1
|
Berne A, Zhang T, Shomar J, Ferrer AJ, Valdes A, Ohyama T, Klein M. Mechanical vibration patterns elicit behavioral transitions and habituation in crawling Drosophila larvae. eLife 2023; 12:e69205. [PMID: 37855833 PMCID: PMC10586805 DOI: 10.7554/elife.69205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
How animals respond to repeatedly applied stimuli, and how animals respond to mechanical stimuli in particular, are important questions in behavioral neuroscience. We study adaptation to repeated mechanical agitation using the Drosophila larva. Vertical vibration stimuli elicit a discrete set of responses in crawling larvae: continuation, pause, turn, and reversal. Through high-throughput larva tracking, we characterize how the likelihood of each response depends on vibration intensity and on the timing of repeated vibration pulses. By examining transitions between behavioral states at the population and individual levels, we investigate how the animals habituate to the stimulus patterns. We identify time constants associated with desensitization to prolonged vibration, with re-sensitization during removal of a stimulus, and additional layers of habituation that operate in the overall response. Known memory-deficient mutants exhibit distinct behavior profiles and habituation time constants. An analogous simple electrical circuit suggests possible neural and molecular processes behind adaptive behavior.
Collapse
Affiliation(s)
- Alexander Berne
- Department of Physics, Department of Biology, University of MiamiCoral GablesUnited States
| | - Tom Zhang
- Department of Physics, Department of Biology, University of MiamiCoral GablesUnited States
| | - Joseph Shomar
- Department of Physics, Department of Biology, University of MiamiCoral GablesUnited States
| | - Anggie J Ferrer
- Department of Physics, Department of Biology, University of MiamiCoral GablesUnited States
| | - Aaron Valdes
- Department of Physics, Department of Biology, University of MiamiCoral GablesUnited States
| | - Tomoko Ohyama
- Department of Biology, McGill UniversityMontrealCanada
| | - Mason Klein
- Department of Physics, Department of Biology, University of MiamiCoral GablesUnited States
| |
Collapse
|
2
|
AlAbdi L, Desbois M, Rusnac DV, Sulaiman RA, Rosenfeld JA, Lalani S, Murdock DR, Burrage LC, Billie Au PY, Towner S, Wilson WG, Wong L, Brunet T, Strobl-Wildemann G, Burton JE, Hoganson G, McWalter K, Begtrup A, Zarate YA, Christensen EL, Opperman KJ, Giles AC, Helaby R, Kania A, Zheng N, Grill B, Alkuraya FS. Loss-of-function variants in MYCBP2 cause neurobehavioural phenotypes and corpus callosum defects. Brain 2023; 146:1373-1387. [PMID: 36200388 PMCID: PMC10319777 DOI: 10.1093/brain/awac364] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 11/14/2022] Open
Abstract
The corpus callosum is a bundle of axon fibres that connects the two hemispheres of the brain. Neurodevelopmental disorders that feature dysgenesis of the corpus callosum as a core phenotype offer a valuable window into pathology derived from abnormal axon development. Here, we describe a cohort of eight patients with a neurodevelopmental disorder characterized by a range of deficits including corpus callosum abnormalities, developmental delay, intellectual disability, epilepsy and autistic features. Each patient harboured a distinct de novo variant in MYCBP2, a gene encoding an atypical really interesting new gene (RING) ubiquitin ligase and signalling hub with evolutionarily conserved functions in axon development. We used CRISPR/Cas9 gene editing to introduce disease-associated variants into conserved residues in the Caenorhabditis elegans MYCBP2 orthologue, RPM-1, and evaluated functional outcomes in vivo. Consistent with variable phenotypes in patients with MYCBP2 variants, C. elegans carrying the corresponding human mutations in rpm-1 displayed axonal and behavioural abnormalities including altered habituation. Furthermore, abnormal axonal accumulation of the autophagy marker LGG-1/LC3 occurred in variants that affect RPM-1 ubiquitin ligase activity. Functional genetic outcomes from anatomical, cell biological and behavioural readouts indicate that MYCBP2 variants are likely to result in loss of function. Collectively, our results from multiple human patients and CRISPR gene editing with an in vivo animal model support a direct link between MYCBP2 and a human neurodevelopmental spectrum disorder that we term, MYCBP2-related developmental delay with corpus callosum defects (MDCD).
Collapse
Affiliation(s)
- Lama AlAbdi
- Department of Zoology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Muriel Desbois
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Domniţa-Valeria Rusnac
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Raashda A Sulaiman
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Seema Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - David R Murdock
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Ping Yee Billie Au
- Department of Medical Genetics, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Shelley Towner
- Pediatric Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - William G Wilson
- Pediatric Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Lawrence Wong
- Department of Genetics, Northern California Kaiser Permanente, Oakland, CA 94611, USA
| | - Theresa Brunet
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Neurogenomics (ING), Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | | | - Jennifer E Burton
- Department of Genetics, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | - George Hoganson
- Department of Genetics, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | - Kirsty McWalter
- Genedx, Inc., 207 Perry Parkway, Gaithersburg, MD 20877, USA
| | - Amber Begtrup
- Genedx, Inc., 207 Perry Parkway, Gaithersburg, MD 20877, USA
| | - Yuri A Zarate
- Section of Genetics and Metabolism, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Elyse L Christensen
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Karla J Opperman
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Andrew C Giles
- Division of Medical Sciences, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada
| | - Rana Helaby
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Artur Kania
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, QC H3A 2B4, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC H3A 2B2, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| | - Ning Zheng
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| |
Collapse
|
3
|
Chalissery J, Wilson I, Rankin C, Liang J. Rearing C. elegans on Parafilm-wrapped NGM Plates Impacts Habituation Behavior. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000760. [PMID: 37069949 PMCID: PMC10105302 DOI: 10.17912/micropub.biology.000760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/19/2023]
Abstract
Scientists use Parafilm to seal Caenorhabditis elegans cultures on Nematode Growth Media (NGM) petri plates for short-term storage to reduce the likelihood of contamination and improve moisture retention. However, we found that maintaining worms on plates wrapped with Parafilm can affect multiple behavioral metrics when assaying tap-habituation behavior using the Multi-Worm Tracker (MWT). Most notably, worms cultured on parafilm-wrapped NGM plates exhibited slower speed of initial response to tap followed by marked sensitization. These findings suggest that labs should be conscious of the possibility that Parafilm may induce behavioral changes in C. elegans when conducting experiments.
Collapse
Affiliation(s)
- Jessica Chalissery
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Isabel Wilson
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Catharine Rankin
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Correspondence to: Catharine Rankin (
)
| | - Joseph Liang
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Zha C, Sossin WS. The molecular diversity of plasticity mechanisms underlying memory: An evolutionary perspective. J Neurochem 2022; 163:444-460. [PMID: 36326567 DOI: 10.1111/jnc.15717] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/29/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Experience triggers molecular cascades in organisms (learning) that lead to alterations (memory) to allow the organism to change its behavior based on experience. Understanding the molecular mechanisms underlying memory, particularly in the nervous system of animals, has been an exciting scientific challenge for neuroscience. We review what is known about forms of neuronal plasticity that underlie memory highlighting important issues in the field: (1) the importance of being able to measure how neurons are activated during learning to identify the form of plasticity that underlies memory, (2) the many distinct forms of plasticity important for memories that naturally decay both within and between organisms, and (3) unifying principles underlying the formation and maintenance of long-term memories. Overall, the diversity of molecular mechanisms underlying memories that naturally decay contrasts with more unified molecular mechanisms implicated in long-lasting changes. Despite many advances, important questions remain as to which mechanisms of neuronal plasticity underlie memory.
Collapse
Affiliation(s)
- Congyao Zha
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Gold OMS, Bardsley EN, Ponnampalam AP, Pauza AG, Paton JFR. Cellular basis of learning and memory in the carotid body. Front Synaptic Neurosci 2022; 14:902319. [PMID: 36046221 PMCID: PMC9420943 DOI: 10.3389/fnsyn.2022.902319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
The carotid body is the primary peripheral chemoreceptor in the body, and critical for respiration and cardiovascular adjustments during hypoxia. Yet considerable evidence now implicates the carotid body as a multimodal sensor, mediating the chemoreflexes of a wide range of physiological responses, including pH, temperature, and acidosis as well as hormonal, glucose and immune regulation. How does the carotid body detect and initiate appropriate physiological responses for these diverse stimuli? The answer to this may lie in the structure of the carotid body itself. We suggest that at an organ-level the carotid body is comparable to a miniature brain with compartmentalized discrete regions of clustered glomus cells defined by their neurotransmitter expression and receptor profiles, and with connectivity to defined reflex arcs that play a key role in initiating distinct physiological responses, similar in many ways to a switchboard that connects specific inputs to selective outputs. Similarly, within the central nervous system, specific physiological outcomes are co-ordinated, through signaling via distinct neuronal connectivity. As with the brain, we propose that highly organized cellular connectivity is critical for mediating co-ordinated outputs from the carotid body to a given stimulus. Moreover, it appears that the rudimentary components for synaptic plasticity, and learning and memory are conserved in the carotid body including the presence of glutamate and GABAergic systems, where evidence pinpoints that pathophysiology of common diseases of the carotid body may be linked to deviations in these processes. Several decades of research have contributed to our understanding of the central nervous system in health and disease, and we discuss that understanding the key processes involved in neuronal dysfunction and synaptic activity may be translated to the carotid body, offering new insights and avenues for therapeutic innovation.
Collapse
|
6
|
Khan S. Conformational spread drives the evolution of the calcium-calmodulin protein kinase II. Sci Rep 2022; 12:8499. [PMID: 35589775 PMCID: PMC9120016 DOI: 10.1038/s41598-022-12090-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
The calcium calmodulin (Ca2+/CaM) dependent protein kinase II (CaMKII) decodes Ca2+ frequency oscillations. The CaMKIIα isoform is predominantly expressed in the brain and has a central role in learning. I matched residue and organismal evolution with collective motions deduced from the atomic structure of the human CaMKIIα holoenzyme to learn how its ring architecture abets function. Protein dynamic simulations showed its peripheral kinase domains (KDs) are conformationally coupled via lateral spread along the central hub. The underlying β-sheet motions in the hub or association domain (AD) were deconvolved into dynamic couplings based on mutual information. They mapped onto a coevolved residue network to partition the AD into two distinct sectors. A second, energetically stressed sector was added to ancient bacterial enzyme dimers for assembly of the ringed hub. The continued evolution of the holoenzyme after AD–KD fusion targeted the sector’s ring contacts coupled to the KD. Among isoforms, the α isoform emerged last and, it alone, mutated rapidly after the poikilotherm–homeotherm jump to match the evolution of memory. The correlation between dynamics and evolution of the CaMKII AD argues single residue substitutions fine-tune hub conformational spread. The fine-tuning could increase CaMKIIα Ca2+ frequency response range for complex learning functions.
Collapse
Affiliation(s)
- Shahid Khan
- Molecular Biology Consortium, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. .,SBA School of Science and Engineering, LUMS, Lahore, Pakistan. .,Laboratory of Cell Biology, NINDS, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Han GC, Jing HM, Zhang WJ, Zhang N, Li ZN, Zhang GY, Gao S, Ning JY, Li GJ. Effects of lanthanum nitrate on behavioral disorder, neuronal damage and gene expression in different developmental stages of Caenorhabditis elegans. Toxicology 2021; 465:153012. [PMID: 34718030 DOI: 10.1016/j.tox.2021.153012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022]
Abstract
Rare earth elements (REEs) are widely used in the industry, agriculture, biomedicine, aerospace, etc, and have been shown to pose toxic effects on animals, as such, studies focusing on their biomedical properties are gaining wide attention. However, environmental and population health risks of REEs are still not very clear. Also, the REEs damage to the nervous system and related molecular mechanisms needs further research. In this study, the L1 and L4 stages of the model organism Caenorhabditis elegans were used to evaluate the effects and possible neurotoxic mechanism of lanthanum(III) nitrate hexahydrate (La(NO3)3·6H2O). For the L1 and L4 stage worms, the 48-h median lethal concentrations (LC50s) of La(NO3)3·6H2O were 93.163 and 648.0 mg/L respectively. Our results show that La(NO3)3·6H2O induces growth inhibition and defects in behavior such as body length, body width, body bending frequency, head thrashing frequency and pharyngeal pumping frequency at the L1 and L4 stages in C. elegans. The L1 stage is more sensitive to the toxicity of lanthanum than the L4 stage worms. Using transgenic strains (BZ555, EG1285 and NL5901), we found that La(NO3)3·6H2O caused the loss or break of soma and dendrite neurons in L1 and L4 stages; and α-synuclein aggregation in L1 stage, indicating that Lanthanum can cause toxic damage to dopaminergic and GABAergic neurons. Mechanistically, La(NO3)3·6H2O exposure inhibited or activated the neurotransmitter transporters and receptors (glutamate, serotonin and dopamine) in C. elegans, which regulate behavior and movement functions. Furthermore, significant increase in the production of reactive oxygen species (ROS) was found in the L4 stage C. elegans exposed to La(NO3)3·6H2O. Altogether, our data show that exposure to lanthanum can cause neuronal toxic damage and behavioral defects in C. elegans, and provide basic information for understanding the neurotoxic effect mechanism and environmental health risks of rare earth elements.
Collapse
Affiliation(s)
- Gao-Chao Han
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, 100013, PR China; School of Public Health, Capital Medical University, Beijing, 100069, PR China
| | - Hai-Ming Jing
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, 100013, PR China; School of Public Health, Capital Medical University, Beijing, 100069, PR China
| | - Wen-Jing Zhang
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, 100013, PR China
| | - Nan Zhang
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, 100013, PR China
| | - Zi-Nan Li
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, 100013, PR China
| | - Guo-Yan Zhang
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, 100013, PR China; School of Public Health, Capital Medical University, Beijing, 100069, PR China
| | - Shan Gao
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, 100013, PR China
| | - Jun-Yu Ning
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, 100013, PR China; School of Public Health, Capital Medical University, Beijing, 100069, PR China
| | - Guo-Jun Li
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, 100013, PR China; School of Public Health, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
8
|
Kashyap SS, Verma S, McHugh M, Wolday M, Williams PD, Robertson AP, Martin RJ. Anthelmintic resistance and homeostatic plasticity (Brugia malayi). Sci Rep 2021; 11:14499. [PMID: 34262123 PMCID: PMC8280109 DOI: 10.1038/s41598-021-93911-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/01/2021] [Indexed: 11/18/2022] Open
Abstract
Homeostatic plasticity refers to the capacity of excitable cells to regulate their activity to make compensatory adjustments to long-lasting stimulation. It is found across the spectrum of vertebrate and invertebrate species and is driven by changes in cytosolic calcium; it has not been explored in parasitic nematodes when treated with therapeutic drugs. Here we have studied the adaptation of Brugia malayi to exposure to the anthelmintic, levamisole that activates muscle AChR ion-channels. We found three phases of the Brugia malayi motility responses as they adapted to levamisole: an initial spastic paralysis; a flaccid paralysis that follows; and finally, a recovery of motility with loss of sensitivity to levamisole at 4 h. Motility, calcium-imaging, patch-clamp and molecular experiments showed the muscle AChRs are dynamic with mechanisms that adjust their subtype composition and sensitivity to levamisole. This homeostatic plasticity allows the parasite to adapt resisting the anthelmintic.
Collapse
Affiliation(s)
- Sudhanva S Kashyap
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Saurabh Verma
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Mark McHugh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Mengisteab Wolday
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Paul D Williams
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Alan P Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Richard J Martin
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
9
|
Reiss AP, Rankin CH. Gaining an understanding of behavioral genetics through studies of foraging in Drosophila and learning in C. elegans. J Neurogenet 2021; 35:119-131. [PMID: 34151727 DOI: 10.1080/01677063.2021.1928113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The pursuit of understanding behavior has led to investigations of how genes, the environment, and the nervous system all work together to produce and influence behavior, giving rise to a field of research known as behavioral neurogenetics. This review focuses on the research journeys of two pioneers of aspects of behavioral neurogenetic research: Dr. Marla Sokolowski and Dr. Catharine Rankin as examples of how different approaches have been used to understand relationships between genes and behavior. Marla Sokolowski's research is centered around the discovery and analysis of foraging, a gene responsible for the natural behavioral polymorphism of Drosophila melanogaster larvae foraging behavior. Catharine Rankin's work began with demonstrating the ability to learn in Caenorhabditis elegans and then setting out to investigate the mechanisms underlying the "simplest" form of learning, habituation. Using these simple invertebrate organisms both investigators were able to perform in-depth dissections of behavior at genetic and molecular levels. By exploring their research and highlighting their findings we present ways their work has furthered our understanding of behavior and contributed to the field of behavioral neurogenetics.
Collapse
Affiliation(s)
- Aaron P Reiss
- Department of Psychology, University of British Columbia, Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Catharine H Rankin
- Department of Psychology, University of British Columbia, Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| |
Collapse
|
10
|
Alicea B. Raising the Connectome: The Emergence of Neuronal Activity and Behavior in Caenorhabditis elegans. Front Cell Neurosci 2020; 14:524791. [PMID: 33100971 PMCID: PMC7522492 DOI: 10.3389/fncel.2020.524791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/24/2020] [Indexed: 11/15/2022] Open
Abstract
The differentiation of neurons and formation of connections between cells is the basis of both the adult phenotype and behaviors tied to cognition, perception, reproduction, and survival. Such behaviors are associated with local (circuits) and global (connectome) brain networks. A solid understanding of how these networks emerge is critical. This opinion piece features a guided tour of early developmental events in the emerging connectome, which is crucial to a new view on the connectogenetic process. Connectogenesis includes associating cell identities with broader functional and developmental relationships. During this process, the transition from developmental cells to terminally differentiated cells is defined by an accumulation of traits that ultimately results in neuronal-driven behavior. The well-characterized developmental and cell biology of Caenorhabditis elegans will be used to build a synthesis of developmental events that result in a functioning connectome. Specifically, our view of connectogenesis enables a first-mover model of synaptic connectivity to be demonstrated using data representing larval synaptogenesis. In a first-mover model of Stackelberg competition, potential pre- and postsynaptic relationships are shown to yield various strategies for establishing various types of synaptic connections. By comparing these results to what is known regarding principles for establishing complex network connectivity, these strategies are generalizable to other species and developmental systems. In conclusion, we will discuss the broader implications of this approach, as what is presented here informs an understanding of behavioral emergence and the ability to simulate related biological phenomena.
Collapse
Affiliation(s)
- Bradly Alicea
- Orthogonal Research and Education Laboratory, Champaign, IL, United States
- OpenWorm Foundation, Boston, MA, United States
| |
Collapse
|
11
|
Miguel-Blanco A, Manoonpong P. General Distributed Neural Control and Sensory Adaptation for Self-Organized Locomotion and Fast Adaptation to Damage of Walking Robots. Front Neural Circuits 2020; 14:46. [PMID: 32973461 PMCID: PMC7461994 DOI: 10.3389/fncir.2020.00046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/03/2020] [Indexed: 12/18/2022] Open
Abstract
Walking animals such as invertebrates can effectively perform self-organized and robust locomotion. They can also quickly adapt their gait to deal with injury or damage. Such a complex achievement is mainly performed via coordination between the legs, commonly known as interlimb coordination. Several components underlying the interlimb coordination process (like distributed neural control circuits, local sensory feedback, and body-environment interactions during movement) have been recently identified and applied to the control systems of walking robots. However, while the sensory pathways of biological systems are plastic and can be continuously readjusted (referred to as sensory adaptation), those implemented on robots are typically static. They first need to be manually adjusted or optimized offline to obtain stable locomotion. In this study, we introduce a fast learning mechanism for online sensory adaptation. It can continuously adjust the strength of sensory pathways, thereby introducing flexible plasticity into the connections between sensory feedback and neural control circuits. We combine the sensory adaptation mechanism with distributed neural control circuits to acquire the adaptive and robust interlimb coordination of walking robots. This novel approach is also general and flexible. It can automatically adapt to different walking robots and allow them to perform stable self-organized locomotion as well as quickly deal with damage within a few walking steps. The adaptation of plasticity after damage or injury is considered here as lesion-induced plasticity. We validated our adaptive interlimb coordination approach with continuous online sensory adaptation on simulated 4-, 6-, 8-, and 20-legged robots. This study not only proposes an adaptive neural control system for artificial walking systems but also offers a possibility of invertebrate nervous systems with flexible plasticity for locomotion and adaptation to injury.
Collapse
Affiliation(s)
- Aitor Miguel-Blanco
- Embodied Artificial Intelligence and Neurorobotics Lab, SDU Biorobotics, The Maersk Mc-Kinney Møller Institute, University of Southern Denmark, Odense, Denmark
| | - Poramate Manoonpong
- Embodied Artificial Intelligence and Neurorobotics Lab, SDU Biorobotics, The Maersk Mc-Kinney Møller Institute, University of Southern Denmark, Odense, Denmark
- Bio-Inspired Robotics and Neural Engineering Lab, School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology, Rayong, Thailand
| |
Collapse
|
12
|
Autophagy is inhibited by ubiquitin ligase activity in the nervous system. Nat Commun 2019; 10:5017. [PMID: 31676756 PMCID: PMC6825199 DOI: 10.1038/s41467-019-12804-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 10/01/2019] [Indexed: 12/17/2022] Open
Abstract
Autophagy is an intracellular catabolic process prominent in starvation, aging and disease. Neuronal autophagy is particularly important, as it affects the development and function of the nervous system, and is heavily implicated in neurodegenerative disease. Nonetheless, how autophagy is regulated in neurons remains poorly understood. Using an unbiased proteomics approach, we demonstrate that the primary initiator of autophagy, the UNC-51/ULK kinase, is negatively regulated by the ubiquitin ligase RPM-1. RPM-1 ubiquitin ligase activity restricts UNC-51 and autophagosome formation within specific axonal compartments, and exerts effects broadly across the nervous system. By restraining UNC-51 activity, RPM-1 inhibits autophagosome formation to affect axon termination, synapse maintenance and behavioral habituation. These results demonstrate how UNC-51 and autophagy are regulated subcellularly in axons, and unveils a mechanism for restricting initiation of autophagy across the nervous system. Our findings have important implications beyond nervous system development, given growing links between altered autophagy regulation and neurodegenerative diseases.
Collapse
|
13
|
How Caenorhabditis elegans Senses Mechanical Stress, Temperature, and Other Physical Stimuli. Genetics 2019; 212:25-51. [PMID: 31053616 PMCID: PMC6499529 DOI: 10.1534/genetics.118.300241] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/04/2019] [Indexed: 12/30/2022] Open
Abstract
Caenorhabditis elegans lives in a complex habitat in which they routinely experience large fluctuations in temperature, and encounter physical obstacles that vary in size and composition. Their habitat is shared by other nematodes, by beneficial and harmful bacteria, and nematode-trapping fungi. Not surprisingly, these nematodes can detect and discriminate among diverse environmental cues, and exhibit sensory-evoked behaviors that are readily quantifiable in the laboratory at high resolution. Their ability to perform these behaviors depends on <100 sensory neurons, and this compact sensory nervous system together with powerful molecular genetic tools has allowed individual neuron types to be linked to specific sensory responses. Here, we describe the sensory neurons and molecules that enable C. elegans to sense and respond to physical stimuli. We focus primarily on the pathways that allow sensation of mechanical and thermal stimuli, and briefly consider this animal’s ability to sense magnetic and electrical fields, light, and relative humidity. As the study of sensory transduction is critically dependent upon the techniques for stimulus delivery, we also include a section on appropriate laboratory methods for such studies. This chapter summarizes current knowledge about the sensitivity and response dynamics of individual classes of C. elegans mechano- and thermosensory neurons from in vivo calcium imaging and whole-cell patch-clamp electrophysiology studies. We also describe the roles of conserved molecules and signaling pathways in mediating the remarkably sensitive responses of these nematodes to mechanical and thermal cues. These studies have shown that the protein partners that form mechanotransduction channels are drawn from multiple superfamilies of ion channel proteins, and that signal transduction pathways responsible for temperature sensing in C. elegans share many features with those responsible for phototransduction in vertebrates.
Collapse
|
14
|
Neurobiology of maternal regulation of infant fear: the role of mesolimbic dopamine and its disruption by maltreatment. Neuropsychopharmacology 2019; 44:1247-1257. [PMID: 30758321 PMCID: PMC6784970 DOI: 10.1038/s41386-019-0340-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 02/06/2023]
Abstract
Child development research highlights caregiver regulation of infant physiology and behavior as a key feature of early life attachment, although mechanisms for maternal control of infant neural circuits remain elusive. Here we explored the neurobiology of maternal regulation of infant fear using neural network and molecular levels of analysis in a rodent model. Previous research has shown maternal suppression of amygdala-dependent fear learning during a sensitive period. Here we characterize changes in neural networks engaged during maternal regulation and the transition to infant self-regulation. Metabolic mapping of 2-deoxyglucose uptake during odor-shock conditioning in postnatal day (PN)14 rat pups showed that maternal presence blocked fear learning, disengaged mesolimbic circuitry, basolateral amygdala (BLA), and plasticity-related AMPA receptor subunit trafficking. At PN18, when maternal presence only socially buffers threat learning (similar to social modulation in adults), maternal presence failed to disengage the mesolimbic dopaminergic system, and failed to disengage both the BLA and plasticity-related AMPA receptor subunit trafficking. Further, maternal presence failed to block threat learning at PN14 pups following abuse, and mesolimbic dopamine engagement and AMPA were not significantly altered by maternal presence-analogous to compromised maternal regulation of children in abusive relationships. Our results highlight three key features of maternal regulation: (1) maternal presence blocks fear learning and amygdala plasticity through age-dependent suppression of amygdala AMPA receptor subunit trafficking, (2) maternal presence suppresses engagement of brain regions within the mesolimbic dopamine circuit, and (3) early-life abuse compromises network and molecular biomarkers of maternal regulation, suggesting reduced social scaffolding of the brain.
Collapse
|
15
|
Developmental transitions in amygdala PKC isoforms and AMPA receptor expression associated with threat memory in infant rats. Sci Rep 2018; 8:14679. [PMID: 30279521 PMCID: PMC6168531 DOI: 10.1038/s41598-018-32762-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022] Open
Abstract
Although infants learn and remember, they rapidly forget, a phenomenon known as infantile amnesia. While myriad mechanisms impact this rapid forgetting, the molecular events supporting memory maintenance have yet to be explored. To explore memory mechanisms across development, we used amygdala-dependent odor-shock conditioning and focused on mechanisms important in adult memory, the AMPA receptor subunits GluA1/2 and upstream protein kinases important for trafficking AMPAR, protein kinase M zeta (PKMζ) and iota/lambda (PKCι/λ). We use odor-shock conditioning in infant rats because it is late-developing (postnatal day, PN10) and can be modulated by corticosterone during a sensitive period in early life. Our results show that memory-related molecules did not change in pups too young to learn threat (PN8) but were activated in pups old enough to learn (PN12), with increased PKMζ-PKCι/λ and GluA2 similar to that observed in adult memory, but with an uncharacteristic decrease in GluA1. This molecular signature and behavioral avoidance of the conditioned odor was recapitulated in PN8 pups injected with CORT before conditioning to precociously induce learning. Blocking learning via CORT inhibition in older pups (PN12) blocked the expression of these molecules. PN16 pups showed a more adult-like molecular cascade of increased PKMζ-PKCι/λ and GluA1–2. Finally, at all ages, zeta inhibitory peptide (ZIP) infusions into the amygdala 24 hr after conditioning blocked memory. Together, these results identify unique features of memory processes across early development: AMPAR subunits GluA1/2 and PKC isoform expression are differentially used, which may contribute to mechanisms of early life forgetting.
Collapse
|
16
|
Sugi T, Igarashi R, Nishimura M. Noninvasive Mechanochemical Imaging in Unconstrained Caenorhabditis elegans. MATERIALS 2018; 11:ma11061034. [PMID: 29921777 PMCID: PMC6025516 DOI: 10.3390/ma11061034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 11/16/2022]
Abstract
Physical forces are transduced into chemical reactions, thereby ultimately making a large impact on the whole-animal level phenotypes such as homeostasis, development and behavior. To understand mechano-chemical transduction, mechanical input should be quantitatively delivered with controllable vibration properties⁻frequency, amplitude and duration, and its chemical output should be noninvasively quantified in an unconstrained animal. However, such an experimental system has not been established so far. Here, we develop a noninvasive and unconstrained mechanochemical imaging microscopy. This microscopy enables us to evoke nano-scale nonlocalized vibrations with controllable vibration properties using a piezoelectric acoustic transducer system and quantify calcium response of a freely moving C. elegans at a single cell resolution. Using this microscopy, we clearly detected the calcium response of a single interneuron during C. elegans escape response to nano-scale vibration. Thus, this microscopy will facilitate understanding of in vivo mechanochemical physiology in the future.
Collapse
Affiliation(s)
- Takuma Sugi
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan.
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - Ryuji Igarashi
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
- QST Future Laboratory, National Institute for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Masaki Nishimura
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan.
| |
Collapse
|
17
|
Sugi T, Okumura E, Kiso K, Igarashi R. Nanoscale Mechanical Stimulation Method for Quantifying C. elegans Mechanosensory Behavior and Memory. ANAL SCI 2018; 32:1159-1164. [PMID: 27829619 DOI: 10.2116/analsci.32.1159] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Withdrawal escape response of C. elegans to nonlocalized vibration is a useful behavioral paradigm to examine mechanisms underlying mechanosensory behavior and its memory-dependent change. However, there are very few methods for investigating the degree of vibration frequency, amplitude and duration needed to induce behavior and memory. Here, we establish a new system to quantify C. elegans mechanosensory behavior and memory using a piezoelectric sheet speaker. In the system, we can flexibly change the vibration properties at a nanoscale displacement level and quantify behavioral responses under each vibration property. This system is an economic setup and easily replicated in other laboratories. By using the system, we clearly detected withdrawal escape responses and confirmed habituation memory. This system will facilitate the understanding of physiological aspects of C. elegans mechanosensory behavior in the future.
Collapse
Affiliation(s)
- Takuma Sugi
- PRESTO, Japanese Science and Technology Agency
| | | | | | | |
Collapse
|
18
|
Herrero A, Duhart JM, Ceriani MF. Neuronal and Glial Clocks Underlying Structural Remodeling of Pacemaker Neurons in Drosophila. Front Physiol 2017; 8:918. [PMID: 29184510 PMCID: PMC5694478 DOI: 10.3389/fphys.2017.00918] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/30/2017] [Indexed: 11/24/2022] Open
Abstract
A number of years ago we reported that ventral Lateral Neurons (LNvs), which are essential in the control of rest-activity cycles in Drosophila, undergo circadian remodeling of their axonal projections. This structural plasticity gives rise to changes in the degree of connectivity, which could provide a means of transmitting time of day information. Thus far, work from different laboratories has shown that circadian remodeling of adult projections relies on activity-dependent and -independent mechanisms. In terms of clock- dependent mechanisms, several neuronal types undergoing circadian remodeling hinted to a differential effect of clock genes; while per mutants exhibited poorly developed axonal terminals giving rise to low complexity arbors, tim mutants displayed a characteristic hyper branching phenotype, suggesting these genes could be playing additional roles to those ascribed to core clock function. To shed light onto this possibility we altered clock gene levels through RNAi- mediated downregulation and expression of a dominant negative form exclusively in the adult LNvs. These experiments confirmed that the LNv clock is necessary to drive the remodeling process. We next explored the contribution of glia to the structural plasticity of the small LNvs through acute disruption of their internal clock. Interestingly, impaired glial clocks also abolished circadian structural remodeling, without affecting other clock-controlled outputs. Taken together our data shows that both neuronal and glial clocks are recruited to define the architecture of the LNv projections along the day, thus enabling a precise reconfiguration of the circadian network.
Collapse
Affiliation(s)
| | | | - Maria F. Ceriani
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, IIB-BA CONICET, Buenos Aires, Argentina
| |
Collapse
|
19
|
Xu T, Zhang M, Hu J, Li Z, Wu T, Bao J, Wu S, Lei L, He D. Behavioral deficits and neural damage of Caenorhabditis elegans induced by three rare earth elements. CHEMOSPHERE 2017; 181:55-62. [PMID: 28426941 DOI: 10.1016/j.chemosphere.2017.04.068] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/03/2017] [Accepted: 04/15/2017] [Indexed: 05/15/2023]
Abstract
Rare earth elements (REEs) are widely used in industry, agriculture, medicine and daily life in recent years. However, environmental and health risks of REEs are still poorly understood. In this study, neurotoxicity of trichloride neodymium, praseodymium and scandium were evaluated using nematode Caenorhabditis elegans as the assay system. Median lethal concentrations (48 h) were 99.9, 157.2 and 106.4 mg/L for NdCl3, PrCl3 and ScCl3, respectively. Sublethal dose (10-30 mg/L) of these trichloride salts significantly inhibited body length of nematodes. Three REEs resulted in significant declines in locomotor frequency of body bending, head thrashing and pharyngeal pumping. In addition, mean speed and wavelength of crawling movement were significantly reduced after chronic exposure. Using transgenic nematodes, we found NdCl3, PrCl3 and ScCl3 resulted in loss of dendrite and soma of neurons, and induced down-expression of dat-1::GFP and unc-47::GFP. It indicates that REEs can lead to damage of dopaminergic and GABAergic neurons. Our data suggest that exposure to REEs may cause neurotoxicity of inducing behavioral deficits and neural damage. These findings provide useful information for understanding health risk of REE materials.
Collapse
Affiliation(s)
- Tiantian Xu
- Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai, 200241, China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China
| | - Manke Zhang
- Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai, 200241, China
| | - Jiani Hu
- Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai, 200241, China
| | - Zihan Li
- Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai, 200241, China
| | - Taipu Wu
- Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai, 200241, China
| | - Jianing Bao
- Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai, 200241, China
| | - Siyu Wu
- Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai, 200241, China
| | - Lili Lei
- Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai, 200241, China
| | - Defu He
- Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai, 200241, China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
20
|
Ardiel EL, Giles AC, Yu AJ, Lindsay TH, Lockery SR, Rankin CH. Dopamine receptor DOP-4 modulates habituation to repetitive photoactivation of a C. elegans polymodal nociceptor. ACTA ACUST UNITED AC 2016; 23:495-503. [PMID: 27634141 PMCID: PMC5026203 DOI: 10.1101/lm.041830.116] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/27/2016] [Indexed: 11/29/2022]
Abstract
Habituation is a highly conserved phenomenon that remains poorly understood at the molecular level. Invertebrate model systems, like Caenorhabditis elegans, can be a powerful tool for investigating this fundamental process. Here we established a high-throughput learning assay that used real-time computer vision software for behavioral tracking and optogenetics for stimulation of the C. elegans polymodal nociceptor, ASH. Photoactivation of ASH with ChR2 elicited backward locomotion and repetitive stimulation altered aspects of the response in a manner consistent with habituation. Recording photocurrents in ASH, we observed no evidence for light adaptation of ChR2. Furthermore, we ruled out fatigue by demonstrating that sensory input from the touch cells could dishabituate the ASH avoidance circuit. Food and dopamine signaling slowed habituation downstream from ASH excitation via D1-like dopamine receptor, DOP-4. This assay allows for large-scale genetic and drug screens investigating mechanisms of nociception modulation.
Collapse
Affiliation(s)
- Evan L Ardiel
- DM Centre for Brain Health, University of British Columbia, Vancouver V6T 2B5, Canada
| | - Andrew C Giles
- DM Centre for Brain Health, University of British Columbia, Vancouver V6T 2B5, Canada
| | - Alex J Yu
- DM Centre for Brain Health, University of British Columbia, Vancouver V6T 2B5, Canada
| | - Theodore H Lindsay
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403, USA
| | - Shawn R Lockery
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403, USA
| | - Catharine H Rankin
- DM Centre for Brain Health, University of British Columbia, Vancouver V6T 2B5, Canada Department of Psychology, University of British Columbia, Vancouver V6T 1Z4, Canada
| |
Collapse
|
21
|
Byrne JH, Hawkins RD. Nonassociative learning in invertebrates. Cold Spring Harb Perspect Biol 2015; 7:cshperspect.a021675. [PMID: 25722464 DOI: 10.1101/cshperspect.a021675] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The simplicity and tractability of the neural circuits mediating behaviors in invertebrates have facilitated the cellular/molecular dissection of neural mechanisms underlying learning. The review has a particular focus on the general principles that have emerged from analyses of an example of nonassociative learning, sensitization in the marine mollusk Aplysia. Learning and memory rely on multiple mechanisms of plasticity at multiple sites of the neuronal circuits, with the relative contribution to memory of the different sites varying as a function of the extent of training and time after training. The same intracellular signaling cascades that induce short-term modifications in synaptic transmission can also be used to induce long-term changes. Although short-term memory relies on covalent modifications of preexisting proteins, long-term memory also requires regulated gene transcription and translation. Maintenance of long-term cellular memory involves both intracellular and extracellular feedback loops, which sustain the regulation of gene expression and the modification of targeted molecules.
Collapse
Affiliation(s)
- John H Byrne
- Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston, Houston, Texas 77030
| | - Robert D Hawkins
- Department of Neuroscience, Columbia University, New York, New York 10032 New York State Psychiatric Institute, New York, New York 10032
| |
Collapse
|
22
|
High-throughput optical quantification of mechanosensory habituation reveals neurons encoding memory in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2014; 111:17236-41. [PMID: 25404296 DOI: 10.1073/pnas.1414867111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A major goal of neuroscience studies is to identify the neurons and molecules responsible for memory. Mechanosensory habituation in Caenorhabditis elegans is a simple form of learning and memory, in which a circuit of several sensory neurons and interneurons governs behavior. However, despite the usefulness of this paradigm, there are hardly any systems for rapid and accurate behavioral genetic analysis. Here, we developed a multiplexed optical system to genetically analyze C. elegans mechanosensory habituation, and identified two interneurons involved in memory formation. The system automatically trains large populations of animals and simultaneously quantifies the behaviors of various strains by optically discriminating between transgenic and nontransgenic animals. Biochemical and cell-specific behavioral analyses indicated that phosphorylation of cyclic AMP response element-binding protein (CREB), a factor known to regulate memory allocation, was facilitated during training and this phosphorylation in AVA and AVD interneurons was required for habituation. These interneurons are a potential target for cell-specific exploration of the molecular substrates of memory.
Collapse
|
23
|
Pyza EM. Plasticity in invertebrate sensory systems. Front Physiol 2013; 4:226. [PMID: 23986720 PMCID: PMC3750941 DOI: 10.3389/fphys.2013.00226] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/05/2013] [Indexed: 11/13/2022] Open
Affiliation(s)
- Elzbieta M Pyza
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University Krakow, Poland
| |
Collapse
|