1
|
Qian C, Wen C, Guo X, Yang X, Wen X, Ma T, Wang C. Gregariousness in lepidopteran larvae. INSECT SCIENCE 2024; 31:1353-1364. [PMID: 38214204 DOI: 10.1111/1744-7917.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/13/2023] [Accepted: 11/08/2023] [Indexed: 01/13/2024]
Abstract
The gregarious lifestyle of lepidopteran larvae is diverse and shaped by a complex interplay of ecological and evolutionary factors. Our review showed that the larval-aggregation behavior has been reported in 23 lepidopteran families, indicating multiple evolution of this behavior. Some larvae live in sibling groups throughout all larval instars and even pupation stages, which may result from the kin-selection. In contrast, group fusion may occur among different sibling or foraging groups of larvae and form larger aggregates, and the gregariousness of these species might be driven by the group-selection. While group size and foraging patterns vary greatly across species, it is generally associated with improved larval survivorship and accelerated development. However, the advantages of group living, such as facilitating feeding activities, adjusting the temperature, and defending natural enemies, may diminish along with development, with strong intraspecific competition occurring at later instars, even when food is abundant. Therefore, the group sizes and fission-fusion dynamics of certain gregarious lepidopteran larvae may be a consequence of their cost-benefit balance depending on various biotic and abiotic factors. Trail and aggregation pheromones, silk trails, or body contact contribute to collective movement and group cohesion of gregarious lepidopteran larvae. However, frequent contact among group members may cause the horizontal transmission of pathogens and pesticides, which may bring an integrated pest management strategy controlling gregarious lepidopteran pests.
Collapse
Affiliation(s)
- Chenyu Qian
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Chao Wen
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Xiaoli Guo
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | - Xinya Yang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xiujun Wen
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Tao Ma
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Cai Wang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Gordon DM, Steiner E, Das B, Walker NS. Harvester ant colonies differ in collective behavioural plasticity to regulate water loss. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230726. [PMID: 37736532 PMCID: PMC10509591 DOI: 10.1098/rsos.230726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/24/2023] [Indexed: 09/23/2023]
Abstract
Collective behavioural plasticity allows ant colonies to adjust to changing conditions. The red harvester ant (Pogonomyrmex barbatus), a desert seed-eating species, regulates foraging activity in response to water stress. Foraging ants lose water to evaporation. Reducing foraging activity in dry conditions sacrifices food intake but conserves water. Within a year, some colonies tend to reduce foraging on dry days while others do not. We examined whether these differences among colonies in collective behavioural plasticity persist from year to year. Colonies live 20-30 years with a single queen who produces successive cohorts of workers which live only a year. The humidity level at which all colonies tend to reduce foraging varies from year to year. Longitudinal observations of 95 colonies over 5 years between 2016 and 2021 showed that differences among colonies, in how they regulate foraging activity in response to day-to-day changes in humidity, persist across years. Approximately 40% of colonies consistently reduced foraging activity, year after year, on days with low daily maximum relative humidity; approximately 20% of colonies never did, foraging as much or more on dry days as on humid days. This variation among colonies may allow evolutionary rescue from drought due to climate change.
Collapse
Affiliation(s)
- D. M. Gordon
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - E. Steiner
- InfoGraphics Lab, University of Oregon, Eugene, OR, USA
| | - Biplabendu Das
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - N. S. Walker
- Hawai'i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne'ohe, HI, USA
| |
Collapse
|
3
|
MacDonald ZG, Snape KL, Roe AD, Sperling F. Host association, environment, and geography underlie genomic differentiation in a major forest pest. Evol Appl 2022; 15:1749-1765. [PMID: 36426133 PMCID: PMC9679251 DOI: 10.1111/eva.13466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022] Open
Abstract
Diverse geographic, environmental, and ecological factors affect gene flow and adaptive genomic variation within species. With recent advances in landscape ecological modelling and high-throughput DNA sequencing, it is now possible to effectively quantify and partition their relative contributions. Here, we use landscape genomics to identify determinants of genomic differentiation in the forest tent caterpillar, Malacosoma disstria, a widespread and irruptive pest of numerous deciduous tree species in North America. We collected larvae from multiple populations across Eastern Canada, where the species experiences a diversity of environmental gradients and feeds on a number of different host tree species, including trembling aspen (Populus tremuloides), sugar maple (Acer saccharum), red oak (Quercus rubra), and white birch (Betula papyrifera). Using a combination of reciprocal causal modelling (RCM) and distance-based redundancy analyses (dbRDA), we show that differentiation of thousands of genome-wide single nucleotide polymorphisms (SNPs) among individuals is best explained by a combination of isolation by distance, isolation by environment (spatial variation in summer temperatures and length of the growing season), and differences in host association. Configuration of suitable habitat inferred from ecological niche models was not significantly related to genomic differentiation, suggesting that M. disstria dispersal is agnostic with respect to habitat quality. Although population structure was not discretely related to host association, our modelling framework provides the first molecular evidence of host-associated differentiation in M. disstria, congruent with previous documentation of reduced growth and survival of larvae moved between natal host species. We conclude that ecologically mediated selection is contributing to variation within M. disstria, and that divergent adaptation related to both environmental conditions and host association should be considered in ongoing research and management of this important forest pest.
Collapse
Affiliation(s)
- Zachary G. MacDonald
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
- UCLA La Kretz Center for California Conservation ScienceUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Institute of the Environmental and SustainabilityUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Kyle L. Snape
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Amanda D. Roe
- Great Lakes Forestry Centre, Canadian Forest ServiceNatural Resources CanadaSault Ste. MarieOntarioCanada
| | | |
Collapse
|
4
|
Despland E, Lessard JP. Social predation by ants as a mortality source for an arboreal gregarious forest pest. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Abstract
Herding behavior is widespread among herbivorous insect larvae across several orders. These larval societies represent one of several different forms of insect sociality that have historically received less attention than the well-known eusocial model but are showing us that social diversity in insects is broader than originally imagined. These alternative forms of sociality often focus attention on the ecology, rather than the genetics, of sociality. Indeed, mutually beneficial cooperation among individuals is increasingly recognized as important relative to relatedness in the evolution of sociality, and I will explore its role in larval insect herds. Larval herds vary in in the complexity of their social behavior but what they have in common includes exhibiting specialized social behaviors that are ineffective in isolated individuals but mutually beneficial in groups. They hence constitute cooperation with direct advantages that doesn’t require kinship between cooperators to be adaptive. Examples include: trail following, head-to-tail processions and other behaviors that keep groups together, huddling tightly to bask, synchronized biting and edge-feeding to overwhelm plant defenses, silk production for shelter building or covering plant trichomes and collective defensive behaviors like head-swaying. Various selective advantages to group living have been suggested and I propose that different benefits are at play in different taxa where herding has evolved independently. Proposed benefits include those relative to selection pressure from abiotic factors (e.g., thermoregulation), to bottom-up pressures from plants or to top-down pressures from natural enemies. The adaptive value of herding cooperation must be understood in the context of the organism’s niche and suite of traits. I propose several such suites in herbivorous larvae that occupy different niches. First, some herds aggregate to thermoregulate collectively, particularly in early spring feeders of the temperate zone. Second, other species aggregate to overwhelm host plant defenses, frequently observed in tropical species. Third, species that feed on toxic plants can aggregate to enhance the warning signal produced by aposematic coloration or stereotyped defensive behaviors. Finally, the combination of traits including gregariousness, conspicuous behavior and warning signals can be favored by a synergy between bottom-up and top-down selective forces. When larvae on toxic plants aggregate to overcome plant defenses, this grouping makes them conspicuous to predators and favors warning signals. I thus conclude that a single explanation is not sufficient for the broad range of herding behaviors that occurs in phylogenetically diverse insect larvae in different environments.
Collapse
|
6
|
Fouche Q, Hedouin V, Charabidze D. Effect of density and species preferences on collective choices: an experimental study on maggot aggregation behaviours. J Exp Biol 2021; 224:jeb.233791. [PMID: 33536311 DOI: 10.1242/jeb.233791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/25/2021] [Indexed: 01/10/2023]
Abstract
Collective decisions have been extensively studied in arthropods, but they remain poorly understood in heterospecific groups. This study was designed to (1) assess the collective behaviours of blow fly larvae (Diptera: Calliphoridae) in groups varying in density and species composition, and (2) relate them to the costs and benefits of aggregating on fresh or decomposed food. First, experiments testing conspecific groups of Lucilia sericata and Calliphora vicina larvae, two species feeding at the same time on fresh carcasses, demonstrated decreases in growth and survival on rotten beef liver compared with fresh liver. However, mixing species together reduced this adverse impact of decomposition by increasing the mass of emerged adults. Second, larval groups were observed in binary choice tests between fresh and rotten liver (i.e. optimal and sub-optimal food sources). The results showed that larvae interacted with each other and that these interactions influenced their food preferences. We observed that (1) larvae were able to collectively choose the optimal food, (2) their choice accuracy increased with larval density and (3) the presence of another species induced a reversal in larval preference towards rotten food. These results highlight the ubiquity of collective decision properties in gregarious insects. They also reveal an unexpected effect of interspecific association, suggesting the colonization of new resources through a developmental niche construction.
Collapse
Affiliation(s)
- Quentin Fouche
- Université de Lille, CHU Lille, EA 7367 - UTML - Unite de Taphonomie Medico-Legale, F-59000 Lille, France
| | - Valery Hedouin
- Université de Lille, CHU Lille, EA 7367 - UTML - Unite de Taphonomie Medico-Legale, F-59000 Lille, France
| | - Damien Charabidze
- UMR 8025, Centre d'Histoire Judiciaire, Université de Lille, F-59000 Lille, France.,Unit of Social Ecology (USE), Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgium
| |
Collapse
|
7
|
Costa JT. The other insect societies: overview and new directions. CURRENT OPINION IN INSECT SCIENCE 2018; 28:40-49. [PMID: 30551766 DOI: 10.1016/j.cois.2018.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 06/09/2023]
Abstract
The diversity of societies and forms of social interaction across the Arthropoda is commensurate with the great taxonomic diversity within this pylum. Social evolution research has, however, largely focused on a small subset of social forms; namely, those deemed to be 'eusocial'-groups exhibiting overlapping generations, cooperative brood care, and reproductive division of labor. Here I provide a brief overview of the 'other', non-eusocial, societies of insects and allies, defining the main social traits of interest and summarizing recent work. Four active and emerging fields of inquiry in the other insect societies are discussed.
Collapse
Affiliation(s)
- James T Costa
- Highlands Biological Station, 265 N. Sixth Street, Highlands, NC 28741, USA; Department of Biology, Western Carolina University, Cullowhee, NC 28723, USA.
| |
Collapse
|
8
|
Despland E, Gervais D, Morcos L. Double allomimesis of advancing and retreating individuals maintains cohesion in exploring groups of nomadic caterpillars. Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2285-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Santana AFK, McClure M, Ethier J, Despland E. Exploration costs promote conservative collective foraging in the social caterpillar Malacosoma disstria. Anim Behav 2015. [DOI: 10.1016/j.anbehav.2015.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|