-oxidant, and anti-thrombogenic activities. It is a naturally acquired bio-macromolecule with beneficial properties, such as biocompatibility, biodegradability, and immensely low toxicity, making it the center of attention in developing biomaterials for various biomedical applications. The authors have discussed the structure, unique properties, and extraction source of CS in the initial section of this review. Further, the current investigations on applications of CS-based composites in various biomedical fields, focusing on delivering active pharmaceutical compounds, tissue engineering, and wound healing, are discussed critically. In addition, the manuscript throws light on preclinical and clinical studies associated with CS composites. A short section on Chondroitinase ABC has also been canvassed. Finally, this review emphasizes the current challenges and prospects of CS in various biomedical fields.
Collapse
Affiliation(s)
- Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al Qura University, Makkah 21955, Saudi Arabia. .,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia 11566, Egypt
| | - Shreya Baisakhiya
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Sector 1, Rourkela, Odisha 769008, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401, India
| | - Akanksha Aggarwal
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Anshul Singh
- Department of Chemistry, Baba Mastnath University, Rohtak-124021, India
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - A Deepak
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 600128, Tamil Nadu, India.
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| |
Collapse
|
13
|
Fabrication of novel polysaccharide hybrid nanoliposomes containing citral for targeting MRSA-infected wound healing. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Fabrication, characterization and application of novel nanoemulsion polyvinyl alcohol/chitosan hybrid incorporated with citral for healing of infected full-thickness wound. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Accelerative effect of nanohydrogels based on chitosan/ZnO incorporated with citral to heal the infected full-thickness wounds; an experimental study. Int J Biol Macromol 2022; 217:42-54. [PMID: 35820486 DOI: 10.1016/j.ijbiomac.2022.07.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022]
Abstract
Antimicrobial-resistant is a major challenge in to treat infected wounds, and new formulations should be produced. Citral (Citl), chitosan (Chsn), and zinc oxide (ZnO) nanoparticles may accelerate the wound healing process in terms of their antibacterial properties. This new study aimed to investigate the effects of ointments produced from ZnO/Chsn/Citl nanoparticles (NPs) to treat the infected wounds. Following the preparation of ZnO/Chsn/Citl-NPs, swelling behavior, the release of citral, toxicity, and antibacterial properties were evaluated. Base ointment, mupirocin, and ointments made from Chsn-NPs, Chsn/Citl-NPs, and ZnO/Chsn/Citl-NPs were used to treat the mice. The ointments' effects on wound contraction, total bacterial count, and immunofluorescence staining for TNF-α, TGF-β, and bFGF were tested. The synthesis of ZnO/Chsn/Citl-NPs was validated by XRD, FT-IR, DLS, and TEM findings. In higher dilutions, chitosan/citral and ZnO/Chsn/Citl-NPs indicated better antibacterial activity. Nanoparticles were safe up to concentration of the 0.5 mg/mL. The mice in Chsn/Citl and ZnO/Chsn/Citl-NPs treated groups showed higher (P < 0.05) wound contraction ratio and expressions for bFGF, and lower total bacterial count and expressions for TGF-β and TNF-α compared to control mice. Ointments prepared from ZnO/Chsn/Citl-NPs could compete with the commercial ointment of mupirocin and can be used to treat infected wounds after clinical studies.
Collapse
|
16
|
Ramar K, N V. Biocompatibility of Chitosan Nanoparticle in Root Canal Sealant with Vero Cell Line. Int J Clin Pediatr Dent 2022; 15:S57-S62. [PMID: 35645493 PMCID: PMC9108829 DOI: 10.5005/jp-journals-10005-2133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Kavitha Ramar
- Department of Pediatrics and Preventive Dentistry, SRM Kattankulathur Dental College, SRM Institute of Science and Technology, Potheri, Kanchipuram, Tamil Nadu, India
- Kavitha Ramar, Department of Pediatrics and Preventive Dentistry, SRM Kattankulathur Dental College, SRM Institute of Science and Technology, Potheri, Kanchipuram, Tamil Nadu, India, Phone: +91 9884837586, e-mail:
| | - Vivek N
- Department of Oral and Maxillofacial Surgery, SRM Kattankulathur Dental College, SRM Institute of Science and Technology, Potheri, Kanchipuram, Tamil Nadu, India
| |
Collapse
|
17
|
Zakhireh S, Barar J, Adibkia K, Beygi-Khosrowshahi Y, Fathi M, Omidain H, Omidi Y. Bioactive Chitosan-Based Organometallic Scaffolds for Tissue Engineering and Regeneration. Top Curr Chem (Cham) 2022; 380:13. [PMID: 35149879 DOI: 10.1007/s41061-022-00364-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
Captivating achievements in developing advanced hybrid biostructures through integrating natural biopolymers with inorganic materials (e.g., metals and metalloids) have paved the way towards the application of bioactive organometallic scaffolds (OMSs) in tissue engineering and regenerative medicine (TERM). Of various biopolymers, chitosan (CS) has been used widely for the development of bioactive OMSs, in large part due to its unique characteristics (e.g., biocompatibility, biodegradability, surface chemistry, and functionalization potential). In integration with inorganic elements, CS has been used to engineer advanced biomimetic matrices to accommodate both embedded cells and drug molecules and serve as scaffolds in TERM. The use of the CS-based OMSs is envisioned to provide a new pragmatic potential in TERM and even in precision medicine. In this review, we aim to elaborate on recent achievements in a variety of CS/metal, CS/metalloid hybrid scaffolds, and discuss their applications in TERM. We also provide comprehensive insights into the formulation, surface modification, characterization, biocompatibility, and cytotoxicity of different types of CS-based OMSs.
Collapse
Affiliation(s)
- Solmaz Zakhireh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Younes Beygi-Khosrowshahi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Omidain
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA.
| |
Collapse
|
18
|
Cannabidiol-Loaded Mixed Polymeric Micelles of Chitosan/Poly(Vinyl Alcohol) and Poly(Methyl Methacrylate) for Trans-Corneal Delivery. Pharmaceutics 2021; 13:pharmaceutics13122142. [PMID: 34959427 PMCID: PMC8703866 DOI: 10.3390/pharmaceutics13122142] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Ocular drug delivery is challenging due to the very short drug residence time and low permeability. In this work, we produce and characterize mucoadhesive mixed polymeric micelles (PMs) made of chitosan (CS) and poly(vinyl alcohol) backbones graft-hydrophobized with short poly(methyl methacrylate) blocks and use them to encapsulate cannabidiol (CBD), an anti-inflammatory cannabinoid. CBD-loaded mixed PMs are physically stabilized by ionotropic crosslinking of the CS domains with sodium tripolyphoshate and spray-drying. These mixed PMs display CBD loading capacity of 20% w/w and sizes of 100-200 nm, and spherical morphology (cryogenic-transmission electron microscopy). The good compatibility of the unloaded and CBD-loaded PMs is assessed in a human corneal epithelial cell line. Then, we confirm the permeability of CBD-free PMs and nanoencapsulated CBD in human corneal epithelial cell monolayers under liquid-liquid and air-liquid conditions. Overall, our results highlight the potential of these polymeric nanocarriers for ocular drug delivery.
Collapse
|
19
|
Szuwarzyński M, Wolski K, Kruk T, Zapotoczny S. Macromolecular strategies for transporting electrons and excitation energy in ordered polymer layers. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101433] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
The effect of polyacid on the physical and biological properties of chitosan based layer-by-layer films. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Tayebi T, Baradaran-Rafii A, Hajifathali A, Rahimpour A, Zali H, Shaabani A, Niknejad H. Biofabrication of chitosan/chitosan nanoparticles/polycaprolactone transparent membrane for corneal endothelial tissue engineering. Sci Rep 2021; 11:7060. [PMID: 33782482 PMCID: PMC8007807 DOI: 10.1038/s41598-021-86340-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/15/2021] [Indexed: 02/01/2023] Open
Abstract
We aimed to construct a biodegradable transparent scaffold for culturing corneal endothelial cells by incorporating chitosan nanoparticles (CSNPs) into chitosan/polycaprolactone (PCL) membranes. Various ratios of CSNP/PCL were prepared in the presence of constant concentration of chitosan and the films were constructed by solvent casting method. Scaffold properties including transparency, surface wettability, FTIR, and biocompatibility were examined. SEM imaging, H&E staining, and cell count were performed to investigate the HCECs adhesion. The phenotypic maintenance of the cells during culture was investigated by flow cytometry. Transparency and surface wettability improved by increasing the CSNP/PCL ratio. The CSNP/PCL 50/25, which has the lowest WCA, showed comparable transparency with human acellular corneal stroma. The scaffold was not cytotoxic and promoted the HCECs proliferation as evaluated by MTT assay. Cell counting, flow cytometry, SEM, and H&E results showed appropriate attachment of HCECs to the scaffold which formed a compact monolayer. The developed scaffold seems to be suitable for use in corneal endothelial regeneration in terms of transparency and biocompatibility.
Collapse
Affiliation(s)
- Tahereh Tayebi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Baradaran-Rafii
- Ophthalmic Research Center, Department of Ophthalmology, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Rahimpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Shaabani
- Department of Polymer and Materials Chemistry, Faculty of Chemistry and Petroleum Science, Shahid Beheshti University, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Calatayud DG, Jardiel T, Bernardo MS, Mirabello V, Ge H, Arrowsmith RL, Cortezon-Tamarit F, Alcaraz L, Isasi J, Arévalo P, Caballero AC, Pascu SI, Peiteado M. Hybrid Hierarchical Heterostructures of Nanoceramic Phosphors as Imaging Agents for Multiplexing and Living Cancer Cells Translocation. ACS APPLIED BIO MATERIALS 2021; 4:4105-4118. [PMID: 34056563 PMCID: PMC8155200 DOI: 10.1021/acsabm.0c01417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/19/2021] [Indexed: 11/30/2022]
Abstract
![]()
Existing fluorescent
labels used in life sciences are based on
organic compounds with limited lifetime or on quantum dots which are
either expensive or toxic and have low kinetic stability in biological
environments. To address these challenges, luminescent nanomaterials
have been conceived as hierarchical, core–shell structures
with spherical morphology and highly controlled dimensions. These
tailor-made nanophosphors incorporate Ln:YVO4 nanoparticles
(Ln = Eu(III) and Er(III)) as 50 nm cores and display intense and
narrow emission maxima centered at ∼565 nm. These cores can
be encapsulated in silica shells with highly controlled dimensions
as well as functionalized with chitosan or PEG5000 to reduce nonspecific
interactions with biomolecules in living cells. Confocal fluorescence
microscopy in living prostate cancer cells confirmed the potential
of these platforms to overcome the disadvantages of commercial fluorophores
and their feasibility as labels for multiplexing, biosensing, and
imaging in life science assays.
Collapse
Affiliation(s)
- David G Calatayud
- Department of Electroceramics, Instituto de Ceramica y Vidrio-CSIC, Kelsen 5, Campus de Cantoblanco, Madrid 28049, Spain
| | - Teresa Jardiel
- Department of Electroceramics, Instituto de Ceramica y Vidrio-CSIC, Kelsen 5, Campus de Cantoblanco, Madrid 28049, Spain
| | - Mara S Bernardo
- Department of Electroceramics, Instituto de Ceramica y Vidrio-CSIC, Kelsen 5, Campus de Cantoblanco, Madrid 28049, Spain
| | - Vincenzo Mirabello
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Haobo Ge
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Rory L Arrowsmith
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | | | - Lorena Alcaraz
- Department of Inorganic Chemistry I, Universidad Complutense de Madrid, Madrid28040, Spain
| | - Josefa Isasi
- Department of Inorganic Chemistry I, Universidad Complutense de Madrid, Madrid28040, Spain
| | - Pablo Arévalo
- Department of Inorganic Chemistry I, Universidad Complutense de Madrid, Madrid28040, Spain
| | - Amador C Caballero
- Department of Electroceramics, Instituto de Ceramica y Vidrio-CSIC, Kelsen 5, Campus de Cantoblanco, Madrid 28049, Spain
| | - Sofia I Pascu
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Marco Peiteado
- Department of Electroceramics, Instituto de Ceramica y Vidrio-CSIC, Kelsen 5, Campus de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
23
|
Manzari-Tavakoli A, Tarasi R, Sedghi R, Moghimi A, Niknejad H. Fabrication of nanochitosan incorporated polypyrrole/alginate conducting scaffold for neural tissue engineering. Sci Rep 2020; 10:22012. [PMID: 33328579 PMCID: PMC7744540 DOI: 10.1038/s41598-020-78650-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 11/25/2020] [Indexed: 01/13/2023] Open
Abstract
The utilization of conductive polymers for fabrication of neural scaffolds have attracted much interest because of providing a microenvironment which can imitate nerve tissues. In this study, polypyrrole (PPy)-alginate (Alg) composites were prepared using different percentages of alginate and pyrrole by oxidative polymerization method using FeCl3 as an oxidant and electrical conductivity of composites were measured by four probe method. In addition, chitosan-based nanoparticles were synthesized by ionic gelation method and after characterization merged into PPy-Alg composite in order to fabricate a conductive, hydrophilic, processable and stable scaffold. Physiochemical characterization of nanochitosan/PPy-Alg scaffold such as electrical conductivity, porosity, swelling and degradation was investigated. Moreover, cytotoxicity and proliferation were examined by culturing OLN-93 neural and human dermal fibroblasts cells on the Nanochitosan/PPy-Alg scaffold. Due to the high conductivity, the film with ratio 2:10 (PPy-Alg) was recognized more suitable for fabrication of the final scaffold. Results from FT-IR and SEM, evaluation of porosity, swelling and degradation, as well as viability and proliferation of OLN-93 neural and fibroblast cells confirmed cytocompatiblity of the Nanochitosan/PPy-Alg scaffold. Based on the features of the constructed scaffold, Nanochitosan/PPy-Alg scaffold can be a proper candidate for neural tissue engineering.
Collapse
Affiliation(s)
- Asma Manzari-Tavakoli
- Department of Biology, Faculty of Science, Rayan Center for Neuroscience and Behavior, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Roghayeh Tarasi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roya Sedghi
- Department of Polymer and Materials Chemistry, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, G.C, 1983969411, Tehran, Iran
| | - Ali Moghimi
- Department of Biology, Faculty of Science, Rayan Center for Neuroscience and Behavior, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Ünal S, Aktaş Y, Benito JM, Bilensoy E. Cyclodextrin nanoparticle bound oral camptothecin for colorectal cancer: Formulation development and optimization. Int J Pharm 2020; 584:119468. [PMID: 32470483 DOI: 10.1016/j.ijpharm.2020.119468] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 01/15/2023]
Abstract
Chemotherapeutic drugs for colorectal cancer(CRC) which is currently the third most lethal cancer globally, are administered intravenously (iv) due to their low oral bioavailability resulting from their physicochemical properties. Non-selective biodistribution and difficulties of parenteral administration reduce treatment efficacy. The aim of this work is to develop cyclodextrin (CD) based cationic nanoparticles (NPs) for CRC treatment with model drug camptothecin (CPT) that can be administered orally, protecting CPT through gastrointestinal tract (GIT), accumulating at mucus layer and providing an effective local treatment for the tumor area. NPs using two different amphiphilic CDs were prepared and coated with polyethylenimine (PEI) or chitosan (CS) to obtain positively charged surface for all formulations. Pre-formulation studies resulted in optimal formulation, CPT loaded Poly-β-CD-C6 NPs, with 135 nm diameter and zeta potential of + 40 mV. In vitro release study was designed to represent gastrointestinal pH and transit time revealing 52% of encapsulated CPT successfully delivered all the way to simulated colon. CPT bound to Poly-β-CD-C6 NPs exhibited higher cytotoxicity on HT-29 cells compared to equivalent CPT in solution. Caco-2 cell permeability studies showed 276% increase in CPT permeability and significantly higher mucosal penetration in cationic CD nanoparticle form.
Collapse
Affiliation(s)
- Sedat Ünal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey; Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey
| | - Yeşim Aktaş
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey
| | - Juan M Benito
- Institute for Chemical Research, CSIC - University of Sevilla, Av. Americo Vespucio 49, Sevilla 41092, Spain
| | - Erem Bilensoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey.
| |
Collapse
|
25
|
Electrospun triazole-based chitosan nanofibers as a novel scaffolds for bone tissue repair and regeneration. Carbohydr Polym 2020; 230:115707. [DOI: 10.1016/j.carbpol.2019.115707] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
|
26
|
Song C, Li F, Wang S, Wang J, Wei W, Ma G. Recent Advances in Particulate Adjuvants for Cancer Vaccination. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Cui Song
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Feng Li
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shuang Wang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
| | - Jianghua Wang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wei Wei
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
27
|
Afonso C, Hirano R, Gaspar A, Chagas E, Carvalho R, Silva F, Leonardi G, Lopes P, Silva C, Yoshida C. Biodegradable antioxidant chitosan films useful as an anti-aging skin mask. Int J Biol Macromol 2019; 132:1262-1273. [DOI: 10.1016/j.ijbiomac.2019.04.052] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 12/22/2022]
|
28
|
Schlachet I, Sosnik A. Mixed Mucoadhesive Amphiphilic Polymeric Nanoparticles Cross a Model of Nasal Septum Epithelium in Vitro. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21360-21371. [PMID: 31124655 DOI: 10.1021/acsami.9b04766] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Intranasal administration of nano-drug-delivery systems emerged as an appealing strategy to surpass the blood-brain barrier and thus increase drug bioavailability in the central nervous system. However, a systematic study of the effect of the structural properties of the nanoparticles on the nose-to-brain transport is missing. In this work, we synthesized and characterized mixed amphiphilic polymeric nanoparticles combining two mucoadhesive graft copolymers, namely, chitosan- g-poly(methyl methacrylate) and poly(vinyl alcohol)- g-poly(methyl methacrylate), for the first time. Chitosan enables the physical stabilization of the nanoparticles by ionotropic cross-linking with tripolyphosphate and confers mucoadhesiveness, while poly(vinyl alcohol) is also mucoadhesive and, owing to its nonionic nature, it improves nanoparticle compatibility in nasal epithelial cells by reducing the surface charge of the nanoparticles. After a thorough characterization of the mixed nanoparticles by dynamic light scattering and nanoparticle tracking analysis, we investigated the cell uptake by fluorescence light and confocal microscopy and imaging flow cytometry. Mixed nanoparticles were readily internalized at 37 °C, while the uptake was inhibited almost completely at 4 °C, indicating the involvement of energy-dependent mechanisms. Finally, we assessed the nanoparticle permeability across liquid-liquid and air-liquid monolayers of a nasal septum epithelial cell line and studied the effect of nanoparticle concentration and temperature on the apparent permeability. Overall, our findings demonstrate that these novel amphiphilic nanoparticles cross this in vitro model of intranasal epithelium mainly by a passive (paracellular) pathway involving the opening of epithelial tight junctions.
Collapse
Affiliation(s)
- Inbar Schlachet
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering , Technion-Israel Institute of Technology , Technion City, Haifa 3200003 , Israel
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering , Technion-Israel Institute of Technology , Technion City, Haifa 3200003 , Israel
| |
Collapse
|
29
|
Bahrami N, Nouri Khorasani S, Mahdavi H, Ghiaci M, Mokhtari R. Low-pressure plasma surface modification of polyurethane films with chitosan and collagen biomolecules. J Appl Polym Sci 2019. [DOI: 10.1002/app.47567] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Narges Bahrami
- Department of Chemical Engineering; Isfahan University of Technology; Isfahan, 84156-83111 Iran
| | - Saied Nouri Khorasani
- Department of Chemical Engineering; Isfahan University of Technology; Isfahan, 84156-83111 Iran
| | - Hamid Mahdavi
- Department of Novel Drug Delivery Systems; Iran Polymer and Petrochemical Institute; Tehran Iran
| | - Mehran Ghiaci
- Department of Chemistry; Isfahan University of Technology; Isfahan, 84156-83111 Iran
| | - Reza Mokhtari
- Kimia Solar Research Institute (K.S.R.I); Isfahan Iran
| |
Collapse
|
30
|
Jeong YH, Oh HM, Lee MR, Kim CY, Joo C, Park SJ, Song YH, Kang C, Chung HM, Kang SW, Huh KM, Moon SH. The Effect of Hexanoyl Glycol Chitosan on the Proliferation of Human Mesenchymal Stem Cells. Polymers (Basel) 2018; 10:polym10080839. [PMID: 30960764 PMCID: PMC6404012 DOI: 10.3390/polym10080839] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023] Open
Abstract
Adipose-derived mesenchymal stem cells (AD-MSCs) have been studied as desirable cell sources for regenerative medicine and therapeutic application. However, it has still remained a challenge to obtain enough adequate and healthy cells in large quantities. To overcome this limitation, various biomaterials have been used to promote expansion of MSCs in vitro. Recently, hexanoyl glycol chitosan (HGC) was introduced as a new biomaterial for various biomedical applications, in particular 3D cell culture, because of its biodegradability, biocompatibility, and other promising biofunctional properties. In this study, the effect of HGC on the proliferation of AD-MSCs was examined in vitro, and its synergistic effect with basic fibroblast growth factor (bFGF), which has been widely used to promote proliferation of cells, was evaluated. We found that the presence of HGC increased the proliferative capacity of AD-MSCs during long-term culture, even at low concentrations of bFGF. Furthermore, it suppressed the expression of senescence-related genes and improved the mitochondrial functionality. Taken all together, these findings suggest that the HGC demonstrate a potential for sustained growth of AD-MSCs in vitro.
Collapse
Affiliation(s)
- Young-Hoon Jeong
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea.
| | - Hye Min Oh
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Man Ryul Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea.
| | - C-Yoon Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea.
| | - Chanyang Joo
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Soon-Jung Park
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea.
| | - Yun-Ho Song
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea.
| | - Changhee Kang
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea.
| | - Hyung-Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea.
| | - Sun-Woong Kang
- Predictive Model Research Center, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea.
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon 34114, Korea.
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Sung-Hwan Moon
- Department of Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
31
|
Concha M, Vidal A, Giacaman A, Ojeda J, Pavicic F, Oyarzun-Ampuero FA, Torres C, Cabrera M, Moreno-Villoslada I, Orellana SL. Aerogels made of chitosan and chondroitin sulfate at high degree of neutralization: Biological properties toward wound healing. J Biomed Mater Res B Appl Biomater 2018; 106:2464-2471. [PMID: 29424958 DOI: 10.1002/jbm.b.34038] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/12/2017] [Accepted: 10/16/2017] [Indexed: 12/26/2022]
Abstract
In this study, highly neutralized, highly porous, and ultralight polymeric aerogels prepared from aqueous colloidal suspensions of chitosan (CS) and chondroitin sulfate (ChS) nanocomplexes, formulated as quasi-equimolar amounts of both, are described. These aerogels were designed as healing agents under the inspiration of minimizing the amount of matter applied to wounds, reducing the electrostatic potential of the material and avoiding covalent cross-linkers in order to decrease metabolic stress over wounds. Aerogels synthesized under these criteria are biocompatible and provide specific properties for the induction of wound healing. They do not affect neither the metabolic activity of cultured 3T3 fibroblasts nor the biochemical parameters of experimental animals, open wounds close significantly faster and, unlike control wounds, complete reepithelialization and scarring can be attained 14 days after surgery. Because of its hydration abilities, rapid adaptation to the wound bed and the early accelerator effect of wound closure, the CS/ChS aerogels appear to be functional inducers of the healing. Previous information show that CS/ChS aerogels improve wound bed quality, increase granulation tissue and have pain suppressive effect. CS/ChS aerogels are useful as safe, inexpensive and easy to handle materials for topical applications, such as skin chronic wounds. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2464-2471, 2018.
Collapse
Affiliation(s)
- Miguel Concha
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandra Vidal
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Annesi Giacaman
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Javier Ojeda
- Instituto de Ciencias Clínicas Veterinarias, Facultad de Veterinaria, Universidad Austral de Chile, Valdivia, Chile
| | - Francisca Pavicic
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Felipe A Oyarzun-Ampuero
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - César Torres
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Marcela Cabrera
- Instituto de Ciencias Clínicas Veterinarias, Facultad de Veterinaria, Universidad Austral de Chile, Valdivia, Chile
| | | | - Sandra L Orellana
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
32
|
Ter Horst B, Chouhan G, Moiemen NS, Grover LM. Advances in keratinocyte delivery in burn wound care. Adv Drug Deliv Rev 2018; 123:18-32. [PMID: 28668483 PMCID: PMC5764224 DOI: 10.1016/j.addr.2017.06.012] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/14/2017] [Accepted: 06/23/2017] [Indexed: 12/19/2022]
Abstract
This review gives an updated overview on keratinocyte transplantation in burn wounds concentrating on application methods and future therapeutic cell delivery options with a special interest in hydrogels and spray devices for cell delivery. To achieve faster re-epithelialisation of burn wounds, the original autologous keratinocyte culture and transplantation technique was introduced over 3 decades ago. Application types of keratinocytes transplantation have improved from cell sheets to single-cell solutions delivered with a spray system. However, further enhancement of cell culture, cell viability and function in vivo, cell carrier and cell delivery systems remain themes of interest. Hydrogels such as chitosan, alginate, fibrin and collagen are frequently used in burn wound care and have advantageous characteristics as cell carriers. Future approaches of keratinocyte transplantation involve spray devices, but optimisation of application technique and carrier type is necessary.
Collapse
Affiliation(s)
- Britt Ter Horst
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom; University Hospital Birmingham Foundation Trust, Burns Centre, Mindelsohn Way, B15 2TH Birmingham, United Kingdom
| | - Gurpreet Chouhan
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Naiem S Moiemen
- University Hospital Birmingham Foundation Trust, Burns Centre, Mindelsohn Way, B15 2TH Birmingham, United Kingdom
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom.
| |
Collapse
|
33
|
Ahmad M, Manzoor K, Singh S, Ikram S. Chitosan centered bionanocomposites for medical specialty and curative applications: A review. Int J Pharm 2017; 529:200-217. [DOI: 10.1016/j.ijpharm.2017.06.079] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/22/2017] [Accepted: 06/24/2017] [Indexed: 01/01/2023]
|
34
|
Abstract
A novel photo-crosslinkable nanogel is prepared from a biodegradable polymer template with intrinsic photoluminescence and high photostability. The fluorescent nanogels display excellent biodegradability and cytocompatibility owed to the facile synthesis scheme involving a solvent-and surfactant-free one-pot reaction, derived entirely from biocompatible monomers citric acid, maleic acid, L-cysteine, and poly(ethylene glycol). The resultant nanogels are less than 200 nm in diameter with a narrow size distribution and monodispersity, and demonstrate long-term structural stability in biological buffer for two weeks. To gauge potential in theranostic applications, the fluorescent nanogels were surface functionalized with biologically active RGD peptides and encapsulated with active anti-cancer drug Doxorubicin, resulting in a pH-responsive controlled drug release in acidic pH resembling tumor environments. The strong fluorescence of the nanogels enabled tracking of targeted drug delivery, showing that drug-loaded nanogels homed into the cytoplasmic regions of prostate cancer cells to significantly induce cell death. These photo-crosslinkable and biodegradable nanogels pose as a strong candidate for theranostic medicine, demonstrating versatile functionalization, high stability in biological buffers, and capacity for real-time fluorescence-based monitoring of targeted drug delivery.
Collapse
Affiliation(s)
- Dipendra Gyawali
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76010
| | - Jimin P Kim
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
35
|
Carbohydrates-chitosan composite carrier for Vero cell culture. Cytotechnology 2016; 68:2649-2658. [PMID: 27709375 DOI: 10.1007/s10616-016-9989-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/25/2016] [Indexed: 01/28/2023] Open
Abstract
In this study, carbohydrate-chitosan composite including glucose-chitosan, sucrose-chitosan and starch-chitosan with varied carbohydrate concentrations were prepared as carriers for Vero cell culture. Our results show that among these composites, 30 % starch-chitosan composite (STC) were the best carriers for the growth of Vero cells. The initial number of attached cells on the surface of composite carriers did not have any significant effect on subsequent cell production. A higher glucose level in the growth medium during the exponential phase of cell growth, however, played an important factor for cell production. Vero cells on the STC carriers were able to convert starch inside the composite carriers into glucose and further utilized the glucose for their growth. Moreover, by crosslink with serum the STC carriers supported an even better cell production in the normal medium without adding fetal bovine serum, as well as a good extracellular virus production. The STC composite is therefore a promising alternative carrier for Vero cell culture.
Collapse
|
36
|
Amirthalingam M, Kasinathan N, Amuthan A, Mutalik S, Sreenivasa Reddy M, Nayanabhirama U. Bioactive PLGA-curcumin microparticle-embedded chitosan scaffold: in vitro and in vivo evaluation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:233-241. [PMID: 26912183 DOI: 10.3109/21691401.2016.1146727] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Wound healing is a complex process affected by several factors. In the present work, novel biocompatible PLGA-curcumin microparticle-embedded chitosan scaffold was fabricated for wound-healing application. Process variables involved in the preparation of microparticles were optimized using design of experiment. Scanning electron microscopy (SEM) confirmed the porous nature of scaffold with embedded microparticles. A maximum release of 14% of the encapsulated curcumin was observed at 12th hour. Modified tube dilution method showed that scaffold significantly (p < 0.05) reduced multiplication of Staphylococcus aureus. More than 50% of the excised wound in rats healed in 4 days with an epithilization period of 18 days.
Collapse
Affiliation(s)
- Muthukumar Amirthalingam
- a Department of Pharmaceutics , Manipal College of Pharmaceutical Sciences, Manipal University , Manipal , Karnataka , India
| | - Narayanan Kasinathan
- b Department of Pharmaceutical Biotechnology , Manipal College of Pharmaceutical Sciences, Manipal University , Manipal , Karnataka , India
| | - Arul Amuthan
- c Department of Pharmacology , Melaka Manipal Medical College and Center for Integrative Medicine & Research, Manipal University , Manipal , Karnataka , India
| | - Srinivas Mutalik
- a Department of Pharmaceutics , Manipal College of Pharmaceutical Sciences, Manipal University , Manipal , Karnataka , India
| | - M Sreenivasa Reddy
- a Department of Pharmaceutics , Manipal College of Pharmaceutical Sciences, Manipal University , Manipal , Karnataka , India
| | - Udupa Nayanabhirama
- d Directorate of Research , Manipal University , Manipal , Karnataka , India
| |
Collapse
|
37
|
|
38
|
Li H, Koenig AM, Sloan P, Leipzig ND. In vivo assessment of guided neural stem cell differentiation in growth factor immobilized chitosan-based hydrogel scaffolds. Biomaterials 2014; 35:9049-57. [DOI: 10.1016/j.biomaterials.2014.07.038] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/21/2014] [Indexed: 01/01/2023]
|
39
|
Lin YC, Chang CH. In vitro inhibition of enterovirus 71 infection with a nickel ion/chitosan microcomposite. Virus Res 2014; 190:17-24. [DOI: 10.1016/j.virusres.2014.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/29/2014] [Accepted: 06/25/2014] [Indexed: 10/25/2022]
|
40
|
|
41
|
Bolhassani A, Javanzad S, Saleh T, Hashemi M, Aghasadeghi MR, Sadat SM. Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases. Hum Vaccin Immunother 2013; 10:321-32. [PMID: 24128651 PMCID: PMC4185908 DOI: 10.4161/hv.26796] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/06/2013] [Accepted: 10/12/2013] [Indexed: 12/13/2022] Open
Abstract
Nanocarriers with various compositions and biological properties have been extensively applied for in vitro/in vivo drug and gene delivery. The family of nanocarriers includes polymeric nanoparticles, lipid-based carriers (liposomes/micelles), dendrimers, carbon nanotubes, and gold nanoparticles (nanoshells/nanocages). Among different delivery systems, polymeric carriers have several properties such as: easy to synthesize, inexpensive, biocompatible, biodegradable, non-immunogenic, non-toxic, and water soluble. In addition, cationic polymers seem to produce more stable complexes led to a more protection during cellular trafficking than cationic lipids. Nanoparticles often show significant adjuvant effects in vaccine delivery since they may be easily taken up by antigen presenting cells (APCs). Natural polymers such as polysaccharides and synthetic polymers have demonstrated great potential to form vaccine nanoparticles. The development of new adjuvants or delivery systems for DNA and protein immunization is an expanding research field. This review describes polymeric carriers especially PLGA, chitosan, and PEI as vaccine delivery systems.
Collapse
Affiliation(s)
- Azam Bolhassani
- Department of Hepatitis and AIDs; Pasteur Institute of Iran; Tehran, Iran
| | - Shabnam Javanzad
- Department of Hepatitis and AIDs; Pasteur Institute of Iran; Tehran, Iran
- Department of genetics; Islamic Azad University; Tehran Medical Branch; Tehran, Iran
| | - Tayebeh Saleh
- Department of Nanobiotechnology; Faculty of Biological Sciences; Tarbiat Modares University; Tehran, Iran
| | - Mehrdad Hashemi
- Department of genetics; Islamic Azad University; Tehran Medical Branch; Tehran, Iran
| | | | - Seyed Mehdi Sadat
- Department of Hepatitis and AIDs; Pasteur Institute of Iran; Tehran, Iran
| |
Collapse
|
42
|
Application of ferriferous oxide modified by chitosan in gene delivery. JOURNAL OF DRUG DELIVERY 2012; 2012:920764. [PMID: 23326667 PMCID: PMC3543803 DOI: 10.1155/2012/920764] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 11/18/2022]
Abstract
New approaches to improve the traditional gene carriers are still required. Here we explore Fe3O4 modified with degradable polymers that enhances gene delivery and target delivery using permanent magnetic field. Two magnetic Fe3O4 nanoparticles coated with chitosan (CTS) and polyethylene glycol (PEG) were synthesized by means of controlled chemical coprecipitation. Plasmid pEGFP was encapsulated as a reported gene. The ferriferous oxide complexes were approximately spherical; surface charge of CTS-Fe3O4 and PEG-Fe3O4 was about 20 mv and 0 mv, respectively. The controlled release of DNA from the CTS-Fe3O4 nanoparticles was observed. Concurrently, a desired Fe3O4 concentration of less than 2 mM was verified as safe by means of a cytotoxicity test in vitro. Presence of the permanent magnetic field significantly increased the transfection efficiency. Furthermore, the passive target property and safety of magnetic nanoparticles were also demonstrated in an in vivo test. The novel gene delivery system was proved to be an effective tool required for future target expression and gene therapy in vivo.
Collapse
|