1
|
Verkerk L, Verkerk AO, Wilders R. Zebrafish as a Model System for Brugada Syndrome. Rev Cardiovasc Med 2024; 25:313. [PMID: 39355588 PMCID: PMC11440409 DOI: 10.31083/j.rcm2509313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 10/03/2024] Open
Abstract
Brugada syndrome (BrS) is an inheritable cardiac arrhythmogenic disease, associated with an increased risk of sudden cardiac death. It is most common in males around the age of 40 and the prevalence is higher in Asia than in Europe and the United States. The pathophysiology underlying BrS is not completely understood, but several hypotheses have been proposed. So far, the best effective treatment is the implantation of an implantable cardioverter-defibrillator (ICD), but device-related complications are not uncommon. Therefore, there is an urgent need to improve diagnosis and risk stratification and to find new treatment options. To this end, research should further elucidate the genetic basis and pathophysiological mechanisms of BrS. Several experimental models are being used to gain insight into these aspects. The zebrafish (Danio rerio) is a widely used animal model for the study of cardiac arrhythmias, as its cardiac electrophysiology shows interesting similarities to humans. However, zebrafish have only been used in a limited number of studies on BrS, and the potential role of zebrafish in studying the mechanisms of BrS has not been reviewed. Therefore, the present review aims to evaluate zebrafish as an animal model for BrS. We conclude that zebrafish can be considered as a valuable experimental model for BrS research, not only for gene editing technologies, but also for screening potential BrS drugs.
Collapse
Affiliation(s)
- Leonie Verkerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
2
|
Bersell KR, Yang T, Mosley JD, Glazer AM, Hale AT, Kryshtal DO, Kim K, Steimle JD, Brown JD, Salem JE, Campbell CC, Hong CC, Wells QS, Johnson AN, Short L, Blair MA, Behr ER, Petropoulou E, Jamshidi Y, Benson MD, Keyes MJ, Ngo D, Vasan RS, Yang Q, Gerszten RE, Shaffer C, Parikh S, Sheng Q, Kannankeril PJ, Moskowitz IP, York JD, Wang TJ, Knollmann BC, Roden DM. Transcriptional Dysregulation Underlies Both Monogenic Arrhythmia Syndrome and Common Modifiers of Cardiac Repolarization. Circulation 2023; 147:824-840. [PMID: 36524479 PMCID: PMC9992308 DOI: 10.1161/circulationaha.122.062193] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/03/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Brugada syndrome (BrS) is an inherited arrhythmia syndrome caused by loss-of-function variants in the cardiac sodium channel gene SCN5A (sodium voltage-gated channel alpha subunit 5) in ≈20% of subjects. We identified a family with 4 individuals diagnosed with BrS harboring the rare G145R missense variant in the cardiac transcription factor TBX5 (T-box transcription factor 5) and no SCN5A variant. METHODS We generated induced pluripotent stem cells (iPSCs) from 2 members of a family carrying TBX5-G145R and diagnosed with Brugada syndrome. After differentiation to iPSC-derived cardiomyocytes (iPSC-CMs), electrophysiologic characteristics were assessed by voltage- and current-clamp experiments (n=9 to 21 cells per group) and transcriptional differences by RNA sequencing (n=3 samples per group), and compared with iPSC-CMs in which G145R was corrected by CRISPR/Cas9 approaches. The role of platelet-derived growth factor (PDGF)/phosphoinositide 3-kinase (PI3K) pathway was elucidated by small molecule perturbation. The rate-corrected QT (QTc) interval association with serum PDGF was tested in the Framingham Heart Study cohort (n=1893 individuals). RESULTS TBX5-G145R reduced transcriptional activity and caused multiple electrophysiologic abnormalities, including decreased peak and enhanced "late" cardiac sodium current (INa), which were entirely corrected by editing G145R to wild-type. Transcriptional profiling and functional assays in genome-unedited and -edited iPSC-CMs showed direct SCN5A down-regulation caused decreased peak INa, and that reduced PDGF receptor (PDGFRA [platelet-derived growth factor receptor α]) expression and blunted signal transduction to PI3K was implicated in enhanced late INa. Tbx5 regulation of the PDGF axis increased arrhythmia risk due to disruption of PDGF signaling and was conserved in murine model systems. PDGF receptor blockade markedly prolonged normal iPSC-CM action potentials and plasma levels of PDGF in the Framingham Heart Study were inversely correlated with the QTc interval (P<0.001). CONCLUSIONS These results not only establish decreased SCN5A transcription by the TBX5 variant as a cause of BrS, but also reveal a new general transcriptional mechanism of arrhythmogenesis of enhanced late sodium current caused by reduced PDGF receptor-mediated PI3K signaling.
Collapse
Affiliation(s)
- Kevin R Bersell
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Tao Yang
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Jonathan D Mosley
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Andrew M Glazer
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Andrew T Hale
- Biochemistry (A.T.H., J.D.Y.), Vanderbilt University, Nashville, TN
| | - Dmytro O Kryshtal
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Kyungsoo Kim
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Jeffrey D Steimle
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, IL (J.D.S., I.P.M.)
| | - Jonathan D Brown
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Joe-Elie Salem
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Assistance Publique - Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Pharmacology, CIC-1901, Sorbonne University, Paris, France (J-E.S.)
- Sorbonne Universités, UPMC Univ Paris 06, Faculty of Medicine, France (J-E.S.)
| | - Courtney C Campbell
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Charles C Hong
- Department of Medicine, University of Maryland School of Medicine, Baltimore (C.C.H.)
| | - Quinn S Wells
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Biomedical Informatics (Q.S.W., D.M.R.), Vanderbilt University, Nashville, TN
| | - Amanda N Johnson
- Molecular Physiology and Biophysics (A.N.J.), Vanderbilt University, Nashville, TN
| | - Laura Short
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Marcia A Blair
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | | | - Evmorfia Petropoulou
- Cardiology Clinical Academic Group, Molecular and Clinical Sciences Institute, St George's, University of London and St George's University Hospitals National Health Service Foundation Trust, London, UK (E.P., Y.J.)
| | - Yalda Jamshidi
- Cardiology Clinical Academic Group, Molecular and Clinical Sciences Institute, St George's, University of London and St George's University Hospitals National Health Service Foundation Trust, London, UK (E.P., Y.J.)
| | - Mark D Benson
- Cardiovascular Research Center (E.J.B., M.D.B., M.J.K., R.E.G.), Beth Israel Deaconess Hospital, Boston, MA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA (M.D.B.)
| | - Michelle J Keyes
- Cardiovascular Research Center (E.J.B., M.D.B., M.J.K., R.E.G.), Beth Israel Deaconess Hospital, Boston, MA
| | - Debby Ngo
- Division of Pulmonary and Cardiovascular Medicine (D.N., R.E.G.), Beth Israel Deaconess Hospital, Boston, MA
| | | | - Qiong Yang
- Boston University School of Medicine, MA (R.S.V., Q.Y.)
| | - Robert E Gerszten
- Cardiovascular Research Center (E.J.B., M.D.B., M.J.K., R.E.G.), Beth Israel Deaconess Hospital, Boston, MA
- Division of Pulmonary and Cardiovascular Medicine (D.N., R.E.G.), Beth Israel Deaconess Hospital, Boston, MA
| | - Christian Shaffer
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Shan Parikh
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | | | | | - Ivan P Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, IL (J.D.S., I.P.M.)
| | - John D York
- Biochemistry (A.T.H., J.D.Y.), Vanderbilt University, Nashville, TN
| | - Thomas J Wang
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Bjorn C Knollmann
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Dan M Roden
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Biomedical Informatics (Q.S.W., D.M.R.), Vanderbilt University, Nashville, TN
| |
Collapse
|
3
|
Elbrønd VS, Thomsen MB, Isaksen JL, Lunde ED, Vincenti S, Wang T, Tranum-Jensen J, Calloe K. Intramural Purkinje fibers facilitate rapid ventricular activation in the equine heart. Acta Physiol (Oxf) 2023; 237:e13925. [PMID: 36606541 DOI: 10.1111/apha.13925] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/11/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
BACKGROUND The Purkinje fibers convey the electrical impulses at much higher speed than the working myocardial cells. Thus, the distribution of the Purkinje network is of paramount importance for the timing and coordination of ventricular activation. The Purkinje fibers are found in the subendocardium of all species of mammals, but some mammals also possess an intramural Purkinje fiber network that provides for relatively instantaneous, burst-like activation of the entire ventricular wall, and gives rise to an rS configuration in lead II of the ECG. AIM To relate the topography of the horse heart and the distribution and histology of the conduction system to the pattern of ventricular activation as a mechanism for the unique electrical axis of the equine heart. METHODS The morphology and distribution of the cardiac conduction system was determined by histochemistry. The electrical activity was measured using ECG in the Einthoven and orthogonal configuration. RESULTS The long axis of the equine heart is close to vertical. Outside the nodal regions the conduction system consisted of Purkinje fibers connected by connexin 43 and long, slender parallel running transitional cells. The Purkinje fiber network extended deep into the ventricular walls. ECGs recorded in an orthogonal configuration revealed a mean electrical axis pointing in a cranial-to-left direction indicating ventricular activation in an apex-to-base direction. CONCLUSION The direction of the mean electrical axis in the equine heart is determined by the architecture of the intramural Purkinje network, rather than being a reflection of ventricular mass.
Collapse
Affiliation(s)
- Vibeke S Elbrønd
- Section for Pathobiological Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Morten B Thomsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas L Isaksen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ester D Lunde
- Section for Pathobiological Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Stefano Vincenti
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tobias Wang
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Jørgen Tranum-Jensen
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kirstine Calloe
- Section for Pathobiological Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
4
|
Popa IP, Șerban DN, Mărănducă MA, Șerban IL, Tamba BI, Tudorancea I. Brugada Syndrome: From Molecular Mechanisms and Genetics to Risk Stratification. Int J Mol Sci 2023; 24:ijms24043328. [PMID: 36834739 PMCID: PMC9967917 DOI: 10.3390/ijms24043328] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Brugada syndrome (BrS) is a rare hereditary arrhythmia disorder, with a distinctive ECG pattern, correlated with an increased risk of ventricular arrhythmias and sudden cardiac death (SCD) in young adults. BrS is a complex entity in terms of mechanisms, genetics, diagnosis, arrhythmia risk stratification, and management. The main electrophysiological mechanism of BrS requires further research, with prevailing theories centered on aberrant repolarization, depolarization, and current-load match. Computational modelling, pre-clinical, and clinical research show that BrS molecular anomalies result in excitation wavelength (k) modifications, which eventually increase the risk of arrhythmia. Although a mutation in the SCN5A (Sodium Voltage-Gated Channel Alpha Subunit 5) gene was first reported almost two decades ago, BrS is still currently regarded as a Mendelian condition inherited in an autosomal dominant manner with incomplete penetrance, despite the recent developments in the field of genetics and the latest hypothesis of additional inheritance pathways proposing a more complex mode of inheritance. In spite of the extensive use of the next-generation sequencing (NGS) technique with high coverage, genetics remains unexplained in a number of clinically confirmed cases. Except for the SCN5A which encodes the cardiac sodium channel NaV1.5, susceptibility genes remain mostly unidentified. The predominance of cardiac transcription factor loci suggests that transcriptional regulation is essential to the Brugada syndrome's pathogenesis. It appears that BrS is a multifactorial disease, which is influenced by several loci, each of which is affected by the environment. The primary challenge in individuals with a BrS type 1 ECG is to identify those who are at risk for sudden death, researchers propose the use of a multiparametric clinical and instrumental strategy for risk stratification. The aim of this review is to summarize the latest findings addressing the genetic architecture of BrS and to provide novel perspectives into its molecular underpinnings and novel models of risk stratification.
Collapse
Affiliation(s)
- Irene Paula Popa
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Dragomir N. Șerban
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Minela Aida Mărănducă
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Ionela Lăcrămioara Șerban
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Bogdan Ionel Tamba
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Correspondence:
| | - Ionuț Tudorancea
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| |
Collapse
|
5
|
Chitcharoen S, Phokaew C, Mauleekoonphairoj J, Khongphatthanayothin A, Sutjaporn B, Wandee P, Poovorawan Y, Nademanee K, Payungporn S. Metagenomic analysis of viral genes integrated in whole genome sequencing data of Thai patients with Brugada syndrome. Genomics Inform 2022; 20:e44. [PMID: 36617651 PMCID: PMC9847385 DOI: 10.5808/gi.22047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/25/2022] [Indexed: 12/31/2022] Open
Abstract
Brugada syndrome (BS) is an autosomal dominant inheritance cardiac arrhythmia disorder associated with sudden death in young adults. Thailand has the highest prevalence of BS worldwide, and over 60% of patients with BS still have unclear disease etiology. Here, we performeda new viral metagenome analysis pipeline called VIRIN and validated it with whole genome sequencing (WGS) data of HeLa cell lines and hepatocellular carcinoma. Then the VIRIN pipelinewas applied to identify viral integration positions from unmapped WGS data of Thai males, including 100 BS patients (case) and 100 controls. Even though the sample preparation had noviral enrichment step, we can identify several virus genes from our analysis pipeline. The predominance of human endogenous retrovirus K (HERV-K) viruses was found in both cases andcontrols by blastn and blastx analysis. This study is the first report on the full-length HERV-Kassembled genomes in the Thai population. Furthermore, the HERV-K integration breakpointpositions were validated and compared between the case and control datasets. Interestingly,Brugada cases contained HERV-K integration breakpoints at promoters five times more oftenthan controls. Overall, the highlight of this study is the BS-specific HERV-K breakpoint positionsthat were found at the gene coding region "NBPF11" (n = 9), "NBPF12" (n = 8) and longnon-coding RNA (lncRNA) "PCAT14" (n = 4) region. The genes and the lncRNA have been reported to be associated with congenital heart and arterial diseases. These findings provide another aspect of the BS etiology associated with viral genome integrations within the humangenome.
Collapse
Affiliation(s)
- Suwalak Chitcharoen
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand,Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chureerat Phokaew
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand,Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand,Corresponding author: E-mail:
| | - John Mauleekoonphairoj
- Department of Medicine, Faculty of Medicine, Center of Excellence in Arrhythmia Research Chulalongkorn University, Chulalongkorn University, Bangkok 10330, Thailand,Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Apichai Khongphatthanayothin
- Department of Medicine, Faculty of Medicine, Center of Excellence in Arrhythmia Research Chulalongkorn University, Chulalongkorn University, Bangkok 10330, Thailand,Division of Cardiology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand,Bangkok General Hospital, Bangkok 10330, Thailand
| | - Boosamas Sutjaporn
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand,Department of Medicine, Faculty of Medicine, Center of Excellence in Arrhythmia Research Chulalongkorn University, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pharawee Wandee
- Department of Medicine, Faculty of Medicine, Center of Excellence in Arrhythmia Research Chulalongkorn University, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yong Poovorawan
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Koonlawee Nademanee
- Department of Medicine, Faculty of Medicine, Center of Excellence in Arrhythmia Research Chulalongkorn University, Chulalongkorn University, Bangkok 10330, Thailand,Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand,Pacific Rim Electrophysiology Research Institute, Bumrungrad Hospital, Bangkok 10110, Thailand
| | - Sunchai Payungporn
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand,Corresponding author: E-mail:
| |
Collapse
|
6
|
Abstract
Brugada syndrome is a heritable channelopathy characterized by a peculiar electrocardiogram (ECG) pattern and increased risk of cardiac arrhythmias and sudden death. The arrhythmias originate because of an imbalance between the repolarizing and depolarizing currents that modulate the cardiac action potential. Even if an overt structural cardiomyopathy is not typical of Brugada syndrome, fibrosis and structural changes in the right ventricle contribute to a conduction slowing, which ultimately facilitates ventricular arrhythmias. Currently, Mendelian autosomal dominant transmission is detected in less than 25% of all clinical confirmed cases. Although 23 genes have been associated with the condition, only SCN5A, encoding the cardiac sodium channel, is considered clinically actionable and disease causing. The limited monogenic inheritance has pointed toward new perspectives on the possible complex genetic architecture of the disease, involving polygenic inheritance and a polygenic risk score that can influence penetrance and risk stratification. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Marina Cerrone
- Leon H. Charney Division of Cardiology, Grossman School of Medicine, New York University, New York, NY, USA;
| | - Sarah Costa
- Department of Internal Medicine, Kantonsspital Baden, Baden, Switzerland
| | - Mario Delmar
- Leon H. Charney Division of Cardiology, Grossman School of Medicine, New York University, New York, NY, USA;
| |
Collapse
|
7
|
Calcium Channels in the Heart: Disease States and Drugs. Cells 2022; 11:cells11060943. [PMID: 35326393 PMCID: PMC8945986 DOI: 10.3390/cells11060943] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 12/30/2022] Open
Abstract
Calcium ions are the major signaling ions in the cells. They regulate muscle contraction, neurotransmitter secretion, cell growth and migration, and the activity of several proteins including enzymes and ion channels and transporters. They participate in various signal transduction pathways, thereby regulating major physiological functions. Calcium ion entry into the cells is regulated by specific calcium channels and transporters. There are mainly six types of calcium channels, of which only two are prominent in the heart. In cardiac tissues, the two types of calcium channels are the L type and the T type. L-type channels are found in all cardiac cells and T-type are expressed in Purkinje cells, pacemaker and atrial cells. Both these types of channels contribute to atrioventricular conduction as well as pacemaker activity. Given the crucial role of calcium channels in the cardiac conduction system, mutations and dysfunctions of these channels are known to cause several diseases and disorders. Drugs targeting calcium channels hence are used in a wide variety of cardiac disorders including but not limited to hypertension, angina, and arrhythmias. This review summarizes the type of cardiac calcium channels, their function, and disorders caused by their mutations and dysfunctions. Finally, this review also focuses on the types of calcium channel blockers and their use in a variety of cardiac disorders.
Collapse
|
8
|
Tambi R, Abdel Hameid R, Bankapur A, Nassir N, Begum G, Alsheikh-Ali A, Uddin M, Berdiev BK. Single-cell transcriptomics trajectory and molecular convergence of clinically relevant mutations in Brugada syndrome. Am J Physiol Heart Circ Physiol 2021; 320:H1935-H1948. [PMID: 33797273 DOI: 10.1152/ajpheart.00061.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Brugada syndrome (BrS) is a rare, inherited arrhythmia with high risk of sudden cardiac death. To evaluate the molecular convergence of clinically relevant mutations and to identify developmental cardiac cell types that are associated with BrS etiology, we collected 733 mutations represented by 16 sodium, calcium, potassium channels, and regulatory and structural genes related to BrS. Among the clinically relevant mutations, 266 are unique singletons and 88 mutations are recurrent. We observed an over-representation of clinically relevant mutations (∼80%) in SCN5A gene and also identified several candidate genes, including GPD1L, TRPM4, and SCN10A. Furthermore, protein domain enrichment analysis revealed that a large proportion of the mutations impacted ion transport domains in multiple genes, including SCN5A, TRPM4, and SCN10A. A comparative protein domain analysis of SCN5A further established a significant (P = 0.04) enrichment of clinically relevant mutations within ion transport domain, including a significant (P = 0.02) mutation hotspot within 1321-1380 residue. The enrichment of clinically relevant mutations within SCN5A ion transport domain is stronger (P = 0.00003) among early onset of BrS. Our spatiotemporal cellular heart developmental (prenatal to adult) trajectory analysis applying single-cell transcriptome identified the most frequently BrS-mutated genes (SCN5A and GPD1L) are significantly upregulated in the prenatal cardiomyocytes. A more restrictive cellular expression trajectory is prominent in the adult heart ventricular cardiomyocytes compared to prenatal. Our study suggests that genomic and proteomic hotspots in BrS converge into ion transport pathway and cardiomyocyte as a major BrS-associated cell type that provides insight into the complex genetic etiology of BrS.NEW & NOTEWORTHY Brugada syndrome is a rare inherited arrhythmia with high risk of sudden cardiac death. We present the findings for a molecular convergence of clinically relevant mutations and identification of a single-cell transcriptome-derived cardiac cell types that are associated with the etiology of BrS. Our study suggests that genomic and proteomic hotspots in BrS converge into ion transport pathway and cardiomyocyte as a major BrS-associated cell type that provides insight into the complex genetic etiology of BrS.
Collapse
Affiliation(s)
- Richa Tambi
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Reem Abdel Hameid
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Asma Bankapur
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Nasna Nassir
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Ghausia Begum
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Alawi Alsheikh-Ali
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Mohammed Uddin
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Bakhrom K Berdiev
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
9
|
Fadel S, Walker AE. The Postmortem Interpretation of Cardiac Genetic Variants of Unknown Significance in Sudden Death in the Young: A Case Report and Review of the Literature. Acad Forensic Pathol 2021; 10:166-175. [PMID: 33815637 DOI: 10.1177/1925362120984868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/04/2020] [Indexed: 11/16/2022]
Abstract
Sudden cardiac death (SCD) in adolescents and young adults is a major traumatic event for families and communities. In these cases, it is not uncommon to have a negative autopsy with structurally and histologically normal heart. Such SCD cases are generally attributed to channelopathies, which include long QT syndrome, short QT syndrome, Brugada syndrome, and catecholaminergic polymorphic ventricular tachycardia. Our understanding of the causes for SCDs has changed significantly with the advancements in molecular and genetic studies, where many mutations are now known to be associated with certain channelopathies. Postmortem analysis provides great value in informing decision-making with regard to screening tests and prophylactic measures that should be taken to prevent sudden death in first degree relatives of the decedent. As this is a rapidly advancing field, our ability to identify genetic mutations has surpassed our ability to interpret them. This led to a unique challenge in genetic testing called variants of unknown significance (VUS). VUSs present a diagnostic dilemma and uncertainty for clinicians and patients with regard to next steps. Caution should be exercised when interpreting VUSs since misinterpretation can result in mismanagement of patients and their families. A case of a young adult man with drowning as his proximate cause of death is presented in circumstances where cardiac genetic testing was indicated and undertaken. Eight VUSs in genes implicated in inheritable cardiac dysfunction were identified and the interpretation of VUSs in this scenario is discussed.
Collapse
|
10
|
Carreras D, Martinez-Moreno R, Pinsach-Abuin M, Santafe MM, Gomà P, Brugada R, Scornik FS, Pérez GJ, Pagans S. Epigenetic Changes Governing Scn5a Expression in Denervated Skeletal Muscle. Int J Mol Sci 2021; 22:ijms22052755. [PMID: 33803193 PMCID: PMC7963191 DOI: 10.3390/ijms22052755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
The SCN5A gene encodes the α-subunit of the voltage-gated cardiac sodium channel (NaV1.5), a key player in cardiac action potential depolarization. Genetic variants in protein-coding regions of the human SCN5A have been largely associated with inherited cardiac arrhythmias. Increasing evidence also suggests that aberrant expression of the SCN5A gene could increase susceptibility to arrhythmogenic diseases, but the mechanisms governing SCN5A expression are not yet well understood. To gain insights into the molecular basis of SCN5A gene regulation, we used rat gastrocnemius muscle four days following denervation, a process well known to stimulate Scn5a expression. Our results show that denervation of rat skeletal muscle induces the expression of the adult cardiac Scn5a isoform. RNA-seq experiments reveal that denervation leads to significant changes in the transcriptome, with Scn5a amongst the fifty top upregulated genes. Consistent with this increase in expression, ChIP-qPCR assays show enrichment of H3K27ac and H3K4me3 and binding of the transcription factor Gata4 near the Scn5a promoter region. Also, Gata4 mRNA levels are significantly induced upon denervation. Genome-wide analysis of H3K27ac by ChIP-seq suggest that a super enhancer recently described to regulate Scn5a in cardiac tissue is activated in response to denervation. Altogether, our experiments reveal that similar mechanisms regulate the expression of Scn5a in denervated muscle and cardiac tissue, suggesting a conserved pathway for SCN5A expression among striated muscles.
Collapse
Affiliation(s)
- David Carreras
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
| | - Rebecca Martinez-Moreno
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
| | - Mel·lina Pinsach-Abuin
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
| | - Manel M. Santafe
- Unit of Histology and Neurobiology, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Rovira i Virgili University, 43003 Reus, Spain;
| | - Pol Gomà
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
| | - Ramon Brugada
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 21005 Madrid, Spain
- Hospital Josep Trueta, 17007 Girona, Spain
| | - Fabiana S. Scornik
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 21005 Madrid, Spain
- Correspondence: (F.S.S.); (G.J.P.); (S.P.)
| | - Guillermo J. Pérez
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 21005 Madrid, Spain
- Correspondence: (F.S.S.); (G.J.P.); (S.P.)
| | - Sara Pagans
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 21005 Madrid, Spain
- Correspondence: (F.S.S.); (G.J.P.); (S.P.)
| |
Collapse
|
11
|
Atrial fibrillation-a complex polygenetic disease. Eur J Hum Genet 2020; 29:1051-1060. [PMID: 33279945 PMCID: PMC8298566 DOI: 10.1038/s41431-020-00784-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 10/27/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most common type of arrhythmia. Epidemiological studies have documented a substantial genetic component. More than 160 genes have been associated with AF during the last decades. Some of these were discovered by classical linkage studies while the majority relies on functional studies or genome-wide association studies. In this review, we will evaluate the genetic basis of AF and the role of both common and rare genetic variants in AF. Rare variants in multiple ion-channel genes as well as gap junction and transcription factor genes have been associated with AF. More recently, a growing body of evidence has implicated structural genes with AF. An increased burden of atrial fibrosis in AF patients compared with non-AF patients has also been reported. These findings challenge our traditional understanding of AF being an electrical disease. We will focus on several quantitative landmark papers, which are transforming our understanding of AF by implicating atrial cardiomyopathies in the pathogenesis. This new AF research field may enable better diagnostics and treatment in the future.
Collapse
|
12
|
Maglione TJ, Aboyme A, Ghosh BD, Bhatti S, Kostis WJ. Electrical storm in a febrile patient with Brugada syndrome and COVID-19 infection. HeartRhythm Case Rep 2020; 6:676-679. [PMID: 32837908 PMCID: PMC7366958 DOI: 10.1016/j.hrcr.2020.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Theodore J. Maglione
- Division of Cardiovascular Disease and Hypertension, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Andrew Aboyme
- Division of Cardiovascular Disease and Hypertension, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Bobby D. Ghosh
- Division of Cardiovascular Disease and Hypertension, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Sabha Bhatti
- Division of Cardiovascular Disease and Hypertension, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - William J. Kostis
- Division of Cardiovascular Disease and Hypertension, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| |
Collapse
|
13
|
Blok M, Boukens BJ. Mechanisms of Arrhythmias in the Brugada Syndrome. Int J Mol Sci 2020; 21:ijms21197051. [PMID: 32992720 PMCID: PMC7582368 DOI: 10.3390/ijms21197051] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
Arrhythmias in Brugada syndrome patients originate in the right ventricular outflow tract (RVOT). Over the past few decades, the characterization of the unique anatomy and electrophysiology of the RVOT has revealed the arrhythmogenic nature of this region. However, the mechanisms that drive arrhythmias in Brugada syndrome patients remain debated as well as the exact site of their occurrence in the RVOT. Identifying the site of origin and mechanism of Brugada syndrome would greatly benefit the development of mechanism-driven treatment strategies.
Collapse
Affiliation(s)
- Michiel Blok
- Department of Medical Biology, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Bastiaan J. Boukens
- Department of Medical Biology, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-(0)20-566-4659
| |
Collapse
|
14
|
Monasky MM, Micaglio E, Ciconte G, Pappone C. Brugada Syndrome: Oligogenic or Mendelian Disease? Int J Mol Sci 2020; 21:ijms21051687. [PMID: 32121523 PMCID: PMC7084676 DOI: 10.3390/ijms21051687] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
Brugada syndrome (BrS) is diagnosed by a coved-type ST-segment elevation in the right precordial leads on the electrocardiogram (ECG), and it is associated with an increased risk of sudden cardiac death (SCD) compared to the general population. Although BrS is considered a genetic disease, its molecular mechanism remains elusive in about 70-85% of clinically-confirmed cases. Variants occurring in at least 26 different genes have been previously considered causative, although the causative effect of all but the SCN5A gene has been recently challenged, due to the lack of systematic, evidence-based evaluations, such as a variant's frequency among the general population, family segregation analyses, and functional studies. Also, variants within a particular gene can be associated with an array of different phenotypes, even within the same family, preventing a clear genotype-phenotype correlation. Moreover, an emerging concept is that a single mutation may not be enough to cause the BrS phenotype, due to the increasing number of common variants now thought to be clinically relevant. Thus, not only the complete list of genes causative of the BrS phenotype remains to be determined, but also the interplay between rare and common multiple variants. This is particularly true for some common polymorphisms whose roles have been recently re-evaluated by outstanding works, including considering for the first time ever a polygenic risk score derived from the heterozygous state for both common and rare variants. The more common a certain variant is, the less impact this variant might have on heart function. We are aware that further studies are warranted to validate a polygenic risk score, because there is no mutated gene that connects all, or even a majority, of BrS cases. For the same reason, it is currently impossible to create animal and cell line genetic models that represent all BrS cases, which would enable the expansion of studies of this syndrome. Thus, the best model at this point is the human patient population. Further studies should first aim to uncover genetic variants within individuals, as well as to collect family segregation data to identify potential genetic causes of BrS.
Collapse
Affiliation(s)
| | | | | | - Carlo Pappone
- Correspondence: ; Tel.: +39-0252-774260; Fax: +39-0252-774306
| |
Collapse
|
15
|
Daimi H, Khelil AH, Neji A, Ben Hamda K, Maaoui S, Aranega A, Be Chibani J, Franco D. Role of SCN5A coding and non-coding sequences in Brugada syndrome onset: What's behind the scenes? Biomed J 2019; 42:252-260. [PMID: 31627867 PMCID: PMC6818142 DOI: 10.1016/j.bj.2019.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 02/20/2019] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
Background Brugada syndrome (BrS) is a rare inherited cardiac arrhythmia associated with a high risk of sudden cardiac death (SCD) due to ventricular fibrillation (VF). BrS is characterized by coved-type ST-segment elevation in the right precordial leads (V1-V3). Mutations in SCN5A gene coding for the α-subunit of the NaV1.5 cardiac sodium channel are identified in 15–30% of BrS cases. Genetic testing of BrS patients generally involves sequencing of the protein-coding portions and flanking intronic regions of SCN5A. This excludes the 5′UTR and 3′UTR from the routine genetic testing. Methods We here screened the coding sequence, the flanking intronic regions as well as the 5′ and 3′UTR regions of SCN5A gene and further five candidate genes (GPD1L, SCN1B, KCNE3, SCN4B, and MOG1) in a Tunisian family diagnosed with BrS. Results A new SCN5A-Q1000K mutation was identified along with two common polymorphisms (H558R and D1819). Multiple genetic variants were identified on the SCN5A 3′UTR, one of which is predicted to create additional microRNA binding site for miR-1270. Additionally, we identified the hsa-miR-219a-rs107822. No relevant coding sequence variant was identified in the remaining studied candidate genes. Conclusions The absence of genotype-phenotype concordance within all the identified genetic variants in this family gives extra evidences about the complexity of the disease and suggests that the occurrence and prognosis of BrS is most likely controlled by a combination of multiple genetic factors, rather than a single variant. Most SCN5A variants were localized in non-coding regions hypothesizing an impact on the miRNA-target complementarities.
Collapse
Affiliation(s)
- Houria Daimi
- Department of Experimental Biology, University of Jaen, Spain; Biochemistry and Molecular Biology Laboratory, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Amel Haj Khelil
- Biochemistry and Molecular Biology Laboratory, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Ali Neji
- Fattouma Bourguiba Hospital, Monastir, Tunisia
| | | | | | - Amelia Aranega
- Department of Experimental Biology, University of Jaen, Spain
| | - Jemni Be Chibani
- Biochemistry and Molecular Biology Laboratory, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, Spain.
| |
Collapse
|
16
|
Rodríguez -Constaín JS, López-Garzón NA, Navia-Amézquita CA, Mora-Obando DL, Dueñas-Cuellar RA. Síndrome de Brugada. Aspectos fisiopatológicos, clínicos y su asociación con enfermedades infecciosas. IATREIA 2019. [DOI: 10.17533/udea.iatreia.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
El síndrome de Brugada (SBr) es una enfermedad cardiaca no estructural que afecta los canales iónicos cardiacos, caracterizado por manifestaciones clínicas como arritmias, taquicardia, síncope y muerte súbita, entre otras. Su diagnóstico es netamente electrocardiográfico, con un patrón altamente sugestivo pero no patognomónico, por lo que existen diagnósticos diferenciales desde el punto de vista electrocardiográfico.Existen tres patrones electrocardiográficos en los pacientes con SBr, de los cuales el tipo I es el patrón más característico. Actualmente, múltiples genes se han relacionado con la presentación de este síndrome, entre los cuales se destaca el gen SCN5A, el más descrito en la literatura. Se conoce que este síndrome es más frecuente en el género masculino; sin embargo, no existen estudios epidemiológicos en Latinoamérica que lo confirmen. Pese a que la investigación alrededor de los mecanismos causales del síndrome ha avanzado, existen varias cuestiones sin resolver, como su desenmascaramiento por los signos que producen algunas enfermedades infecciosas causadas principalmente por virus. Por lo tanto, dada la relevancia clínica del tema para el médico general y para el especialista, el objetivo de esta revisión es describir no solo aspectos fisiopatológicos y clínicos de la enfermedad, sino también resaltar casos de pacientes con enfermedades infecciosas quienes posteriormente han sido diagnosticados con el síndrome de Brugada.
Collapse
|
17
|
Pigolkin YI, Shilova MA, Berezovskiy DP, Egorov VN, Tayutina TV, Bachurin SS, Kolomoets IA. [Molecular genetic basis of sudden cardiac death in the young with cardiomyopathy of various origins]. Sud Med Ekspert 2019; 62:48-53. [PMID: 31198205 DOI: 10.17116/sudmed20196203148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This paper provides a review of the modern literature devoted to the problem of forensic medical interpretation of the molecular genetic research of the young who died suddenly. The authors attempted to draw a parallel between the morphological markers of different variants of cardiomyopathy as the most common disease in sudden death at a young age and the association with genetic mutations in the genes responsible for the synthesis of sarcomer proteins, desmos and membrane channels. Based on the results of the analysis, further research is proposed to improve the accuracy of forensic diagnosis in cases of young deaths.
Collapse
Affiliation(s)
- Yu I Pigolkin
- Department of Forensic Medicine of the Sechenov First Moscow State Medical University under Ministry of Health of the Russia, Moscow, Russia, 119991
| | - M A Shilova
- Department of Forensic Medicine of the Sechenov First Moscow State Medical University under Ministry of Health of the Russia, Moscow, Russia, 119991
| | - D P Berezovskiy
- Department of Forensic Medicine and Medical Law of the Rostov State Medical University of the Ministry of Health of the Russia, Rostov-on-Don, Russia, 344022
| | - V N Egorov
- Department of Forensic Medicine and Medical Law of the Rostov State Medical University of the Ministry of Health of the Russia, Rostov-on-Don, Russia, 344022
| | - T V Tayutina
- Department of Forensic Medicine and Medical Law of the Rostov State Medical University of the Ministry of Health of the Russia, Rostov-on-Don, Russia, 344022
| | - S S Bachurin
- Department of Forensic Medicine and Medical Law of the Rostov State Medical University of the Ministry of Health of the Russia, Rostov-on-Don, Russia, 344022
| | - I A Kolomoets
- Department of Forensic Medicine and Medical Law of the Rostov State Medical University of the Ministry of Health of the Russia, Rostov-on-Don, Russia, 344022
| |
Collapse
|
18
|
Landen S, Voisin S, Craig JM, McGee SL, Lamon S, Eynon N. Genetic and epigenetic sex-specific adaptations to endurance exercise. Epigenetics 2019; 14:523-535. [PMID: 30957644 PMCID: PMC6557612 DOI: 10.1080/15592294.2019.1603961] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/03/2019] [Accepted: 04/02/2019] [Indexed: 01/01/2023] Open
Abstract
In recent years, the interest in personalised interventions such as medicine, nutrition, and exercise is rapidly rising to maximize health outcomes and ensure the most appropriate treatments. Exercising regularly is recommended for both healthy and diseased populations to improve health. However, there are sex-specific adaptations to exercise that often are not taken into consideration. While endurance exercise training alters the human skeletal muscle epigenome and subsequent gene expression, it is still unknown whether it does so differently in men and women, potentially leading to sex-specific physiological adaptations. Elucidating sex differences in genetics, epigenetics, gene regulation and expression in response to exercise will have great health implications, as it may enable gene targets in future clinical interventions and may better individualised interventions. This review will cover this topic and highlight the recent findings of sex-specific genetic, epigenetic, and gene expression studies, address the gaps in the field, and offer recommendations for future research.
Collapse
Affiliation(s)
- Shanie Landen
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Sarah Voisin
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Jeffrey M Craig
- Centre for Molecular and Medical Research, Deakin University, Geelong Waurn Ponds Campus, Geelong, Australia
- Environmental & Genetic Epidemiology Research, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Australia
| | - Sean L. McGee
- Metabolic Research Unit, School of Medicine and Centre for Molecular and Medical Research, Deakin University, Geelong, Australia
| | - Séverine Lamon
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Nir Eynon
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
- Royal Children’s Hospital, Murdoch Children’s Research Institute, Melbourne, Australia
| |
Collapse
|
19
|
Calloe K. Doctoral Dissertation: The transient outward potassium current in healthy and diseased hearts. Acta Physiol (Oxf) 2019; 225 Suppl 717:e13225. [PMID: 30628199 DOI: 10.1111/apha.13225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Kirstine Calloe
- Section for Anatomy; Biochemistry and Physiology; Department for Veterinary and Animal Sciences; Faculty of Health and Medical Sciences; University of Copenhagen; Frederiksberg C Denmark
| |
Collapse
|
20
|
Bonilla JC, Parra-Medina R, Chaves JJ, Campuzano O, Sarquella-Brugada G, Brugada R, Brugada J. [Molecular autopsy in sudden cardiac death]. ARCHIVOS DE CARDIOLOGIA DE MEXICO 2018; 88:306-312. [PMID: 30030015 DOI: 10.1016/j.acmx.2018.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 06/06/2018] [Accepted: 06/09/2018] [Indexed: 10/28/2022] Open
Abstract
Currently, there are a significant percentage of autopsies left without a conclusive diagnosis of death, especially when this lethal event occurs suddenly. Genetic analysis has been recently incorporated into the field of forensic medicine, especially in patients with sudden death and where no conclusive cause of death is identified after a complete medical-legal autopsy. Inherited arrhythmogenic diseases are the main cause of death in these cases. To date, more than 40 genes have been associated with arrhythmogenic disease, and causing sudden cardiac death has been described. The main arrhythmogenic diseases are Long QT Syndrome, Catecholaminergic Polymorphic Ventricular Tachycardia, Brugada Syndrome, and Short QT Syndrome. These post-mortem genetic studies, not only allow a diagnosis of the cause of death, but also allow a clinical translation in relatives, focusing on the early identification of individuals at risk of syncope, as well as adopting personalised therapeutic measures for the prevention of a lethal arrhythmic episode.
Collapse
Affiliation(s)
- Juan Carlos Bonilla
- Departamento de Patología, Hospital de San José, Hospital Infantil Universitario de San José, Fundación Universitaria de Ciencias de la Salud, Bogotá, Colombia.
| | - Rafael Parra-Medina
- Departamento de Patología, Hospital de San José, Hospital Infantil Universitario de San José, Fundación Universitaria de Ciencias de la Salud, Bogotá, Colombia; Instituto de Investigación, Fundación Universitaria de Ciencias de la Salud, Bogotá, Colombia
| | - Juan José Chaves
- Departamento de Patología, Hospital de San José, Hospital Infantil Universitario de San José, Fundación Universitaria de Ciencias de la Salud, Bogotá, Colombia
| | - Oscar Campuzano
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica Girona (IDIBGI), Universidad de Girona, Girona, España; Department de Ciencias Médicas, Facultad de Medicina, Universidad de Girona, Girona, España; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares-CIBERCV, Madrid, España
| | | | - Ramón Brugada
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica Girona (IDIBGI), Universidad de Girona, Girona, España; Department de Ciencias Médicas, Facultad de Medicina, Universidad de Girona, Girona, España; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares-CIBERCV, Madrid, España; Servicio de Cardiología, Hospital Josep Trueta, Girona, España
| | - Josep Brugada
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares-CIBERCV, Madrid, España; Institut Clínic Cardiovascular (ICCV), Hospital Clínic, Universidad de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, España
| |
Collapse
|
21
|
Andreasen L, Ghouse J, Skov MW, Have CT, Ahlberg G, Rasmussen PV, Linneberg A, Pedersen O, Platonov PG, Haunsø S, Svendsen JH, Hansen T, Kanters JK, Olesen MS. Brugada Syndrome-Associated Genetic Loci Are Associated With J-Point Elevation and an Increased Risk of Cardiac Arrest. Front Physiol 2018; 9:894. [PMID: 30042696 PMCID: PMC6048413 DOI: 10.3389/fphys.2018.00894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 06/21/2018] [Indexed: 12/19/2022] Open
Abstract
Introduction: A previous genome-wide association study found three genetic loci, rs9388451, rs10428132, and rs11708996, to increase the risk of Brugada Syndrome (BrS). Since the effect of these loci in the general population is unknown, we aimed to investigate the effect on electrocardiogram (ECG) parameters and outcomes in the general population. Materials and Methods: A cohort of 6,161 individuals (median age 45 [interquartile range (IQR) 40–50] years, 49% males), with available digital ECGs, was genotyped and subsequently followed for a median period of 13 [IQR 12.6–13.4] years. Data on outcomes were collected from Danish administrative healthcare registries. Furthermore, ~400,000 persons from UK Biobank were investigated for associations between the three loci and cardiac arrest/ventricular fibrillation (VF). Results: Homozygote carriers of the C allele in rs6800541 intronic to SCN10A had a significantly larger J-point elevation (JPE) compared with wildtype carriers (11 vs. 6 μV, P < 0.001). There was an additive effect of carrying multiple BrS-associated risk alleles with an increased JPE in lead V1. None of the BrS-associated genetic loci predisposed to syncope, atrial fibrillation, or total mortality in the general Danish population. The rs9388451 genetic locus adjacent to the HEY2 gene was associated with cardiac arrest/VF in an analysis using the UK Biobank study (odds ratio = 1.13 (95% confidence interval: 1.08–1.18), P = 0.006). Conclusions: BrS-associated risk alleles increase the JPE in lead V1 in an additive manner, but was not associated with increased mortality or syncope in the general population of Denmark. However, the HEY2 risk allele increased the risk of cardiac arrest/VF in the larger population study of UK Biobank indicating an important role of this common genetic locus.
Collapse
Affiliation(s)
- Laura Andreasen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Copenhagen, Denmark.,Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jonas Ghouse
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Copenhagen, Denmark.,Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten W Skov
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Copenhagen, Denmark.,Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christian T Have
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Gustav Ahlberg
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Copenhagen, Denmark.,Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter V Rasmussen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Copenhagen, Denmark.,Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Allan Linneberg
- Research Centre for Prevention and Health, Copenhagen, Denmark.,Department of Clinical Experimental Research, Rigshospitalet, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oluf Pedersen
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Pyotr G Platonov
- Center for Integrative Electrocardiology at Lund University, Arrhythmia Clinic, Skåne University Hospital, Lund, Sweden
| | - Stig Haunsø
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Copenhagen, Denmark.,Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Medicine and Surgery, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper H Svendsen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Copenhagen, Denmark.,Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Medicine and Surgery, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen K Kanters
- Laboratory of Experimental Cardiology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten S Olesen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Copenhagen, Denmark.,Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
22
|
Calloe K, Aistrup GL, Di Diego JM, Goodrow RJ, Treat JA, Cordeiro JM. Interventricular differences in sodium current and its potential role in Brugada syndrome. Physiol Rep 2018; 6:e13787. [PMID: 30009404 PMCID: PMC6046646 DOI: 10.14814/phy2.13787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/19/2022] Open
Abstract
Brugada syndrome (BrS) is an inherited disease associated with ST elevation in the right precordial leads, polymorphic ventricular tachycardia (PVT), and sudden cardiac death in adults. Mutations in the cardiac sodium channel account for a large fraction of BrS cases. BrS manifests in the right ventricle (RV), which led us to examine the biophysical and molecular properties of sodium channel in myocytes isolated from the left (LV) and right ventricle. Patch clamp was used to record sodium current (INa ) in single canine RV and LV epicardial (epi) and endocardial (endo) myocytes. Action potentials were recorded from multicellular preparations and single cells. mRNA and proteins were determined using quantitative RT-PCR and Western blot. Although LV wedge preparations were thicker than RV wedges, transmural ECG recordings showed no difference in the width of the QRS complex or transmural conduction time. Action potential characteristics showed RV epi and endo had a lower Vmax compared with LV epi and endo cells. Peak INa density was significantly lower in epi and endo RV cells compared with epi and endo LV cells. Recovery from inactivation of INa in RV cells was slightly faster and half maximal steady-state inactivation was more positive. β2 and β4 mRNA was detected at very low levels in both ventricles, which was confirmed at the protein level. Our observations demonstrate that Vmax and Na+ current are smaller in RV, presumably due to differential Nav 1.5/β subunit expression. These results provide a potential mechanism for the right ventricular manifestation of BrS.
Collapse
Affiliation(s)
- Kirstine Calloe
- Department of Veterinary and Animal SciencesSection for Anatomy, Biochemistry and PhysiologyUniversity of CopenhagenFrederiksbergDenmark
| | - Gary L. Aistrup
- Department of Experimental CardiologyMasonic Medical Research LaboratoryUticaNew York
| | - José M. Di Diego
- Department of Experimental CardiologyMasonic Medical Research LaboratoryUticaNew York
- Lankenau Institute for Medical ResearchWynnewoodPennsylvania
| | - Robert J. Goodrow
- Department of Experimental CardiologyMasonic Medical Research LaboratoryUticaNew York
| | - Jacqueline A. Treat
- Department of Experimental CardiologyMasonic Medical Research LaboratoryUticaNew York
| | - Jonathan M. Cordeiro
- Department of Experimental CardiologyMasonic Medical Research LaboratoryUticaNew York
| |
Collapse
|
23
|
Bruyneel AAN, McKeithan WL, Feyen DAM, Mercola M. Using iPSC Models to Probe Regulation of Cardiac Ion Channel Function. Curr Cardiol Rep 2018; 20:57. [DOI: 10.1007/s11886-018-1000-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Kalayinia S, Goodarzynejad H, Maleki M, Mahdieh N. Next generation sequencing applications for cardiovascular disease. Ann Med 2018; 50:91-109. [PMID: 29027470 DOI: 10.1080/07853890.2017.1392595] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The Human Genome Project (HGP), as the primary sequencing of the human genome, lasted more than one decade to be completed using the traditional Sanger's method. At present, next-generation sequencing (NGS) technology could provide the genome sequence data in hours. NGS has also decreased the expense of sequencing; therefore, nowadays it is possible to carry out both whole-genome (WGS) and whole-exome sequencing (WES) for the variations detection in patients with rare genetic diseases as well as complex disorders such as common cardiovascular diseases (CVDs). Finding new variants may contribute to establishing a risk profile for the pathology process of diseases. Here, recent applications of NGS in cardiovascular medicine are discussed; both Mendelian disorders of the cardiovascular system and complex genetic CVDs including inherited cardiomyopathy, channelopathies, stroke, coronary artery disease (CAD) and are considered. We also state some future use of NGS in clinical practice for increasing our information about the CVDs genetics and the limitations of this new technology. Key messages Traditional Sanger's method was the mainstay for Human Genome Project (HGP); Sanger sequencing has high fidelity but is slow and costly as compared to next generation methods. Within cardiovascular medicine, NGS has been shown to be successful in identifying novel causative mutations and in the diagnosis of Mendelian diseases which are caused by a single variant in a single gene. NGS has provided the opportunity to perform parallel analysis of a great number of genes in an unbiased approach (i.e. without knowing the underlying biological mechanism) which probably contribute to advance our knowledge regarding the pathology of complex diseases such as CVD.
Collapse
Affiliation(s)
- Samira Kalayinia
- a Cardiogenetic Research Laboratory , Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences , Tehran , Iran
| | | | - Majid Maleki
- a Cardiogenetic Research Laboratory , Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences , Tehran , Iran
| | - Nejat Mahdieh
- a Cardiogenetic Research Laboratory , Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
25
|
Zhang Q, Chen J, Qin Y, Wang J, Zhou L. Mutations in voltage-gated L-type calcium channel: implications in cardiac arrhythmia. Channels (Austin) 2018; 12:201-218. [PMID: 30027834 PMCID: PMC6104696 DOI: 10.1080/19336950.2018.1499368] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/08/2018] [Accepted: 07/05/2018] [Indexed: 02/06/2023] Open
Abstract
The voltage-gated L-type calcium channel (LTCC) is essential for multiple cellular processes. In the heart, calcium influx through LTCC plays an important role in cardiac electrical excitation. Mutations in LTCC genes, including CACNA1C, CACNA1D, CACNB2 and CACNA2D, will induce the dysfunctions of calcium channels, which result in the abnormal excitations of cardiomyocytes, and finally lead to cardiac arrhythmias. Nevertheless, the newly found mutations in LTCC and their functions are continuously being elucidated. This review summarizes recent findings on the mutations of LTCC, which are associated with long QT syndromes, Timothy syndromes, Brugada syndromes, short QT syndromes, and some other cardiac arrhythmias. Indeed, we describe the gain/loss-of-functions of these mutations in LTCC, which can give an explanation for the phenotypes of cardiac arrhythmias. Moreover, we present several challenges in the field at present, and propose some diagnostic or therapeutic approaches to these mutation-associated cardiac diseases in the future.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Cardiology, the Second Affiliated Hospital of Nantong University, Nantong First Hospital, Nantong, Jiangsu, China
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junjie Chen
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yao Qin
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juejin Wang
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Zhou
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
26
|
De Gasperi R, Hamidi S, Harlow LM, Ksiezak-Reding H, Bauman WA, Cardozo CP. Denervation-related alterations and biological activity of miRNAs contained in exosomes released by skeletal muscle fibers. Sci Rep 2017; 7:12888. [PMID: 29038428 PMCID: PMC5643439 DOI: 10.1038/s41598-017-13105-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/20/2017] [Indexed: 02/06/2023] Open
Abstract
Exosomes are vesicles released by many eukaryotic cells; their cargo includes proteins, mRNA and microRNA (miR) that can be transferred to recipient cells and regulate cellular processes in an autocrine or paracrine manner. While cells of the myoblast lineage secrete exosomes, it is not known whether skeletal muscle fibers (myofibers) release exosomes. In this study, we found that cultured myofibers release nanovesicles that have bilamellar membranes and an average size of 60-130 nm, contain typical exosomal proteins and miRNAs and are taken up by C2C12 cells. miR-133a was found to be the most abundant myomiR in these vesicles while miR-720 was most enriched in exosomes compared to parent myofibers. Treatment of NIH 3T3 cells with myofiber-derived exosomes downregulated the miR-133a targets proteins Smarcd1 and Runx2, confirming that these exosomes have biologically relevant effects on recipient cells. Denervation resulted in a marked increase in miR-206 and reduced expression of miRs 1, 133a, and 133b in myofiber-derived exosomes. These findings demonstrate that skeletal muscle fibers release exosomes which can exert biologically significant effects on recipient cells, and that pathological muscle conditions such as denervation induce alterations in exosomal miR profile which could influence responses to disease states through autocrine or paracrine mechanisms.
Collapse
Affiliation(s)
- Rita De Gasperi
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sayyed Hamidi
- Medical Service, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Lauren M Harlow
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Hanna Ksiezak-Reding
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William A Bauman
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA
- Medical Service, James J. Peters VA Medical Center, Bronx, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher P Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA.
- Medical Service, James J. Peters VA Medical Center, Bronx, NY, USA.
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pharmacologic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
27
|
Van Malderen SCH, Daneels D, Kerkhove D, Peeters U, Theuns DAMJ, Droogmans S, Van Camp G, Weytjens C, Biervliet M, Bonduelle M, Van Dooren S, Brugada P. Prolonged Right Ventricular Ejection Delay in Brugada Syndrome Depends on the Type of SCN5A Variant - Electromechanical Coupling Through Tissue Velocity Imaging as a Bridge Between Genotyping and Phenotyping. Circ J 2017; 82:53-61. [PMID: 28781330 DOI: 10.1253/circj.cj-16-1279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Patients with Brugada syndrome (BrS) and a history of syncope or sustained ventricular arrhythmia have longer right ventricular ejection delays (RVEDs) than asymptomatic BrS patients. Different types ofSCN5Avariants leading to different reductions in sodium current (INa) may have different effects on conduction delay, and consequently on electromechanical coupling (i.e., RVED). Thus, we investigated the genotype-phenotype relationship by measuring RVED to establish whether BrS patients carrying more severeSCN5Avariants leading to premature protein truncation (T) and presumably 100%INareduction have a longer RVED than patients carrying missense variants (M) with different degrees ofINareduction.Methods and Results:There were 34 BrS patients (mean [±SD] age 43.3±12.9 years; 52.9% male) carrying anSCN5Avariant and 66 non-carriers in this cross-sectional study. Patients carrying aSCN5Avariant were divided into T-carriers (n=13) and M-carriers (n=21). Using tissue velocity imaging, RVED and left ventricular ejection delay (LVED) were measured as the time from QRS onset to the onset of the systolic ejection wave at the end of the isovolumetric contraction. T-carriers had longer RVEDs than M-carriers (139.3±15.1 vs. 124.8±11.9 ms, respectively; P=0.008) and non-carriers (127.7±17.3 ms, P=0.027). There were no differences in LVED among groups. CONCLUSIONS Using the simple, non-invasive echocardiographic parameter RVED revealed a more pronounced 'electromechanical' delay in BrS patients carrying T variants ofSCN5A.
Collapse
Affiliation(s)
- Sophie C H Van Malderen
- Department of Electrophysiology (Heart Rhythm Management Centre), Vrije Universiteit Brussel, UZ Brussel.,Department of Cardiology, AZ Nikolaas.,Department of Electrophysiology, Thorax Centre, Erasmus MC
| | - Dorien Daneels
- Centre for Medical Genetics, Reproduction and Genetics, Reproduction Genetics and Regenerative Medicine, Vrije Universiteit Brussel, UZ Brussel
| | - Dirk Kerkhove
- Department of Non-invasive Cardiology, Vrije Universiteit Brussel, UZ Brussel
| | - Uschi Peeters
- Centre for Medical Genetics, Reproduction and Genetics, Reproduction Genetics and Regenerative Medicine, Vrije Universiteit Brussel, UZ Brussel
| | | | - Steven Droogmans
- Department of Non-invasive Cardiology, Vrije Universiteit Brussel, UZ Brussel
| | - Guy Van Camp
- Department of Non-invasive Cardiology, Vrije Universiteit Brussel, UZ Brussel
| | - Caroline Weytjens
- Department of Non-invasive Cardiology, Vrije Universiteit Brussel, UZ Brussel
| | - Martine Biervliet
- Centre for Medical Genetics, Reproduction and Genetics, Reproduction Genetics and Regenerative Medicine, Vrije Universiteit Brussel, UZ Brussel
| | - Maryse Bonduelle
- Centre for Medical Genetics, Reproduction and Genetics, Reproduction Genetics and Regenerative Medicine, Vrije Universiteit Brussel, UZ Brussel
| | - Sonia Van Dooren
- Centre for Medical Genetics, Reproduction and Genetics, Reproduction Genetics and Regenerative Medicine, Vrije Universiteit Brussel, UZ Brussel
| | - Pedro Brugada
- Department of Electrophysiology (Heart Rhythm Management Centre), Vrije Universiteit Brussel, UZ Brussel
| |
Collapse
|
28
|
Ragab AAY, Houck CA, van der Does LJME, Lanters EAH, Burghouwt DE, Muskens AJQM, de Groot NMS. Usefulness of the R-Wave Sign as a Predictor for Ventricular Tachyarrhythmia in Patients With Brugada Syndrome. Am J Cardiol 2017; 120:428-434. [PMID: 28583685 DOI: 10.1016/j.amjcard.2017.04.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/20/2017] [Accepted: 04/20/2017] [Indexed: 11/15/2022]
Abstract
Brugada syndrome (BrS) is an autosomal dominant channelopathy which is responsible for a large number of sudden cardiac deaths in young subjects without structural abnormalities. The most challenging step in management of patients with BrS is identifying who is at risk for developing malignant ventricular tachyarrhythmia (VTA). In patients with BrS, conduction delay in the right ventricular outflow tract (RVOT) causes a prominent R wave in lead aVR. This electrocardiographic parameter can be useful to detect these high-risk patients. The goal of this study was to test the significance of R-wave elevation in lead aVR as a predictor for VTA in patients with BrS. In this retrospective study, we included 132 patients with BrS (47 ± 15 years, 65% men) who visited the outpatient clinic for cardiogenetic screening. Patients' medical records were examined for the presence of a positive R-wave sign in lead aVR and VTA. A positive R-wave sign in lead aVR was observed in 41 patients (31%). This sign was more frequently observed in patients who experienced VTA (n = 24) before the initial diagnosis, during electrophysiological studies, or during follow-up (p <0.001). The positive R-wave sign occurred more frequently in symptomatic patients with a history of an out of hospital cardiac arrest, VTA, or syncope than asymptomatic patients (60% vs 26%; p = 0.002). During the follow-up period, this sign was more frequently detected in patients who developed either de novo (50%) or recurrent VTA (80%) (p = 0.017). Multivariable regression analysis showed that R-wave sign is an independent predictor for VTA development (odds ratio 4.8, 95% confidence interval 1.79 to 13.27). The presence of a positive R-wave sign in lead aVR is associated with the development of VTA. In conclusion, positive R-wave sign in lead aVR can be used to identify patients with BrS at risk for malignant VTA.
Collapse
Affiliation(s)
- Ahmed A Y Ragab
- Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Charlotte A Houck
- Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Eva A H Lanters
- Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Agnes J Q M Muskens
- Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
29
|
Postmortem genetic analysis of sudden unexpected death in infancy: neonatal genetic screening may enable the prevention of sudden infant death. J Hum Genet 2017; 62:989-995. [DOI: 10.1038/jhg.2017.79] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 11/08/2022]
|
30
|
Jenewein T, Beckmann BM, Rose S, Osterhues HH, Schmidt U, Wolpert C, Miny P, Marschall C, Alders M, Bezzina CR, Wilde AAM, Kääb S, Kauferstein S. Genotype-phenotype dilemma in a case of sudden cardiac death with the E1053K mutation and a deletion in the SCN5A gene. Forensic Sci Int 2017; 275:187-194. [PMID: 28391114 DOI: 10.1016/j.forsciint.2017.02.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/13/2017] [Accepted: 02/23/2017] [Indexed: 12/19/2022]
Abstract
Mutations in the cardiac sodium channel gene SCN5A may result in various arrhythmia syndromes such as long QT syndrome type 3 (LQTS), Brugada syndrome (BrS), sick sinus syndrome (SSS), cardiac conduction diseases (CCD) and possibly dilated cardiomyopathy (DCM). In most of these inherited cardiac arrhythmia syndromes the phenotypical expression may range from asymptomatic phenotypes to sudden cardiac death (SCD). A 16-year-old female died during sleep. Autopsy did not reveal any explanation for her death and a genetic analysis was performed. A variant in the SCN5A gene (E1053K) that was previously described as disease causing was detected. Family members are carriers of the same E1053K variant, some even in a homozygous state, but surprisingly did not exhibit any pathological cardiac phenotype. Due to the lack of genotype-phenotype correlation further genetic studies were performed. A novel deletion in the promoter region of SCN5A was identified in the sudden death victim but was absent in other family members. These findings demonstrate the difficulties in interpreting the results of a family-based genetic screening and underline the phenotypic variability of SCN5A mutations.
Collapse
Affiliation(s)
- T Jenewein
- Institute of Legal Medicine, University of Frankfurt, Frankfurt am Main, Germany
| | - B M Beckmann
- University Hospital Munich, Department of Medicine I, Ludwig Maximilians University, Munich, Germany; German Cardiovascular Research Center (DZHK), Partner Site: Munich Heart Alliance, Munich, Germany
| | - S Rose
- Institute of Legal Medicine, University of Frankfurt, Frankfurt am Main, Germany
| | - H H Osterhues
- District Hospital Loerrach, Medical Clinic, Loerrach, Germany
| | - U Schmidt
- Institute of Legal Medicine, University Hospital of Freiburg, Freiburg, Germany
| | - C Wolpert
- Klinik für Innere Medizin, Cardiology Klinikum Ludwigsburg, Ludwigsburg, Germany
| | - P Miny
- Medical Genetics, University Hospital Basel, Basel, Switzerland
| | - C Marschall
- Center of Human Genetics and Laboratory Diagnostics, Martinsried, Germany
| | - M Alders
- Department of Clinical Genetics, Amsterdam Medical Center, Amsterdam, The Netherlands
| | - C R Bezzina
- Heart Centre, Department of Clinical and Experimental Cardiology, Amsterdam Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - A A M Wilde
- Heart Centre, Department of Clinical and Experimental Cardiology, Amsterdam Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, Kingdom of Saudi Arabia
| | - S Kääb
- University Hospital Munich, Department of Medicine I, Ludwig Maximilians University, Munich, Germany; German Cardiovascular Research Center (DZHK), Partner Site: Munich Heart Alliance, Munich, Germany
| | - S Kauferstein
- Institute of Legal Medicine, University of Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
31
|
Regulation of TFPIα expression by miR-27a/b-3p in human endothelial cells under normal conditions and in response to androgens. Sci Rep 2017; 7:43500. [PMID: 28240250 PMCID: PMC5327489 DOI: 10.1038/srep43500] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/26/2017] [Indexed: 12/29/2022] Open
Abstract
The increased risk of cardiovascular events in older men is multifactorial, but the significant reduction of testosterone levels has been involved. As this hormone regulates the expression of TFPI by unknown mechanisms, we aimed to evaluate the role of miRNAs in the regulation of TFPIα expression under normal conditions and in response to androgens. In silico studies allowed the selection of 4 miRNAs as potential TFPIα regulators. Only miR-27a/b-3p significantly reduced TFPIα expression in two endothelial cell lines. Luciferase assays demonstrated a direct interaction between miR-27a/b-3p and TFPI 3′UTR. Ex vivo analysis of TFPI and miRNA levels in 74 HUVEC samples from healthy subjects, showed a significant and inverse correlation between TFPI and miR-27a-3p. Moreover, anticoagulant activity of TFPIα from cells supernatants decreased ~30% with miR-27a/b-3p and increased ~50% with anti-miR-27a/b-3p. Interestingly, treatment of EA.hy926 with a physiological dose of dihydrotestosterone (30 nM) significantly increased (~40%) TFPIα expression with a parallel decreased (~50%) of miR-27a/b-3p expression. In concordance, increased levels of miR-27a/b-3p normalized the up-regulation induced by testosterone. Our results suggest that testosterone is a hinge in miR-27/TFPIα regulation axis. Future studies are needed to investigate whether testosterone variations are involved in a miR-27/TFPIα dysregulation that could increase the cardiovascular risk.
Collapse
|
32
|
Aromolaran AS, Chahine M, Boutjdir M. Regulation of Cardiac Voltage-Gated Sodium Channel by Kinases: Roles of Protein Kinases A and C. Handb Exp Pharmacol 2017; 246:161-184. [PMID: 29032483 DOI: 10.1007/164_2017_53] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the heart, voltage-gated sodium (Nav) channel (Nav1.5) is defined by its pore-forming α-subunit and its auxiliary β-subunits, both of which are important for its critical contribution to the initiation and maintenance of the cardiac action potential (AP) that underlie normal heart rhythm. The physiological relevance of Nav1.5 is further marked by the fact that inherited or congenital mutations in Nav1.5 channel gene SCN5A lead to altered functional expression (including expression, trafficking, and current density), and are generally manifested in the form of distinct cardiac arrhythmic events, epilepsy, neuropathic pain, migraine, and neuromuscular disorders. However, despite significant advances in defining the pathophysiology of Nav1.5, the molecular mechanisms that underlie its regulation and contribution to cardiac disorders are poorly understood. It is rapidly becoming evident that the functional expression (localization, trafficking and gating) of Nav1.5 may be under modulation by post-translational modifications that are associated with phosphorylation. We review here the molecular basis of cardiac Na channel regulation by kinases (PKA and PKC) and the resulting functional consequences. Specifically, we discuss: (1) recent literature on the structural, molecular, and functional properties of cardiac Nav1.5 channels; (2) how these properties may be altered by phosphorylation in disease states underlain by congenital mutations in Nav1.5 channel and/or subunits such as long QT and Brugada syndromes. Our expectation is that understanding the roles of these distinct and complex phosphorylation processes on the functional expression of Nav1.5 is likely to provide crucial mechanistic insights into Na channel associated arrhythmogenic events and will facilitate the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Ademuyiwa S Aromolaran
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, USA
- Departments of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Mohamed Chahine
- CERVO Brain Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC, Canada
- Department of Medicine, Université Laval, Quebec City, QC, Canada
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, USA.
- Departments of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, USA.
- Department of Medicine, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
33
|
Sieira J, Brugada P. Management of Brugada Syndrome 2016: Should All High Risk Patients Receive an ICD? All High-Risk Patients Should Receive an Implantable Cardiac Defibrillator. Circ Arrhythm Electrophysiol 2016; 9:CIRCEP.116.004195. [PMID: 27906652 DOI: 10.1161/circep.116.004195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/26/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Juan Sieira
- From the Heart Rhythm Management Centre, UZ Brussel-VUB, Brussels, Belgium
| | - Pedro Brugada
- From the Heart Rhythm Management Centre, UZ Brussel-VUB, Brussels, Belgium.
| |
Collapse
|
34
|
Omar A, Zhou M, Berman A, Sorrentino RA, Yar N, Weintraub NL, Kim IM, Lei W, Tang Y. Genomic-based diagnosis of arrhythmia disease in a personalized medicine era. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2016; 1:497-504. [PMID: 28944294 PMCID: PMC5606339 DOI: 10.1080/23808993.2016.1264258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Although thousands of potentially disease-causing mutations have been identified in a handful of genes, the genetic heterogeneity has led to diagnostic confusions, stemming directly from the limitations in our arsenal of genetic tools. AREAS COVERED We discuss the genetic basis of cardiac ion channelopathies, the gaps in our knowledge and how Next-generation sequencing technology (NGS) and can be used to bridge them, and how induced pluripotent stem cell (iPSC) derived-cardiomyocytes can be used for drug discovery. EXPERT COMMENTARY Univariate, arrhythmogenic arrhythmias can explain some congenital arrhythmias, however, it is far from a comprehensive understanding of the complexity of many arrhythmias. Mutational screening is a critical step in personalized medicine and is critical to the management of patients with arrhythmias. The success of personalized medicine requires a more efficient way to identify a high number of genetic variants potentially implicated in cardiac arrhythmogenic diseases than traditional sequencing methods (eg, Sanger sequencing). Next-generation sequencing technology provides us with unprecedented opportunities to achieve high-throughput, rapid, and cost-effective detection of congenital arrhythmias in patients. Moreover, in personalized medicine era, IPSC derived-cardiomyocytes can be used as 'cardiac arrhythmia in a dish' model for drug discovery, and help us improve management of arrhythmias in patients by developing patient-specific drug therapies with target specificity.
Collapse
Affiliation(s)
- Abdullah Omar
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Mi Zhou
- Cardiac Surgery department, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Adam Berman
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Robert A. Sorrentino
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Neela Yar
- Purdue University, West Lafayette, IN, USA
| | - Neal L. Weintraub
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Il-man Kim
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Wei Lei
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yaoliang Tang
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
35
|
Abstract
Brugada syndrome is an inherited disease characterized by an increased risk of sudden cardiac death owing to ventricular arrhythmias in the absence of structural heart disease. Since the first description of the syndrome >20 years ago, considerable advances have been made in our understanding of the underlying mechanisms involved and the strategies to stratify at-risk patients. The development of repolarization-depolarization abnormalities in patients with Brugada syndrome can involve genetic alterations, abnormal neural crest cell migration, improper gap junctional communication, or connexome abnormalities. A common phenotype observed on the electrocardiogram of patients with Brugada syndrome might be the result of different pathophysiological mechanisms. Furthermore, risk stratification of this patient cohort is critical, and although some risk factors for Brugada syndrome have been frequently reported, several others remain unconfirmed. Current clinical guidelines offer recommendations for patients at high risk of developing sudden cardiac death, but the management of those at low risk has not yet been defined. In this Review, we discuss the proposed mechanisms that underlie the development of Brugada syndrome and the current risk stratification and therapeutic options available for these patients.
Collapse
Affiliation(s)
- Juan Sieira
- Heart Rhythm Management Centre, UZ Brussel-VUB, Brussels, Laarbeeklaan 101, 1090 Brussels, Belgium.,Cardiology Department, University Hospital Erasme, Route de Lennik 808, 1070 Brussels, Belgium
| | - Gregory Dendramis
- Heart Rhythm Management Centre, UZ Brussel-VUB, Brussels, Laarbeeklaan 101, 1090 Brussels, Belgium.,Cardiovascular Division, University Hospital "Paolo Giaccone", Via Del Vespro 127. 90127 Palermo, Italy
| | - Pedro Brugada
- Heart Rhythm Management Centre, UZ Brussel-VUB, Brussels, Laarbeeklaan 101, 1090 Brussels, Belgium
| |
Collapse
|
36
|
Safdar A, Saleem A, Tarnopolsky MA. The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nat Rev Endocrinol 2016; 12:504-17. [PMID: 27230949 DOI: 10.1038/nrendo.2016.76] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Endurance exercise-mediated multisystemic adaptations are known to mitigate metabolism-related disorders such as obesity and type 2 diabetes mellitus (T2DM). However, the underlying molecular mechanisms that promote crosstalk between organs and orchestrate the pro-metabolic effects of endurance exercise remain unclear. Exercise-induced release of peptides and nucleic acids from skeletal muscle and other organs (collectively termed 'exerkines') has been implicated in mediating these systemic adaptations. Given that the extracellular milieu is probably not a hospitable environment for labile exerkines, a lipid vehicle-based mode of delivery has originated over the course of evolution. Two types of extracellular vesicles, exosomes and microvesicles, have been shown to contain proteins and nucleic acids that participate in a variety of physiological and pathological processes. Exosomes, in particular, have been shown to facilitate the exchange of peptides, microRNA, mRNA and mitochondrial DNA between cells and tissues. Intriguingly, circulatory extracellular vesicle content increases in an intensity-dependant manner in response to endurance exercise. We propose that the systemic benefits of exercise are modulated by exosomes and/or microvesicles functioning in an autocrine, paracrine and/or endocrine manner. Furthermore, we posit that native or modified exosomes, and/or microvesicles enriched with exerkines will have therapeutic utility in the treatment of obesity and T2DM.
Collapse
Affiliation(s)
- Adeel Safdar
- Department of Pediatrics, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | - Ayesha Saleem
- Department of Pediatrics, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
37
|
Enriquez A, Antzelevitch C, Bismah V, Baranchuk A. Atrial fibrillation in inherited cardiac channelopathies: From mechanisms to management. Heart Rhythm 2016; 13:1878-84. [DOI: 10.1016/j.hrthm.2016.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Indexed: 10/21/2022]
|
38
|
Portero V, Le Scouarnec S, Es-Salah-Lamoureux Z, Burel S, Gourraud JB, Bonnaud S, Lindenbaum P, Simonet F, Violleau J, Baron E, Moreau E, Scott C, Chatel S, Loussouarn G, O'Hara T, Mabo P, Dina C, Le Marec H, Schott JJ, Probst V, Baró I, Marionneau C, Charpentier F, Redon R. Dysfunction of the Voltage-Gated K+ Channel β2 Subunit in a Familial Case of Brugada Syndrome. J Am Heart Assoc 2016; 5:JAHA.115.003122. [PMID: 27287695 PMCID: PMC4937261 DOI: 10.1161/jaha.115.003122] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The Brugada syndrome is an inherited cardiac arrhythmia associated with high risk of sudden death. Although 20% of patients with Brugada syndrome carry mutations in SCN5A, the molecular mechanisms underlying this condition are still largely unknown. METHODS AND RESULTS We combined whole-exome sequencing and linkage analysis to identify the genetic variant likely causing Brugada syndrome in a pedigree for which SCN5A mutations had been excluded. This approach identified 6 genetic variants cosegregating with the Brugada electrocardiographic pattern within the pedigree. In silico gene prioritization pointed to 1 variant residing in KCNAB2, which encodes the voltage-gated K(+) channel β2-subunit (Kvβ2-R12Q). Kvβ2 is widely expressed in the human heart and has been shown to interact with the fast transient outward K(+) channel subunit Kv4.3, increasing its current density. By targeted sequencing of the KCNAB2 gene in 167 unrelated patients with Brugada syndrome, we found 2 additional rare missense variants (L13F and V114I). We then investigated the physiological effects of the 3 KCNAB2 variants by using cellular electrophysiology and biochemistry. Patch-clamp experiments performed in COS-7 cells expressing both Kv4.3 and Kvβ2 revealed a significant increase in the current density in presence of the R12Q and L13F Kvβ2 mutants. Although biotinylation assays showed no differences in the expression of Kv4.3, the total and submembrane expression of Kvβ2-R12Q were significantly increased in comparison with wild-type Kvβ2. CONCLUSIONS Altogether, our results indicate that Kvβ2 dysfunction can contribute to the Brugada electrocardiographic pattern.
Collapse
Affiliation(s)
- Vincent Portero
- INSERM, UMR 1087, l'Institut du Thorax, Nantes, France CNRS, UMR 6291, Nantes, France Université de Nantes, Nantes, France
| | - Solena Le Scouarnec
- INSERM, UMR 1087, l'Institut du Thorax, Nantes, France CNRS, UMR 6291, Nantes, France Université de Nantes, Nantes, France The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Zeineb Es-Salah-Lamoureux
- INSERM, UMR 1087, l'Institut du Thorax, Nantes, France CNRS, UMR 6291, Nantes, France Université de Nantes, Nantes, France
| | - Sophie Burel
- INSERM, UMR 1087, l'Institut du Thorax, Nantes, France CNRS, UMR 6291, Nantes, France Université de Nantes, Nantes, France
| | - Jean-Baptiste Gourraud
- INSERM, UMR 1087, l'Institut du Thorax, Nantes, France CNRS, UMR 6291, Nantes, France Université de Nantes, Nantes, France CHU Nantes, l'Institut du Thorax, Service de Cardiologie, Nantes, France
| | - Stéphanie Bonnaud
- INSERM, UMR 1087, l'Institut du Thorax, Nantes, France CNRS, UMR 6291, Nantes, France Université de Nantes, Nantes, France CHU Nantes, l'Institut du Thorax, Service de Cardiologie, Nantes, France
| | - Pierre Lindenbaum
- INSERM, UMR 1087, l'Institut du Thorax, Nantes, France CNRS, UMR 6291, Nantes, France Université de Nantes, Nantes, France CHU Nantes, l'Institut du Thorax, Service de Cardiologie, Nantes, France
| | - Floriane Simonet
- INSERM, UMR 1087, l'Institut du Thorax, Nantes, France CNRS, UMR 6291, Nantes, France Université de Nantes, Nantes, France
| | - Jade Violleau
- INSERM, UMR 1087, l'Institut du Thorax, Nantes, France CNRS, UMR 6291, Nantes, France Université de Nantes, Nantes, France CHU Nantes, l'Institut du Thorax, Service de Cardiologie, Nantes, France
| | - Estelle Baron
- INSERM, UMR 1087, l'Institut du Thorax, Nantes, France CNRS, UMR 6291, Nantes, France Université de Nantes, Nantes, France
| | | | - Carol Scott
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Stéphanie Chatel
- CHU Nantes, l'Institut du Thorax, Service de Cardiologie, Nantes, France
| | - Gildas Loussouarn
- INSERM, UMR 1087, l'Institut du Thorax, Nantes, France CNRS, UMR 6291, Nantes, France Université de Nantes, Nantes, France
| | | | | | - Christian Dina
- INSERM, UMR 1087, l'Institut du Thorax, Nantes, France CNRS, UMR 6291, Nantes, France Université de Nantes, Nantes, France CHU Nantes, l'Institut du Thorax, Service de Cardiologie, Nantes, France
| | - Hervé Le Marec
- INSERM, UMR 1087, l'Institut du Thorax, Nantes, France CNRS, UMR 6291, Nantes, France Université de Nantes, Nantes, France CHU Nantes, l'Institut du Thorax, Service de Cardiologie, Nantes, France
| | - Jean-Jacques Schott
- INSERM, UMR 1087, l'Institut du Thorax, Nantes, France CNRS, UMR 6291, Nantes, France Université de Nantes, Nantes, France CHU Nantes, l'Institut du Thorax, Service de Cardiologie, Nantes, France
| | - Vincent Probst
- INSERM, UMR 1087, l'Institut du Thorax, Nantes, France CNRS, UMR 6291, Nantes, France Université de Nantes, Nantes, France CHU Nantes, l'Institut du Thorax, Service de Cardiologie, Nantes, France
| | - Isabelle Baró
- INSERM, UMR 1087, l'Institut du Thorax, Nantes, France CNRS, UMR 6291, Nantes, France Université de Nantes, Nantes, France
| | - Céline Marionneau
- INSERM, UMR 1087, l'Institut du Thorax, Nantes, France CNRS, UMR 6291, Nantes, France Université de Nantes, Nantes, France
| | - Flavien Charpentier
- INSERM, UMR 1087, l'Institut du Thorax, Nantes, France CNRS, UMR 6291, Nantes, France Université de Nantes, Nantes, France CHU Nantes, l'Institut du Thorax, Service de Cardiologie, Nantes, France
| | - Richard Redon
- INSERM, UMR 1087, l'Institut du Thorax, Nantes, France CNRS, UMR 6291, Nantes, France Université de Nantes, Nantes, France CHU Nantes, l'Institut du Thorax, Service de Cardiologie, Nantes, France
| |
Collapse
|
39
|
Abstract
Sudden cardiac death (SCD) is defined by the World Health Organization (WHO) as death within 1 h of symptom onset (witnessed) or within 24 h of being observed alive and symptom free (unwitnessed). It affects more than 3 million people annually worldwide and affects approximately 1/1000 people each year in the USA. Familial studies of syndromes with Mendelian inheritance, candidate genes analyses, and genome-wide association studies (GWAS) have helped our understanding of the genetics of SCD. We will review the genetics of arrhythmogenic hereditary syndromes with Mendelian inheritance from familial studies with structural heart disease (hypertrophic cardiomyopathy, dilated cardiomyopathy, and arrhythmogenic cardiomyopathy) as well as primary electrical causes (long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, and short QT syndrome). In addition, we will review the genetics of intermediate phenotypes for SCD such as coronary artery disease and electrocardiographic variables (QT interval, QRS duration, and RR interval). Finally, we will review rare and common variants that are associated with SCD in the general population and were identified from candidate gene analyses and GWAS. Our understanding of the genetics of SCD will improve by the use of next-generation sequencing/whole-exome sequencing as well as whole-genome sequencing which have the potential to discover unsuspected common and rare genetic variants that might be associated with SCD.
Collapse
|
40
|
Broendberg AK, Pedersen LN, Nielsen JC, Jensen HK. Repeated molecular genetic analysis in Brugada syndrome revealed a novel disease-associated large deletion in the SCN5A gene. HeartRhythm Case Rep 2016; 2:261-264. [PMID: 28491684 PMCID: PMC5419769 DOI: 10.1016/j.hrcr.2016.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
41
|
Abstract
Brugada syndrome might stay undetected in patients until surviving cardiac arrest. Despite the prominent advances in exploring the disease in the past 2 decades, many questions remain unanswered and the controversies continue. Despite all mutations identified to be associated with the disease, two-thirds of cases have a negative genetic test. Future studies should be more directed on modulating factors and their impact on patients' risk for sudden death to help physicians in risk stratifying their patients and optimally implementing an implantable cardioverter defibrillator to prevent sudden cardiac death.
Collapse
Affiliation(s)
- Marwan M Refaat
- Cardiac Electrophysiology, Cardiology, Department of Internal Medicine, American University of Beirut Faculty of Medicine and Medical Center, 3 Dag Hammarskjold Plaza, 8th Floor, New York, NY 10017, USA; Department of Biochemistry and Molecular Genetics, American University of Beirut Faculty of Medicine and Medical Center, 3 Dag Hammarskjold Plaza, 8th Floor, New York, NY 10017, USA; Department of Biochemistry and Molecular Genetics, American University of Beirut Medical Center, Beirut, Lebanon; Cardiology Division, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
| | - Mostafa Hotait
- Cardiology Division, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Melvin Scheinman
- Division of Cardiology, Department of Medicine, University of California San Francisco Medical Center, San Francisco, CA, USA
| |
Collapse
|
42
|
The global distribution of the p.R1193Q polymorphism in the SCN5A gene. Leg Med (Tokyo) 2016; 19:72-6. [DOI: 10.1016/j.legalmed.2015.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 11/21/2022]
|
43
|
Loussouarn G, Sternberg D, Nicole S, Marionneau C, Le Bouffant F, Toumaniantz G, Barc J, Malak OA, Fressart V, Péréon Y, Baró I, Charpentier F. Physiological and Pathophysiological Insights of Nav1.4 and Nav1.5 Comparison. Front Pharmacol 2016; 6:314. [PMID: 26834636 PMCID: PMC4712308 DOI: 10.3389/fphar.2015.00314] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/21/2015] [Indexed: 12/19/2022] Open
Abstract
Mutations in Nav1.4 and Nav1.5 α-subunits have been associated with muscular and cardiac channelopathies, respectively. Despite intense research on the structure and function of these channels, a lot of information is still missing to delineate the various physiological and pathophysiological processes underlying their activity at the molecular level. Nav1.4 and Nav1.5 sequences are similar, suggesting structural and functional homologies between the two orthologous channels. This also suggests that any characteristics described for one channel subunit may shed light on the properties of the counterpart channel subunit. In this review article, after a brief clinical description of the muscular and cardiac channelopathies related to Nav1.4 and Nav1.5 mutations, respectively, we compare the knowledge accumulated in different aspects of the expression and function of Nav1.4 and Nav1.5 α-subunits: the regulation of the two encoding genes (SCN4A and SCN5A), the associated/regulatory proteins and at last, the functional effect of the same missense mutations detected in Nav1.4 and Nav1.5. First, it appears that more is known on Nav1.5 expression and accessory proteins. Because of the high homologies of Nav1.5 binding sites and equivalent Nav1.4 sites, Nav1.5-related results may guide future investigations on Nav1.4. Second, the analysis of the same missense mutations in Nav1.4 and Nav1.5 revealed intriguing similarities regarding their effects on membrane excitability and alteration in channel biophysics. We believe that such comparison may bring new cues to the physiopathology of cardiac and muscular diseases.
Collapse
Affiliation(s)
- Gildas Loussouarn
- Institut National de la Santé et de la Recherche Médicale, UMR 1087, l'Institut du ThoraxNantes, France; Centre National de la Recherche Scientifique, UMR 6291Nantes, France; Université de NantesNantes, France
| | - Damien Sternberg
- Institut National de la Santé et de la Recherche Médicale, U1127Paris, France; Sorbonne Universités, Université Pierre-et-Marie-Curie, UMR S1127Paris, France; Centre National de la Recherche Scientifique, UMR 7225Paris, France; Institut du Cerveau et de la Moelle Épinière, ICMParis, France; Assistance Publique - Hôpitaux de Paris (AP-HP), Centres de Référence des Canalopathies Musculaires et des Maladies Neuro-musculaires Paris-EstParis, France; Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital de la Pitié Salpêtrière, Service de Biochimie Métabolique, Unité de Cardiogénétique et MyogénétiqueParis, France
| | - Sophie Nicole
- Institut National de la Santé et de la Recherche Médicale, U1127Paris, France; Sorbonne Universités, Université Pierre-et-Marie-Curie, UMR S1127Paris, France; Centre National de la Recherche Scientifique, UMR 7225Paris, France; Institut du Cerveau et de la Moelle Épinière, ICMParis, France
| | - Céline Marionneau
- Institut National de la Santé et de la Recherche Médicale, UMR 1087, l'Institut du ThoraxNantes, France; Centre National de la Recherche Scientifique, UMR 6291Nantes, France; Université de NantesNantes, France
| | - Francoise Le Bouffant
- Institut National de la Santé et de la Recherche Médicale, UMR 1087, l'Institut du ThoraxNantes, France; Centre National de la Recherche Scientifique, UMR 6291Nantes, France; Université de NantesNantes, France
| | - Gilles Toumaniantz
- Institut National de la Santé et de la Recherche Médicale, UMR 1087, l'Institut du ThoraxNantes, France; Centre National de la Recherche Scientifique, UMR 6291Nantes, France; Université de NantesNantes, France
| | - Julien Barc
- Institut National de la Santé et de la Recherche Médicale, UMR 1087, l'Institut du ThoraxNantes, France; Centre National de la Recherche Scientifique, UMR 6291Nantes, France; Université de NantesNantes, France
| | - Olfat A Malak
- Institut National de la Santé et de la Recherche Médicale, UMR 1087, l'Institut du ThoraxNantes, France; Centre National de la Recherche Scientifique, UMR 6291Nantes, France; Université de NantesNantes, France
| | - Véronique Fressart
- Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital de la Pitié Salpêtrière, Service de Biochimie Métabolique, Unité de Cardiogénétique et Myogénétique Paris, France
| | - Yann Péréon
- Centre Hospitalier Universitaire de Nantes, Centre de Référence Maladies Neuromusculaires Nantes-AngersNantes, France; Atlantic Gene Therapies - Biotherapy Institute for Rare DiseasesNantes, France
| | - Isabelle Baró
- Institut National de la Santé et de la Recherche Médicale, UMR 1087, l'Institut du ThoraxNantes, France; Centre National de la Recherche Scientifique, UMR 6291Nantes, France; Université de NantesNantes, France
| | - Flavien Charpentier
- Institut National de la Santé et de la Recherche Médicale, UMR 1087, l'Institut du ThoraxNantes, France; Centre National de la Recherche Scientifique, UMR 6291Nantes, France; Université de NantesNantes, France; Centre Hospitalier Universitaire de Nantes, l'Institut du ThoraxNantes, France
| |
Collapse
|
44
|
Stocchi L, Polidori E, Potenza L, Rocchi MBL, Calcabrini C, Busacca P, Capalbo M, Potenza D, Amati F, Mango R, Romeo F, Novelli G, Stocchi V. Mutational analysis of mitochondrial DNA in Brugada syndrome. Cardiovasc Pathol 2015; 25:47-54. [PMID: 26549652 DOI: 10.1016/j.carpath.2015.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Brugada syndrome (BrS) is a primary electrical disease associated with an increased risk of sudden cardiac death due to ventricular fibrillation. This pathology has nuclear heterogeneous genetic origins, and at present, molecular diagnostic tests on nuclear DNA cover only 30% of BrS patients. The aim of this study was to assess the possible involvement of mitochondrial (mt) DNA variants in BrS since their etiological role in several cardiomyopathies has already been described. METHODS AND RESULTS The whole mt genome of BrS patients was sequenced and analyzed. A specific mtDNA mutation responsible for BrS can be excluded, but BrS patient d-loop was found to be more polymorphic than that of control cases (P=0.003). Moreover, there appears to be an association between patients with the highest number of variants (n>20) and four mt Single Nucleotide Polymorphism (SNPs) (T4216C, A11251G, C15452A, T16126C) and the most severe BrS phenotype (P=0.002). CONCLUSIONS The high substitution rate found in BrS patient mtDNA is unlikely to be the primary cause of the disease, but it could represent an important cofactor in the manifestation of the BrS phenotype. Evidence suggesting that a specific mtDNA allelic combination and a high number of mtDNA SNPs may be associated with more severe cases of BrS represents the starting point for further cohort studies aiming to test whether this mt genetic condition could be a genetic modulator of the BrS clinical phenotype.
Collapse
Affiliation(s)
- Laura Stocchi
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Emanuela Polidori
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Italy
| | - Lucia Potenza
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Italy.
| | | | - Cinzia Calcabrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Italy
| | - Paolo Busacca
- Complex Operative Unit of Cardiology (UOC),Santa Maria della Misericordia Hospital, Urbino, Italy
| | | | - Domenico Potenza
- Complex Operative Unit of Cardiology (UOC), IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Francesca Amati
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Ruggiero Mango
- Complex Operative Unit of Cardiology (UOC), Polyclinic Tor Vergata, Rome, Italy
| | - Francesco Romeo
- Complex Operative Unit of Cardiology (UOC), Polyclinic Tor Vergata, Rome, Italy; Department of System Medicine, University of Tor Vergata, Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy; St. Peter Fatebenefratelli Hospital, Rome, Italy; Department of Internal Medicine, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Vilberto Stocchi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Italy
| |
Collapse
|
45
|
Peeters U, Scornik F, Riuró H, Pérez G, Komurcu-Bayrak E, Van Malderen S, Pappaert G, Tarradas A, Pagans S, Daneels D, Breckpot K, Brugada P, Bonduelle M, Brugada R, Van Dooren S. Contribution of Cardiac Sodium Channel β-Subunit Variants to Brugada Syndrome. Circ J 2015; 79:2118-29. [PMID: 26179811 DOI: 10.1253/circj.cj-15-0164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Brugada syndrome (BrS) is an inheritable cardiac disease associated with syncope, malignant ventricular arrhythmias and sudden cardiac death. The largest proportion of mutations in BrS is found in the SCN5A gene encoding the α-subunit of cardiac sodium channels (Nav1.5). Causal SCN5A mutations are present in 18-30% of BrS patients. The additional genetic diagnostic yield of variants in cardiac sodium channel β-subunits in BrS patients was explored and functional studies on 3 novel candidate variants were performed. METHODS AND RESULTS TheSCN1B-SCN4B genes were screened, which encode the 5 sodium channel β-subunits, in a SCN5A negative BrS population (n=74). Five novel variants were detected; in silico pathogenicity prediction classified 4 variants as possibly disease causing. Three variants were selected for functional study. These variants caused only limited alterations of Nav1.5 function. Next generation sequencing of a panel of 88 arrhythmia genes could not identify other major causal mutations. CONCLUSIONS It was hypothesized that the studied variants are not the primary cause of BrS in these patients. However, because small functional effects of these β-subunit variants can be discriminated, they might contribute to the BrS phenotype and be considered a risk factor. The existence of these risk factors can give an explanation to the reduced penetrance and variable expressivity seen in this syndrome. We therefore recommend including the SCN1-4B genes in a next generation sequencing-based gene panel.
Collapse
Affiliation(s)
- Uschi Peeters
- Centre for Medical Genetics, Reproduction and Genetics; Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Selga E, Campuzano O, Pinsach-Abuin M, Pérez-Serra A, Mademont-Soler I, Riuró H, Picó F, Coll M, Iglesias A, Pagans S, Sarquella-Brugada G, Berne P, Benito B, Brugada J, Porres JM, López Zea M, Castro-Urda V, Fernández-Lozano I, Brugada R. Comprehensive Genetic Characterization of a Spanish Brugada Syndrome Cohort. PLoS One 2015; 10:e0132888. [PMID: 26173111 PMCID: PMC4501715 DOI: 10.1371/journal.pone.0132888] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/22/2015] [Indexed: 12/12/2022] Open
Abstract
Background Brugada syndrome (BrS) is a rare genetic cardiac arrhythmia that can lead to sudden cardiac death in patients with a structurally normal heart. Genetic variations in SCN5A can be identified in approximately 20-25% of BrS cases. The aim of our work was to determine the spectrum and prevalence of genetic variations in a Spanish cohort diagnosed with BrS. Methodology/Principal Findings We directly sequenced fourteen genes reported to be associated with BrS in 55 unrelated patients clinically diagnosed. Our genetic screening allowed the identification of 61 genetic variants. Of them, 20 potentially pathogenic variations were found in 18 of the 55 patients (32.7% of the patients, 83.3% males). Nineteen of them were located in SCN5A, and had either been previously reported as pathogenic variations or had a potentially pathogenic effect. Regarding the sequencing of the minority genes, we discovered a potentially pathogenic variation in SCN2B that was described to alter sodium current, and one nonsense variant of unknown significance in RANGRF. In addition, we also identified 40 single nucleotide variations which were either synonymous variants (four of them had not been reported yet) or common genetic variants. We next performed MLPA analysis of SCN5A for the 37 patients without an identified genetic variation, and no major rearrangements were detected. Additionally, we show that being at the 30-50 years range or exhibiting symptoms are factors for an increased potentially pathogenic variation discovery yield. Conclusions In summary, the present study is the first comprehensive genetic evaluation of 14 BrS-susceptibility genes and MLPA of SCN5A in a Spanish BrS cohort. The mean pathogenic variation discovery yield is higher than that described for other European BrS cohorts (32.7% vs 20-25%, respectively), and is even higher for patients in the 30-50 years age range.
Collapse
Affiliation(s)
- Elisabet Selga
- Cardiovascular Genetics Centre, Institut d’Investigació Biomèdica de Girona (IDIBGi), Girona, Spain and Medical School, Universitat de Girona (UdG), Girona, Spain
| | - Oscar Campuzano
- Cardiovascular Genetics Centre, Institut d’Investigació Biomèdica de Girona (IDIBGi), Girona, Spain and Medical School, Universitat de Girona (UdG), Girona, Spain
| | - Mel·lina Pinsach-Abuin
- Cardiovascular Genetics Centre, Institut d’Investigació Biomèdica de Girona (IDIBGi), Girona, Spain and Medical School, Universitat de Girona (UdG), Girona, Spain
| | - Alexandra Pérez-Serra
- Cardiovascular Genetics Centre, Institut d’Investigació Biomèdica de Girona (IDIBGi), Girona, Spain and Medical School, Universitat de Girona (UdG), Girona, Spain
| | - Irene Mademont-Soler
- Cardiovascular Genetics Centre, Institut d’Investigació Biomèdica de Girona (IDIBGi), Girona, Spain and Medical School, Universitat de Girona (UdG), Girona, Spain
| | - Helena Riuró
- Cardiovascular Genetics Centre, Institut d’Investigació Biomèdica de Girona (IDIBGi), Girona, Spain and Medical School, Universitat de Girona (UdG), Girona, Spain
| | - Ferran Picó
- Cardiovascular Genetics Centre, Institut d’Investigació Biomèdica de Girona (IDIBGi), Girona, Spain and Medical School, Universitat de Girona (UdG), Girona, Spain
| | - Mònica Coll
- Cardiovascular Genetics Centre, Institut d’Investigació Biomèdica de Girona (IDIBGi), Girona, Spain and Medical School, Universitat de Girona (UdG), Girona, Spain
| | - Anna Iglesias
- Cardiovascular Genetics Centre, Institut d’Investigació Biomèdica de Girona (IDIBGi), Girona, Spain and Medical School, Universitat de Girona (UdG), Girona, Spain
| | - Sara Pagans
- Cardiovascular Genetics Centre, Institut d’Investigació Biomèdica de Girona (IDIBGi), Girona, Spain and Medical School, Universitat de Girona (UdG), Girona, Spain
| | - Georgia Sarquella-Brugada
- Paediatric Arrhythmia Unit, Cardiology Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Paola Berne
- Arrhythmia Unit, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Begoña Benito
- Arrhythmia Unit, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Josep Brugada
- Arrhythmia Unit, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
| | - José M. Porres
- Arrhythmia Unit, Hospital Universitario Donostia, San Sebastian, Spain
| | | | | | | | - Ramon Brugada
- Cardiovascular Genetics Centre, Institut d’Investigació Biomèdica de Girona (IDIBGi), Girona, Spain and Medical School, Universitat de Girona (UdG), Girona, Spain
- Hospital Josep Trueta, Girona, Spain
- * E-mail:
| |
Collapse
|
47
|
Bissay V, Van Malderen SCH, Keymolen K, Lissens W, Peeters U, Daneels D, Jansen AC, Pappaert G, Brugada P, De Keyser J, Van Dooren S. SCN4A variants and Brugada syndrome: phenotypic and genotypic overlap between cardiac and skeletal muscle sodium channelopathies. Eur J Hum Genet 2015; 24:400-7. [PMID: 26036855 DOI: 10.1038/ejhg.2015.125] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 04/03/2015] [Accepted: 05/06/2015] [Indexed: 12/19/2022] Open
Abstract
SCN5A mutations involving the α-subunit of the cardiac voltage-gated muscle sodium channel (NaV1.5) result in different cardiac channelopathies with an autosomal-dominant inheritance such as Brugada syndrome. On the other hand, mutations in SCN4A encoding the α-subunit of the skeletal voltage-gated sodium channel (NaV1.4) cause non-dystrophic myotonia and/or periodic paralysis. In this study, we investigated whether cardiac arrhythmias or channelopathies such as Brugada syndrome can be part of the clinical phenotype associated with SCN4A variants and whether patients with Brugada syndrome present with non-dystrophic myotonia or periodic paralysis and related gene mutations. We therefore screened seven families with different SCN4A variants and non-dystrophic myotonia phenotypes for Brugada syndrome and performed a neurological, neurophysiological and genetic work-up in 107 Brugada families. In the families with an SCN4A-associated non-dystrophic myotonia, three patients had a clinical diagnosis of Brugada syndrome, whereas we found a remarkably high prevalence of myotonic features involving different genes in the families with Brugada syndrome. One Brugada family carried an SCN4A variant that is predicted to probably affect function, one family suffered from a not genetically confirmed non-dystrophic myotonia, one family was diagnosed with myotonic dystrophy (DMPK gene) and one family had a Thomsen disease myotonia congenita (CLCN1 variant that affects function). Our findings and data suggest a possible involvement of SCN4A variants in the pathophysiological mechanism underlying the development of a spontaneous or drug-induced type 1 electrocardiographic pattern and the occurrence of malignant arrhythmias in some patients with Brugada syndrome.
Collapse
Affiliation(s)
- Véronique Bissay
- Department of Neurology, Center for Neurosciences, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Sophie C H Van Malderen
- Department of Cardiology, Heart Rhythm Management Center, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Department of Electrophysiology, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| | - Kathelijn Keymolen
- Center for Medical Genetics, Reproduction and Genetics; Genetics and Regenerative Medicine, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Willy Lissens
- Center for Medical Genetics, Reproduction and Genetics; Genetics and Regenerative Medicine, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Uschi Peeters
- Center for Medical Genetics, Reproduction and Genetics; Genetics and Regenerative Medicine, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Dorien Daneels
- Center for Medical Genetics, Reproduction and Genetics; Genetics and Regenerative Medicine, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Anna C Jansen
- Pediatric Neurology Unit, Department of Pediatrics, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Gudrun Pappaert
- Department of Cardiology, Heart Rhythm Management Center, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Pedro Brugada
- Department of Cardiology, Heart Rhythm Management Center, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jacques De Keyser
- Department of Neurology, Center for Neurosciences, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands
| | - Sonia Van Dooren
- Center for Medical Genetics, Reproduction and Genetics; Genetics and Regenerative Medicine, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
48
|
Brugada R, Campuzano O, Sarquella-Brugada G, Brugada J, Brugada P. Brugada syndrome. Methodist Debakey Cardiovasc J 2015; 10:25-8. [PMID: 24932359 DOI: 10.14797/mdcj-10-1-25] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Brugada syndrome is a rare cardiac arrhythmia characterized by electrocardiographic right bundle branch block and persistent ST-segment elevation in the right precordial leads. It is associated with ventricular fibrillation and a high risk for sudden cardiac death, predominantly in younger males with structurally normal hearts. Patients can remain asymptomatic, and electrocardiographic patterns can occur both spontaneously or after pharmacological induction. So far, several pathogenic genes have been identified as associated with the disease, but SCN5A is the most prevalent one. Two consensus reports to define the diagnostic criteria, risk stratification, and management of patients have been published in the last few years. This brief review focuses on the recent clinical diagnosis, genetic basis, and advances in pharmacological treatment of Brugada syndrome.
Collapse
Affiliation(s)
| | | | | | - Josep Brugada
- Hospital Clinic Barcelona, University of Barcelona, Barcelona, Spain
| | - Pedro Brugada
- UZ Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
49
|
Saber S, Amarouch MY, Fazelifar AF, Haghjoo M, Emkanjoo Z, Alizadeh A, Houshmand M, Gavrilenko AV, Abriel H, Zaklyazminskaya EV. Complex genetic background in a large family with Brugada syndrome. Physiol Rep 2015; 3:3/1/e12256. [PMID: 25626866 PMCID: PMC4387754 DOI: 10.14814/phy2.12256] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Brugada syndrome (BrS) is an inherited arrhythmia characterized by ST-segment elevation in V1-V3 leads and negative T wave on standard ECG. BrS patients are at risk of sudden cardiac death (SCD) due to ventricular tachyarrhythmia. At least 17 genes have been proposed to be linked to BrS, although recent findings suggested a polygenic background. Mutations in SCN5A, the gene coding for the cardiac sodium channel Nav1.5, have been found in 15-30% of index cases. Here, we present the results of clinical, genetic, and expression studies of a large Iranian family with BrS carrying a novel genetic variant (p.P1506S) in SCN5A. By performing whole-cell patch-clamp experiments using HEK293 cells expressing wild-type (WT) or p.P1506S Nav1.5 channels, hyperpolarizing shift of the availability curve, depolarizing shift of the activation curve, and hastening of the fast inactivation process were observed. These mutant-induced alterations lead to a loss of function of Nav1.5 and thus suggest that the p.P1506S variant is pathogenic. In addition, cascade familial screening found a family member with BrS who did not carry the p.P1506S mutation. Additional next generation sequencing analyses revealed the p.R25W mutation in KCNH2 gene in SCN5A-negative BrS patients. These findings illustrate the complex genetic background of BrS found in this family and the possible pathogenic role of a new SCN5A genetic variant.
Collapse
Affiliation(s)
- Siamak Saber
- I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mohamed-Yassine Amarouch
- Environment & Natural Substances Team, University of Sidi Mohamed Ben Abdellah-Fes, Multidisciplinary Faculty of Taza, Taza, Morocco
| | - Amir-Farjam Fazelifar
- Cardiac Electrophysiology Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Haghjoo
- Cardiac Electrophysiology Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Emkanjoo
- Cardiac Electrophysiology Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfath Alizadeh
- Cardiac Electrophysiology Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Massoud Houshmand
- Medical Genetics Department, National Institute for Genetic Engineering & Biotechnology, Tehran, Iran
| | - Alexander V Gavrilenko
- I. M. Sechenov First Moscow State Medical University, Moscow, Russia Petrovsky Russian Research Center of Surgery, RAMS, Moscow, Russia
| | - Hugues Abriel
- Department of Clinical Research, Ion Channels and Channelopathies, University of Bern, Bern, Switzerland
| | - Elena V Zaklyazminskaya
- I. M. Sechenov First Moscow State Medical University, Moscow, Russia Petrovsky Russian Research Center of Surgery, RAMS, Moscow, Russia
| |
Collapse
|
50
|
SCN1B gene variants in Brugada Syndrome: a study of 145 SCN5A-negative patients. Sci Rep 2014; 4:6470. [PMID: 25253298 PMCID: PMC5377327 DOI: 10.1038/srep06470] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/14/2014] [Indexed: 11/08/2022] Open
Abstract
Brugada syndrome is characterised by a typical ECG with ST segment elevation in the right precordial leads. Individuals with this condition are susceptible to ventricular arrhythmias and sudden cardiac death. The principal gene responsible for this syndrome is SCN5A, which encodes the α-subunit of the Nav1.5 voltage-gated sodium channel. Mutations involving other genes have been increasingly reported, but their contribution to Brugada syndrome has been poorly investigated. Here we focused on the SCN1B gene, which encodes the β1-subunit of the voltage-gated sodium channel and its soluble β1b isoform. SCN1B mutations have been associated with Brugada syndrome as well as with other cardiac arrhythmias and familial epilepsy. In this study, we have analysed SCN1B exons (including the alternatively-spliced exon 3A) and 3'UTR in 145 unrelated SCN5A-negative patients from a single centre. We took special care to report all identified variants (including polymorphisms), following the current nomenclature guidelines and considering both isoforms. We found two known and two novel (and likely deleterious) SCN1B variants. We also found two novel changes with low evidence of pathogenicity. Our findings contribute more evidence regarding the occurrence of SCN1B variants in Brugada syndrome, albeit with a low prevalence, which is in agreement with previous reports.
Collapse
|