1
|
Yuan K, Zhang C, Pan X, Hu B, Zhang J, Yang G. Immunomodulatory metal-based biomaterials for cancer immunotherapy. J Control Release 2024; 375:249-268. [PMID: 39260573 DOI: 10.1016/j.jconrel.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Cancer immunotherapy, as an emerging cancer treatment approach, harnesses the patient's own immune system to effectively prevent tumor recurrence or metastasis. However, its clinical application has been significantly hindered by relatively low immune response rates. In recent years, metal-based biomaterials have been extensively studied as effective immunomodulators and potential tools for enhancing anti-tumor immune responses, enabling the reversal of immune suppression without inducing toxic side effects. This review introduces the classification of bioactive metal elements and summarizes their immune regulatory mechanisms. In addition, we discuss the immunomodulatory roles of biomaterials constructed from various metals, including aluminum, manganese, gold, calcium, zinc, iron, magnesium, and copper. More importantly, a systematic overview of their applications in enhancing immunotherapy is provided. Finally, the prospects and challenges of metal-based biomaterials with immunomodulatory functions in cancer immunotherapy are outlined.
Collapse
Affiliation(s)
- Kangzhi Yuan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Cai Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xinlu Pan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Bin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Junjun Zhang
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Institute of Radiotherapy & Oncology, Soochow University, Suzhou, Jiangsu 215004, China.
| | - Guangbao Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
2
|
Williams MD, Morgan JS, Bullock MT, Poovey CE, Wisniewski ME, Francisco JT, Barajas-Nunez JA, Hijazi AM, Theobald D, Sriramula S, Mansfield KD, Holland NA, Tulis DA. pH-sensing GPR68 inhibits vascular smooth muscle cell proliferation through Rap1A. Am J Physiol Heart Circ Physiol 2024; 327:H1210-H1229. [PMID: 39269448 PMCID: PMC11560072 DOI: 10.1152/ajpheart.00413.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
Phenotypic transformation of vascular smooth muscle (VSM) from a contractile state to a synthetic, proliferative state is a hallmark of cardiovascular disease (CVD). In CVD, diseased tissue often becomes acidic from altered cellular metabolism secondary to compromised blood flow, yet the contribution of local acid/base imbalance to the disease process has been historically overlooked. In this study, we examined the regulatory impact of the pH-sensing G protein-coupled receptor GPR68 on vascular smooth muscle (VSM) proliferation in vivo and in vitro in wild-type (WT) and GPR68 knockout (KO) male and female mice. Arterial injury reduced GPR68 expression in WT vessels and exaggerated medial wall remodeling in GPR68 KO vessels. In vitro, KO VSM cells showed increased cell-cycle progression and proliferation compared with WT VSM cells, and GPR68-inducing acidic exposure reduced proliferation in WT cells. mRNA and protein expression analyses revealed increased Rap1A in KO cells compared with WT cells, and RNA silencing of Rap1A reduced KO VSM cell proliferation. In sum, these findings support a growth-inhibitory capacity of pH-sensing GPR68 and suggest a mechanistic role for the small GTPase Rap1A in GPR68-mediated VSM growth control. These results shed light on GPR68 and its effector Rap1A as potential targets to combat pathological phenotypic switching and proliferation in VSM.NEW & NOTEWORTHY Extracellular acidosis remains an understudied feature of many pathologies. We examined a potential regulatory role for pH-sensing GPR68 in vascular smooth muscle (VSM) growth in the context of CVD. With in vivo and in vitro growth models with GPR68-deficient mice and GPR68 induction strategies, novel findings revealed capacity of GPR68 to attenuate growth through the small GTPase Rap1A. These observations highlight GPR68 and its effector Rap1A as possible therapeutic targets to combat pathological VSM growth.
Collapse
MESH Headings
- Animals
- Female
- Male
- Mice
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Hydrogen-Ion Concentration
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- rap1 GTP-Binding Proteins/metabolism
- rap1 GTP-Binding Proteins/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Signal Transduction
- Vascular Remodeling
Collapse
Affiliation(s)
- Madison D Williams
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Joshua S Morgan
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Michael T Bullock
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Cere E Poovey
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Michael E Wisniewski
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Jake T Francisco
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Jerry A Barajas-Nunez
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Amira M Hijazi
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Drew Theobald
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Srinivas Sriramula
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Kyle D Mansfield
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Nathan A Holland
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - David A Tulis
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| |
Collapse
|
3
|
Zhou Y, Zou P, Chen X, Chen P, Shi M, Lang J, Chen M. Overcoming Barriers in Photodynamic Therapy Harnessing Nanogenerators Strategies. Int J Biol Sci 2024; 20:5673-5694. [PMID: 39494340 PMCID: PMC11528466 DOI: 10.7150/ijbs.100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/03/2024] [Indexed: 11/05/2024] Open
Abstract
Photodynamic therapy (PDT) represents a targeted approach for cancer treatment that employs light and photosensitizers (PSs) to induce the generation of reactive oxygen species (ROS). However, PDT faces obstacles including insufficient PS localization, limited light penetration, and treatment resistance. A potential solution lies in nanogenerators (NGs), which function as self-powered systems capable of generating electrical energy. Recent progress in piezoelectric and triboelectric NGs showcases promising applications in cancer research and drug delivery. Integration of NGs with PDT holds the promise of enhancing treatment efficacy by ensuring sustained PS illumination, enabling direct electrical control of cancer cells, and facilitating improved drug administration. This comprehensive review aims to augment our comprehension of PDT principles, explore associated challenges, and underscore the transformative capacity of NGs in conjunction with PDT. By harnessing NG technology alongside PDT, significant advancement in cancer treatment can be realized. Herein, we present the principal findings and conclusions of this study, offering valuable insights into the integration of NGs to overcome barriers in PDT.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Abdominal Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Pingjin Zou
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Xingmin Chen
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Ping Chen
- Department of Abdominal Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Min Shi
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Jinyi Lang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Meihua Chen
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| |
Collapse
|
4
|
Kato Y, Mawatari K. Clinical significance of acidic extracellular microenvironment modulated genes. Front Oncol 2024; 14:1380679. [PMID: 39372863 PMCID: PMC11449683 DOI: 10.3389/fonc.2024.1380679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/21/2024] [Indexed: 10/08/2024] Open
Abstract
Background The extracellular pH (pH e ) is known to be acidic. We investigated the effect of mild (pH e 6.8) and severe (pH e 5.9) acidosis on gene expression in mouse B16-BL6 melanoma cells using cDNA microarray analysis and compared them with the acidic pH e dependence of human tumors. Methods B16-BL6 cells were treated with pH e 7.4 (control), pH e 6.8, and pH e 5.9. The mRNA expression was analyzed by using the cDNA microarray. Heat map, volcano plot, and gene ontology enrichment analysis were performed. The data were compared with the gene signatures of published data GSE52031 and GSE8401 and compared with the pathological staging by GEPIA2, and the prognostic signature of proteins was searched by the Human Protein Atlas database. If the acidic pH e -induced and -reduced genes were correlated with shortened and prolonged survival times, respectively, and also correlated with pathological staging, we defined it as "hit" and counted the sum of hit points of eight types of tumors such as breast, colorectal, prostate, gastric, liver, prostate, lung, and head and neck and melanoma. Results Gene expression was differentially and commonly regulated by both pH e s. The number of genes upregulated fourfold or more at pH e 6.8 and 5.9 only for 25 and 131 genes, respectively, and 85 genes were common. The number of genes downregulated fourfold or less at pH e 6.8 and 5.9 only for 63 and 82 genes, respectively, and 118 genes were common. Compared with human mRNA expression data (GSE8401), there is no correlation with the overall pattern of the signature. In seven types of cancer (breast, colorectal, gastric, liver, prostate, lung, and head and neck) and melanoma, the relationship between acidic pH e -modulated gene expression and overall survival was evaluated. As a result, acidic pH e dependency contributing to prognosis was higher in colorectal, lung, and head and neck cancers and lower in prostate cancer. Conclusion Tumor classification based on response to extracellular acidic pH e will provide new insights into chemotherapy strategy for patients with tumors.
Collapse
Affiliation(s)
- Yasumasa Kato
- Department of Oral Function and Molecular Biology, Ohu University School of
Dentistry, Koriyama, Japan
| | | |
Collapse
|
5
|
Mikled P, Chavasiri W, Khongkow M. Dual folate/biotin-decorated liposomes mediated delivery of methylnaphthazarin for anti-cancer activity. Sci Rep 2024; 14:21796. [PMID: 39294264 PMCID: PMC11410993 DOI: 10.1038/s41598-024-72532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024] Open
Abstract
Chemotherapy is an effective strategy for mitigating the global challenge of cancer treatment, which often encounters drug resistance and negative side effects. Methylnaphthazarin (MNZ), a natural compound with promising anti-cancer properties, has been underexplored due to its poor aqueous solubility and low selectivity. This study introduces a novel approach to overcome these limitations by developing MNZ-encapsulating liposomes decorated with folate and biotin (F/B-LP-MNZ). This dual-targeting strategy aims to enhance the anti-cancer efficacy and specificity of MNZ delivery. Our innovative F/B-LP-MNZ formulation demonstrated excellent physicochemical properties, stability, and controlled drug release profiles. In vitro studies revealed that MNZ-loaded liposomes attenuate the toxicity associated with free MNZ while F/B-LP-MNZ significantly increased cytotoxicity against HeLa cells, which express high levels of folate and biotin receptors, compared to non-targeted liposomes. Enhanced cellular uptake and improved dynamic flow attachment further confirmed the superior specificity of F/B-LP in targeting cancer cells. Additionally, our results revealed that F/B-LP-MNZ effectively inhibits HeLa cell migration and adhesion through EMT suppression and apoptotic induction, indicating its potential to prevent cancer metastasis. These findings highlight the potential of dual folate and biotin receptors-targeting liposomes as an effective delivery system for MNZ, offering a promising new avenue for targeted cancer therapy.
Collapse
Affiliation(s)
- Pirun Mikled
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Mattaka Khongkow
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| |
Collapse
|
6
|
Justus CR, Marie MA, Sanderlin EJ, Yang LV. The Roles of Proton-Sensing G-Protein-Coupled Receptors in Inflammation and Cancer. Genes (Basel) 2024; 15:1151. [PMID: 39336742 PMCID: PMC11431078 DOI: 10.3390/genes15091151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
The precise regulation of pH homeostasis is crucial for normal physiology. However, in tissue microenvironments, it can be impacted by pathological conditions such as inflammation and cancer. Due to the overproduction and accumulation of acids (protons), the extracellular pH is characteristically more acidic in inflamed tissues and tumors in comparison to normal tissues. A family of proton-sensing G-protein-coupled receptors (GPCRs) has been identified as molecular sensors for cells responding to acidic tissue microenvironments. Herein, we review the current research progress pertaining to these proton-sensing GPCRs, including GPR4, GPR65 (TDAG8), and GPR68 (OGR1), in inflammation and cancer. Growing evidence suggests that GPR4 and GPR68 are mainly pro-inflammatory, whereas GPR65 is primarily anti-inflammatory, in various inflammatory disorders. Both anti- and pro-tumorigenic effects have been reported for this family of receptors. Moreover, antagonists and agonists targeting proton-sensing GPCRs have been developed and evaluated in preclinical models. Further research is warranted to better understand the roles of these proton-sensing GPCRs in pathophysiology and is required in order to exploit them as potential therapeutic targets for disease treatment.
Collapse
Affiliation(s)
- Calvin R Justus
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Mona A Marie
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Edward J Sanderlin
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Li V Yang
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
7
|
Hao J, Chen C, Pavelic K, Ozer F. ZIF-8 as a pH-Responsive Nanoplatform for 5-Fluorouracil Delivery in the Chemotherapy of Oral Squamous Cell Carcinoma. Int J Mol Sci 2024; 25:9292. [PMID: 39273239 PMCID: PMC11394749 DOI: 10.3390/ijms25179292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
5-fluorouracil (5-FU), a chemotherapeutic agent against oral squamous cell carcinoma (OSCC), is limited by poor pharmacokinetics and toxicity. The pH-sensitive zeolite imidazolate framework-8 (ZIF-8) may increase the selectivity and length of 5-FU released into the acidic tumor microenvironment. This study examined the in vitro 5-FU absorption and release profiles of ZIF-8, and then progressed to cytotoxicity assays using the OSCC primary cell line SCC7. The 5-FU loading capacity of ZIF-8 was calculated with UV-vis spectroscopy (λ = 260 nm). 5-FU release was quantified by submerging 5-FU@ZIF-8 in pH 7.4 and 5.5 acetate buffer over 48 h. For the cytotoxicity assays, 5-FU, ZIF-8, and 5-FU@ZIF-8 were added to SCC7 cultures at 25, 50, and 100 μg/mL. Cell viability was assessed through toluidine blue staining and further quantified through transcriptomic RNA sequencing. ZIF-8 stabilized at a maximum absorption of 2.71 ± 0.22 mg 5-FU, and released 0.66 mg more 5-FU at pH 5.5 than 7.4 for at least 72 h. The cytotoxicity assays showed that 5-FU@ZIF-8 had a synergistic inhibitory effect at 50 μg/mL. The RNA sequencing analysis further revealed the molecular targets of 5-FU@ZIF-8 in SCC7. 5-FU@ZIF-8 may release 5-FU based on the pH of the surrounding microenvironments and synergistically inhibit OSCC.
Collapse
Affiliation(s)
- Jessica Hao
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19019, USA
| | - Chider Chen
- Oral and Maxillofacial Surgery, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kresimir Pavelic
- Faculty of Medicine, Juraj Dobrila University of Pula, 52100 Pula, Croatia
| | - Fusun Ozer
- Preventative and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Neitzel LR, Fuller DT, Williams CH, Hong CC. Inhibition of GPR68 kills glioblastoma in zebrafish xenograft models. BMC Res Notes 2024; 17:235. [PMID: 39180089 PMCID: PMC11342492 DOI: 10.1186/s13104-024-06900-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024] Open
Abstract
OBJECTIVE Inhibition and knockdown of GPR68 negatively affects glioblastoma cell survival in vitro by inducing ferroptosis. Herein, we aimed to demonstrate that inhibition of GPR68 reduces the survival of glioblastoma cells in vivo using two orthotopic larval xenograft models in Danio rerio, using GBM cell lines U87-MG and U138-MG. In vivo survival of the cancer cells was assessed in the setting of GPR68 inhibition or knockdown. RESULTS In vitro, shRNA-mediated knockdown of GPR68 inhibition demonstrated potent cytotoxic effects against U87 and U138 glioblastoma cell lines. This effect was associated with increased intracellular lipid peroxidation, suggesting ferroptosis as the underlying mechanism of cell death. Translating these findings in vivo, we established a novel xenograft model in zebrafish by successfully grafting fluorescently labeled human glioblastoma cells, which were previously shown to overexpress GPR68. shRNA knockdown of GPR68 significantly reduced the viability of grafted GBM cells within this model. Additionally, treatment with ogremorphin (OGM), a highly specific small molecule inhibitor of GPR68, also reduced the viability of grafted GBM cells with limited toxicity to the developing zebrafish embryos. This study suggests that therapeutic targeting of GPR68 with small molecules like OGM represents a promising approach for the treatment of GBM.
Collapse
Affiliation(s)
- Leif R Neitzel
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA
| | - Daniela T Fuller
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Charles H Williams
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA
| | - Charles C Hong
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA.
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA.
| |
Collapse
|
9
|
Matsingos C, Howell LA, McCormick PJ, Fornili A. Elucidating the Activation Mechanism of the Proton-sensing GPR68 Receptor. J Mol Biol 2024; 436:168688. [PMID: 38936694 DOI: 10.1016/j.jmb.2024.168688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/08/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
GPR68 is a proton-sensing G-protein Coupled Receptor (GPCR) involved in a variety of physiological processes and disorders including neoplastic pathologies. While GPR68 and few other GPCRs have been shown to be activated by a decrease in the extracellular pH, the molecular mechanism of their activation remains largely unknown. In this work, we used a combined computational and in vitro approach to provide new insight into the activation mechanism of the receptor. Molecular Dynamics simulations of GPR68 were used to model the changes in residue interactions and motions triggered by pH. Global and local rearrangements consistent with partial activation were observed upon protonation of the inactive state. Selected extracellular histidine and transmembrane acidic residues were found to have significantly upshifted pKa values during the simulations, consistently with their previously hypothesised role in activation through changes in protonation state. Moreover, a novel pairing between histidine and acidic residues in the extracellular region was highlighted by both sequence analyses and simulation data and tested through site-directed mutagenesis. At last, we identified a previously unknown hydrophobic lock in the extracellular region that might stabilise the inactive conformation and regulate the transition to the active state.
Collapse
Affiliation(s)
- Christos Matsingos
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom.
| | - Lesley A Howell
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Peter J McCormick
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom; Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 7BE, United Kingdom
| | - Arianna Fornili
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom.
| |
Collapse
|
10
|
Terriac L, Helesbeux JJ, Maugars Y, Guicheux J, Tibbitt MW, Delplace V. Boronate Ester Hydrogels for Biomedical Applications: Challenges and Opportunities. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:6674-6695. [PMID: 39070669 PMCID: PMC11270748 DOI: 10.1021/acs.chemmater.4c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 07/30/2024]
Abstract
Boronate ester (BE) hydrogels are increasingly used for biomedical applications. The dynamic nature of these molecular networks enables bond rearrangement, which is associated with viscoelasticity, injectability, printability, and self-healing, among other properties. BEs are also sensitive to pH, redox reactions, and the presence of sugars, which is useful for the design of stimuli-responsive materials. Together, BE hydrogels are interesting scaffolds for use in drug delivery, 3D cell culture, and biofabrication. However, designing stable BE hydrogels at physiological pH (≈7.4) remains a challenge, which is hindering their development and biomedical application. In this context, advanced chemical insights into BE chemistry are being used to design new molecular solutions for material fabrication. This review article summarizes the state of the art in BE hydrogel design for biomedical applications with a focus on the materials chemistry of this class of materials. First, we discuss updated knowledge in BE chemistry including details on the molecular mechanisms associated with BE formation and breakage. Then, we discuss BE hydrogel formation at physiological pH, with an overview of the main systems reported to date along with new perspectives. A last section covers several prominent biomedical applications of BE hydrogels, including drug delivery, 3D cell culture, and bioprinting, with critical insights on the design relevance, limitations and potential.
Collapse
Affiliation(s)
- Léa Terriac
- Nantes
Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton,
RMeS, UMR 1229, F-44000 Nantes, France
| | | | - Yves Maugars
- Nantes
Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton,
RMeS, UMR 1229, F-44000 Nantes, France
| | - Jérôme Guicheux
- Nantes
Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton,
RMeS, UMR 1229, F-44000 Nantes, France
| | - Mark W. Tibbitt
- Macromolecular
Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Vianney Delplace
- Nantes
Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton,
RMeS, UMR 1229, F-44000 Nantes, France
| |
Collapse
|
11
|
Hernandez-Olmos V, Heering J, Marinescu B, Schermeng T, Ivanov VV, Moroz YS, Nevermann S, Mathes M, Ehrler JHM, Alnouri MW, Wolf M, Haydo AS, Schmachtel T, Zaliani A, Höfner G, Kaiser A, Schubert-Zsilavecz M, Beck-Sickinger AG, Offermanns S, Gribbon P, Rieger MA, Merk D, Sisignano M, Steinhilber D, Proschak E. Development of a Potent and Selective G2A (GPR132) Agonist. J Med Chem 2024; 67:10567-10588. [PMID: 38917049 PMCID: PMC11249017 DOI: 10.1021/acs.jmedchem.3c02164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 06/27/2024]
Abstract
G protein-coupled receptor G2A was postulated to be a promising target for the development of new therapeutics in neuropathic pain, acute myeloid leukemia, and inflammation. However, there is still a lack of potent, selective, and drug-like G2A agonists to be used as a chemical tool or as the starting matter for the development of drugs. In this work, we present the discovery and structure-activity relationship elucidation of a new potent and selective G2A agonist scaffold. Systematic optimization resulted in (3-(pyridin-3-ylmethoxy)benzoyl)-d-phenylalanine (T-10418) exhibiting higher potency than the reference and natural ligand 9-HODE and high selectivity among G protein-coupled receptors. With its favorable activity, a clean selectivity profile, excellent solubility, and high metabolic stability, T-10418 qualifies as a pharmacological tool to investigate the effects of G2A activation.
Collapse
Affiliation(s)
- Victor Hernandez-Olmos
- Fraunhofer
Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Fraunhofer
Cluster of Excellence Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Jan Heering
- Fraunhofer
Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Fraunhofer
Cluster of Excellence Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Beatrice Marinescu
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, Max-von-Laue-Street
9, 60438 Frankfurt
am Main, Germany
| | - Tina Schermeng
- Institute
of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | | | - Yurii S. Moroz
- Taras Shevchenko
National University of Kyiv, 64 Volodymyrska Street, Kyiv 01601, Ukraine
- Chemspace
LLC, 85 Chervonotkatska
Street, Kyiv 02094, Ukraine
| | - Sheila Nevermann
- Fraunhofer
Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Marius Mathes
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, Max-von-Laue-Street
9, 60438 Frankfurt
am Main, Germany
| | - Johanna H. M. Ehrler
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, Max-von-Laue-Street
9, 60438 Frankfurt
am Main, Germany
| | - Mohamad Wessam Alnouri
- Department
of Pharmacology, Max Planck Institute for
Heart and Lung Research, Ludwigstr. 43, 61231Bad Nauheim, Germany
| | - Markus Wolf
- Fraunhofer
Institute for Translational Medicine and Pharmacology ITMP, Discovery
Research ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Alicia S. Haydo
- Department
of Medicine, Hematology/Oncology, Goethe
University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Tessa Schmachtel
- Department
of Medicine, Hematology/Oncology, Goethe
University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Andrea Zaliani
- Fraunhofer
Institute for Translational Medicine and Pharmacology ITMP, Discovery
Research ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Georg Höfner
- Department of Pharmacy, Ludwig-Maximilians-Universität
München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Astrid Kaiser
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, Max-von-Laue-Street
9, 60438 Frankfurt
am Main, Germany
| | - Manfred Schubert-Zsilavecz
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, Max-von-Laue-Street
9, 60438 Frankfurt
am Main, Germany
| | - Annette G. Beck-Sickinger
- Institute
of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Stefan Offermanns
- Department
of Pharmacology, Max Planck Institute for
Heart and Lung Research, Ludwigstr. 43, 61231Bad Nauheim, Germany
- Center for Molecular Medicine, Goethe University
Frankfurt, Theodor-Stern-Kai
7, 60590 Frankfurt, Germany
| | - Philipp Gribbon
- Fraunhofer
Institute for Translational Medicine and Pharmacology ITMP, Discovery
Research ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Michael A. Rieger
- Fraunhofer
Institute for Translational Medicine and Pharmacology ITMP, Discovery
Research ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany
- Frankfurt Cancer Institute, 60590 Frankfurt
am Main, Germany
- Cardio-Pulmonary Institute (CPI), 60590 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) and German
Cancer Research Institute
(DKFZ), Im Neuenheimer
Feld 280, 69120 Heidelberg, Germany
| | - Daniel Merk
- Department of Pharmacy, Ludwig-Maximilians-Universität
München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Marco Sisignano
- Pharmazentrum
Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai
7, 60590 Frankfurt
am Main, Germany
| | - Dieter Steinhilber
- Fraunhofer
Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Fraunhofer
Cluster of Excellence Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, Max-von-Laue-Street
9, 60438 Frankfurt
am Main, Germany
| | - Ewgenij Proschak
- Fraunhofer
Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Fraunhofer
Cluster of Excellence Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, Max-von-Laue-Street
9, 60438 Frankfurt
am Main, Germany
| |
Collapse
|
12
|
Meta M, Zimmer C, Fuchs N, Zecher MJ, Lahu A, Schirmeister T. Structural Modifications of Covalent Cathepsin S Inhibitors: Impact on Affinity, Selectivity, and Permeability. ACS Med Chem Lett 2024; 15:837-844. [PMID: 38894911 PMCID: PMC11181490 DOI: 10.1021/acsmedchemlett.4c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Cathepsin S (catS) is a member of the cysteine protease family with limited tissue distribution, which is predominantly found in antigen-presenting cells. Due to overexpression and overactivity of catS in numerous cancers, inhibition of catS is supposed to improve the antitumor response. Here, we explore the potential of small-molecule catS inhibitors emphasizing their in vitro pharmacodynamics and pharmacokinetics. Membrane permeability of selected inhibitors was measured with a Parallel Artificial Membrane Permeation Assay and correlated to calculated physicochemical parameters and inhibition data. The binding kinetics and inhibition types of potent and selective new inhibitors with unexplored warheads were investigated. Our unique approach involves reversible masking of these potent warheads, allowing for further customization without compromising affinity or selectivity. The most promising inhibitors in this study include covalent aldehyde and ketone derivatives reversibly masked as hydrazones as potential candidates for therapeutic interventions targeting catalytic enzymes and modulating the immune response in cancer.
Collapse
Affiliation(s)
| | | | - Natalie Fuchs
- Institute
of Pharmaceutical and Biomedical
Sciences, Johannes Gutenberg University
Mainz, Staudingerweg 5, 55128 Mainz Germany
| | - Maximilian Johannes Zecher
- Institute
of Pharmaceutical and Biomedical
Sciences, Johannes Gutenberg University
Mainz, Staudingerweg 5, 55128 Mainz Germany
| | - Albin Lahu
- Institute
of Pharmaceutical and Biomedical
Sciences, Johannes Gutenberg University
Mainz, Staudingerweg 5, 55128 Mainz Germany
| | - Tanja Schirmeister
- Institute
of Pharmaceutical and Biomedical
Sciences, Johannes Gutenberg University
Mainz, Staudingerweg 5, 55128 Mainz Germany
| |
Collapse
|
13
|
Sun X, Li Y, Liu X, Cui D, Shi Y, Huang G. Tumor-specific enhanced NIR-II photoacoustic imaging via photothermal and low-pH coactivated AuNR@PNIPAM-VAA nanogel. J Nanobiotechnology 2024; 22:326. [PMID: 38858673 PMCID: PMC11163807 DOI: 10.1186/s12951-024-02617-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Properly designed second near-infrared (NIR-II) nanoplatform that is responsive tumor microenvironment can intelligently distinguish between normal and cancerous tissues to achieve better targeting efficiency. Conventional photoacoustic nanoprobes are always "on", and tumor microenvironment-responsive nanoprobe can minimize the influence of endogenous chromophore background signals. Therefore, the development of nanoprobe that can respond to internal tumor microenvironment and external stimulus shows great application potential for the photoacoustic diagnosis of tumor. RESULTS In this work, a low-pH-triggered thermal-responsive volume phase transition nanogel gold nanorod@poly(n-isopropylacrylamide)-vinyl acetic acid (AuNR@PNIPAM-VAA) was constructed for photoacoustic detection of tumor. Via an external near-infrared photothermal switch, the absorption of AuNR@PNIPAM-VAA nanogel in the tumor microenvironment can be dynamically regulated, so that AuNR@PNIPAM-VAA nanogel produces switchable photoacoustic signals in the NIR-II window for tumor-specific enhanced photoacoustic imaging. In vitro results show that at pH 5.8, the absorption and photoacoustic signal amplitude of AuNR@PNIPAM-VAA nanogel in NIR-II increases up obviously after photothermal modulating, while they remain slightly change at pH 7.4. Quantitative calculation presents that photoacoustic signal amplitude of AuNR@PNIPAM-VAA nanogel at 1064 nm has ~ 1.6 folds enhancement as temperature increases from 37.5 °C to 45 °C in simulative tumor microenvironment. In vivo results show that the prepared AuNR@PNIPAM-VAA nanogel can achieve enhanced NIR-II photoacoustic imaging for selective tumor detection through dynamically responding to thermal field, which can be precisely controlled by external light. CONCLUSIONS This work will offer a viable strategy for the tumor-specific photoacoustic imaging using NIR light to regulate the thermal field and target the low pH tumor microenvironment, which is expected to realize accurate and dynamic monitoring of tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaodong Sun
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yujie Li
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Xiaowan Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Dandan Cui
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yujiao Shi
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Guojia Huang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
14
|
He Z, Lyu J, Lyu L, Long X, Xu B. Identification of a metabolism-linked genomic signature for prognosis and immunotherapeutic efficiency in metastatic skin cutaneous melanoma. Medicine (Baltimore) 2024; 103:e38347. [PMID: 38847706 PMCID: PMC11155616 DOI: 10.1097/md.0000000000038347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/03/2024] [Indexed: 06/10/2024] Open
Abstract
Metastatic skin cutaneous melanoma (MSCM) is the most rapidly progressing/invasive skin-based malignancy, with median survival rates of about 12 months. It appears that metabolic disorders accelerate disease progression. However, correlations between metabolism-linked genes (MRGs) and prognosis in MSCM are unclear, and potential mechanisms explaining the correlation are unknown. The Cancer Genome Atlas (TCGA) was utilized as a training set to develop a genomic signature based on the differentially expressed MRGs (DE-MRGs) between primary skin cutaneous melanoma (PSCM) and MSCM. The Gene Expression Omnibus (GEO) was utilized as a validation set to verify the effectiveness of genomic signature. In addition, a nomogram was established to predict overall survival based on genomic signature and other clinic-based characteristics. Moreover, this study investigated the correlations between genomic signature and tumor micro-environment (TME). This study established a genomic signature consisting of 3 genes (CD38, DHRS3, and TYRP1) and classified MSCM patients into low and high-risk cohorts based on the median risk scores of MSCM cases. It was discovered that cases in the high-risk cohort had significantly lower survival than cases in the low-risk cohort across all sets. Furthermore, a nomogram containing this genomic signature and clinic-based parameters was developed and demonstrated high efficiency in predicting MSCM case survival times. Interestingly, Gene Set Variation Analysis results indicated that the genomic signature was involved in immune-related physiological processes. In addition, this study discovered that risk scoring was negatively correlated with immune-based cellular infiltrations in the TME and critical immune-based checkpoint expression profiles, indicating that favorable prognosis may be influenced in part by immunologically protective micro-environments. A novel 3-genomic signature was found to be reliable for predicting MSCM outcomes and may facilitate personalized immunotherapy.
Collapse
Affiliation(s)
- Zhongshun He
- Department of Oral and Maxillofacial Surgery, Kunming Medical University School and Hospital of Stomatology, Kunming, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Jing Lyu
- Department of Physiology, Kunming Medical University, Kunming, Yunnan, China
| | - Lechun Lyu
- Technology Transfer Center, Kunming Medical University, Kunming, Yunnan, China
| | - Xiaolin Long
- Yunnan Bestai Biotechnology Co., Ltd., Kunming, Yunnan, China
| | - Biao Xu
- Department of Oral and Maxillofacial Surgery, Kunming Medical University School and Hospital of Stomatology, Kunming, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| |
Collapse
|
15
|
Meng X, Bai X, Ke A, Li K, Lei Y, Ding S, Dai D. Long Non-Coding RNAs in Drug Resistance of Gastric Cancer: Complex Mechanisms and Potential Clinical Applications. Biomolecules 2024; 14:608. [PMID: 38927012 PMCID: PMC11201466 DOI: 10.3390/biom14060608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Gastric cancer (GC) ranks as the third most prevalent malignancy and a leading cause of cancer-related mortality worldwide. However, the majority of patients with GC are diagnosed at an advanced stage, highlighting the urgent need for effective perioperative and postoperative chemotherapy to prevent relapse and metastasis. The current treatment strategies have limited overall efficacy because of intrinsic or acquired drug resistance. Recent evidence suggests that dysregulated long non-coding RNAs (lncRNAs) play a significant role in mediating drug resistance in GC. Therefore, there is an imperative to explore novel molecular mechanisms underlying drug resistance in order to overcome this challenging issue. With advancements in deep transcriptome sequencing technology, lncRNAs-once considered transcriptional noise-have garnered widespread attention as potential regulators of carcinogenesis, including tumor cell proliferation, metastasis, and sensitivity to chemo- or radiotherapy through multiple regulatory mechanisms. In light of these findings, we aim to review the mechanisms by which lncRNAs contribute to drug therapy resistance in GC with the goal of providing new insights and breakthroughs toward overcoming this formidable obstacle.
Collapse
Affiliation(s)
- Xiangyu Meng
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China
| | - Xiao Bai
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
| | - Angting Ke
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
| | - Kaiqiang Li
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
| | - Yun Lei
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
| | - Siqi Ding
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
| | - Dongqiu Dai
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
- Cancer Center, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| |
Collapse
|
16
|
Xu B, Liu Y, Li N, Geng Q. Lactate and lactylation in macrophage metabolic reprogramming: current progress and outstanding issues. Front Immunol 2024; 15:1395786. [PMID: 38835758 PMCID: PMC11148263 DOI: 10.3389/fimmu.2024.1395786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
It is commonly known that different macrophage phenotypes play specific roles in different pathophysiological processes. In recent years, many studies have linked the phenotypes of macrophages to their characteristics in different metabolic pathways, suggesting that macrophages can perform different functions through metabolic reprogramming. It is now gradually recognized that lactate, previously overlooked as a byproduct of glycolytic metabolism, acts as a signaling molecule in regulating multiple biological processes, including immunological responses and metabolism. Recently, lactate has been found to mediate epigenetic changes in macrophages through a newfound lactylation modification, thereby regulating their phenotypic transformation. This novel finding highlights the significant role of lactate metabolism in macrophage function. In this review, we summarize the features of relevant metabolic reprogramming in macrophages and the role of lactate metabolism therein. We also review the progress of research on the regulation of macrophage metabolic reprogramming by lactylation through epigenetic mechanisms.
Collapse
Affiliation(s)
- Bangjun Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Liu H, Yao M, Ren J. Codonopsis pilosula-derived glycopeptide dCP1 promotes the polarization of tumor-associated macrophage from M2-like to M1 phenotype. Cancer Immunol Immunother 2024; 73:128. [PMID: 38743074 PMCID: PMC11093951 DOI: 10.1007/s00262-024-03694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/28/2024] [Indexed: 05/16/2024]
Abstract
The majority of the immune cell population in the tumor microenvironment (TME) consists of tumor-associated macrophages (TAM), which are the main players in coordinating tumor-associated inflammation. TAM has a high plasticity and is divided into two main phenotypes, pro-inflammatory M1 type and anti-inflammatory M2 type, with tumor-suppressive and tumor-promoting functions, respectively. Considering the beneficial effects of M1 macrophages for anti-tumor and the high plasticity of macrophages, the conversion of M2 TAM to M1 TAM is feasible and positive for tumor treatment. This study sought to evaluate whether the glycopeptide derived from simulated digested Codonopsis pilosula extracts could regulate the polarization of M2-like TAM toward the M1 phenotype and the potential regulatory mechanisms. The results showed that after glycopeptide dCP1 treatment, the mRNA relative expression levels of some M2 phenotype marker genes in M2-like TAM in simulated TME were reduced, and the relative expression levels of M1 phenotype marker genes and inflammatory factor genes were increased. Analysis of RNA-Seq of M2-like TAM after glycopeptide dCP1 intervention showed that the gene sets such as glycolysis, which is associated with macrophage polarization in the M1 phenotype, were significantly up-regulated, whereas those of gene sets such as IL-6-JAK-STAT3 pathway, which is associated with polarization in the M2 phenotype, were significantly down-regulated. Moreover, PCA analysis and Pearson's correlation also indicated that M2-like TAM polarized toward the M1 phenotype at the transcriptional level after treatment with the glycopeptide dCP1. Lipid metabolomics was used to further explore the efficacy of the glycopeptide dCP1 in regulating the polarization of M2-like TAM to the M1 phenotype. It was found that the lipid metabolite profiles in dCP1-treated M2-like TAM showed M1 phenotype macrophage lipid metabolism profiles compared with blank M2-like TAM. Analysis of the key differential lipid metabolites revealed that the interconversion between phosphatidylcholine (PC) and diacylglycerol (DG) metabolites may be the central reaction of the glycopeptide dCP1 in regulating the conversion of M2-like TAM to the M1 phenotype. The above results suggest that the glycopeptide dCP1 has the efficacy to regulate the polarization of M2-like TAM to M1 phenotype in simulated TME.
Collapse
Affiliation(s)
- Hongxu Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, Guangdong, People's Republic of China
| | - Maojin Yao
- State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, People's Republic of China.
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, Guangdong, People's Republic of China.
| |
Collapse
|
18
|
Nakanishi M, Ibe A, Morishita K, Shinagawa K, Yamamoto Y, Takahashi H, Ikemori K, Muragaki Y, Ehata S. Acid-sensing receptor GPR4 plays a crucial role in lymphatic cancer metastasis. Cancer Sci 2024; 115:1551-1563. [PMID: 38410865 PMCID: PMC11093208 DOI: 10.1111/cas.16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Cancer tissues exhibit an acidic microenvironment owing to the accumulation of protons and lactic acid produced by cancer and inflammatory cells. To examine the role of an acidic microenvironment in lymphatic cancer metastasis, gene expression profiling was conducted using human dermal lymphatic endothelial cells (HDLECs) treated with a low pH medium. Microarray and gene set enrichment analysis revealed that acid treatment induced the expression of inflammation-related genes in HDLECs, including genes encoding chemokines and adhesion molecules. Acid treatment-induced chemokines C-X3-C motif chemokine ligand 1 (CX3CL1) and C-X-C motif chemokine ligand 6 (CXCL6) autocrinally promoted the growth and tube formation of HDLECs. The expression of vascular cell adhesion molecule 1 (VCAM-1) increased in HDLECs after acid treatment in a time-dependent manner, which, in turn, enhanced their adhesion to melanoma cells. Among various acid-sensing receptors, HDLECs basally expressed G protein-coupled receptor 4 (GPR4), which was augmented under the acidic microenvironment. The induction of chemokines or VCAM-1 under acidic conditions was attenuated by GPR4 knockdown in HDLECs. In addition, lymph node metastases in a mouse melanoma model were suppressed by administering an anti-VCAM-1 antibody or a GPR4 antagonist. These results suggest that an acidic microenvironment modifies the function of lymphatic endothelial cells via GPR4, thereby promoting lymphatic cancer metastasis. Acid-sensing receptors and their downstream molecules might serve as preventive or therapeutic targets in cancer.
Collapse
Affiliation(s)
- Masako Nakanishi
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Akiya Ibe
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kiyoto Morishita
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kazutaka Shinagawa
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Yushi Yamamoto
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Hibiki Takahashi
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kyoka Ikemori
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Yasuteru Muragaki
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Shogo Ehata
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| |
Collapse
|
19
|
Li X, Cai P, Tang X, Wu Y, Zhang Y, Rong X. Lactylation Modification in Cardiometabolic Disorders: Function and Mechanism. Metabolites 2024; 14:217. [PMID: 38668345 PMCID: PMC11052226 DOI: 10.3390/metabo14040217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Cardiovascular disease (CVD) is recognized as the primary cause of mortality and morbidity on a global scale, and developing a clear treatment is an important tool for improving it. Cardiometabolic disorder (CMD) is a syndrome resulting from the combination of cardiovascular, endocrine, pro-thrombotic, and inflammatory health hazards. Due to their complex pathological mechanisms, there is a lack of effective diagnostic and treatment methods for cardiac metabolic disorders. Lactylation is a type of post-translational modification (PTM) that plays a regulatory role in various cellular physiological processes by inducing changes in the spatial conformation of proteins. Numerous studies have reported that lactylation modification plays a crucial role in post-translational modifications and is closely related to cardiac metabolic diseases. This article discusses the molecular biology of lactylation modifications and outlines the roles and mechanisms of lactylation modifications in cardiometabolic disorders, offering valuable insights for the diagnosis and treatment of such conditions.
Collapse
Affiliation(s)
- Xu Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Pingdong Cai
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xinyuan Tang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yingzi Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yue Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
20
|
Khan MRH, Armstrong Z, Lenertz M, Saenz B, Kale N, Li Q, MacRae A, Yang Z, Quadir M. Metal-Organic Framework Induced Stabilization of Proteins in Polymeric Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38490971 DOI: 10.1021/acsami.3c16534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Developing protein confinement platforms is an attractive research area that not only promotes protein delivery but also can result in artificial environment mimicking of the cellular one, impacting both the controlled release of proteins and the fundamental protein biophysics. Polymeric nanoparticles (PNPs) are attractive platforms to confine proteins due to their superior biocompatibility, low cytotoxicity, and controllable release under external stimuli. However, loading proteins into PNPs can be challenging due to the potential protein structural perturbation upon contacting the interior of PNPs. In this work, we developed a novel approach to encapsulate proteins in PNPs with the assistance of the zeolitic imidazolate framework (ZIF). Here, ZIF offers an additional protection layer to the target protein by forming the protein@ZIF composite via aqueous-phase cocrystallization. We demonstrated our platform using a model protein, lysozyme, and a widely studied PNP composed of poly(ethylene glycol)-poly(lactic-co-glycolic acid) (PEG-PLGA). A comprehensive study via standard loading and release tests as well as various spectroscopic techniques was carried out on lysozyme loaded onto PEG-PLGA with and without ZIF protection. As compared with the direct protein encapsulation, an additional layer with ZIF prior to loading offered enhanced loading capacity, reduced leaching, especially in the initial stage, led to slower release kinetics, and reduced secondary structural perturbation. Meanwhile, the function, cytotoxicity, and cellular uptake of proteins encapsulated within the ZIF-bound systems are decent. Our results demonstrated the use of ZIF in assisting in protein encapsulation in PNPs and established the basis for developing more sophisticated protein encapsulation platforms using a combination of materials of diverse molecular architectures and disciplines. As such, we anticipate that the protein-encapsulated ZIF systems will serve as future polymer protein confinement and delivery platforms for both fundamental biophysics and biochemistry research and biomedical applications where protein delivery is needed to support therapeutics and/or nutrients.
Collapse
Affiliation(s)
- Md Rakib Hasan Khan
- Biomedical Engineering Program, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Zoe Armstrong
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Mary Lenertz
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Briana Saenz
- Department of Chemistry and Biochemistry, St. Mary's University, San Antonio, Texas 78228, United States
| | - Narendra Kale
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Qiaobin Li
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Austin MacRae
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Mohiuddin Quadir
- Biomedical Engineering Program, North Dakota State University, Fargo, North Dakota 58108, United States
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
21
|
Song H, Li H, Shen X, Liu K, Feng H, Cui J, Wei W, Sun X, Fan Q, Bao W, Zhou H, Qian L, Nie H, Cheng X, Du Z. A pH-responsive cetuximab-conjugated DMAKO-20 nano-delivery system for overcoming K-ras mutations and drug resistance in colorectal carcinoma. Acta Biomater 2024; 177:456-471. [PMID: 38331131 DOI: 10.1016/j.actbio.2024.01.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/17/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Cetuximab (Cet) and oxaliplatin (OXA) are used as first-line drugs for patients with colorectal carcinoma (CRC). In fact, the heterogeneity of CRC, mainly caused by K-ras mutations and drug resistance, undermines the effectiveness of drugs. Recently, a hydrophobic prodrug, (1E,4E)-6-((S)-1-(isopentyloxy)-4-methylpent-3-en-1-yl)-5,8-dimethoxynaphthalene-1,4‑dione dioxime (DMAKO-20), has been shown to undergo tumor-specific CYP1B1-catalyzed bioactivation. This process results in the production of nitric oxide and active naphthoquinone mono-oximes, which exhibit specific antitumor activity against drug-resistant CRC. In this study, a Cet-conjugated bioresponsive DMAKO-20/PCL-PEOz-targeted nanocodelivery system (DMAKO@PCL-PEOz-Cet) was constructed to address the issue of DMAKO-20 dissolution and achieve multitargeted delivery of the cargoes to different subtypes of CRC cells to overcome K-ras mutations and drug resistance in CRC. The experimental results demonstrated that DMAKO@PCL-PEOz-Cet efficiently delivered DMAKO-20 to both K-ras mutant and wild-type CRC cells by targeting the epidermal growth factor receptor (EGFR). It exhibited a higher anticancer effect than OXA in K-ras mutant cells and drug-resistant cells. Additionally, it was observed that DMAKO@PCL-PEOz-Cet reduced the expression of glutathione peroxidase 4 (GPX4) in CRC cells and significantly inhibited the growth of heterogeneous HCT-116 subcutaneous tumors and patient-derived tumor xenografts (PDX) model tumors. This work provides a new strategy for the development of safe and effective approaches for treating CRC. STATEMENT OF SIGNIFICANCE: (1) Significance: This work reports a new approach for the treatment of colorectal carcinoma (CRC) using the bioresponsible Cet-conjugated PCL-PEOz/DMAKO-20 nanodelivery system (DMAKO@PCL-PEOz-Cet) prepared with Cet and PCL-PEOz for the targeted transfer of DMAKO-20, which is an anticancer multitarget drug that can even prevent drug resistance, to wild-type and K-ras mutant CRC cells. DMAKO@PCL-PEOz-Cet, in the form of nanocrystal micelles, maintained stability in peripheral blood and efficiently transported DMAKO-20 to various subtypes of colorectal carcinoma cells, overcoming the challenges posed by K-ras mutations and drug resistance. The system's secure and effective delivery capabilities have also been confirmed in organoid and PDX models. (2) This is the first report demonstrating that this approach simultaneously overcomes the K-ras mutation and drug resistance of CRC.
Collapse
Affiliation(s)
- Huiling Song
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haosheng Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Xiaonan Shen
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Kuai Liu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haoran Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Jiahua Cui
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wei Wei
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaolu Sun
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qiong Fan
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910 Hengshan Road, Shanghai 200030, China
| | - Wei Bao
- Department of Obstetrics and Gynecology, Shanghai General Hospital affiliated with Shanghai Jiao Tong University, 100 Haining Road, Shanghai 200080, China
| | - Haiyan Zhou
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Liheng Qian
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Huizhen Nie
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xi Cheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China.
| | - Zixiu Du
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
22
|
Kappel S, Melek K, Ross-Kaschitza D, Hauert B, Gerber CE, Lochner M, Peinelt C. CBA (4-chloro-2-(2-chlorophenoxy)acetamido) benzoic acid) inhibits TMEM206 mediated currents and TMEM206 does not contribute to acid-induced cell death in colorectal cancer cells. Front Pharmacol 2024; 15:1369513. [PMID: 38515848 PMCID: PMC10955468 DOI: 10.3389/fphar.2024.1369513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/08/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction: Upon activation at low pH, TMEM206 conducts Cl- ions across plasma and vesicular membranes. In a (patho)physiological context, TMEM206 was reported to contribute to acid-induced cell death in neurons, kidney and cervical epithelial cells. We investigated the role of TMEM206 in acid-induced cell death in colorectal cancer cells. In addition, we studied CBA as a new small molecule inhibitor for TMEM206. Methods: The role of TMEM206 in acid-induced cell death was studied with CRISPR/Cas9-mediated knockout and FACS analysis. The pharmacology of TMEM206 was determined with the patch clamp technique. Results: In colorectal cancer cells, TMEM206 is not a critical mediator of acid-induced cell death. CBA is a small molecule inhibitor of TMEM206 (IC50 = 9.55 µM) at low pH, at pH 6.0 inhibition is limited. Conclusion: CBA demonstrates effective and specific inhibition of TMEM206; however, its inhibitory efficacy is limited at pH 6.0. Despite this limitation, CBA is a potent inhibitor for functional studies at pH 4.5 and may be a promising scaffold for the development of future TMEM206 inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Christine Peinelt
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Ji R, Chang L, An C, Zhang J. Proton-sensing ion channels, GPCRs and calcium signaling regulated by them: implications for cancer. Front Cell Dev Biol 2024; 12:1326231. [PMID: 38505262 PMCID: PMC10949864 DOI: 10.3389/fcell.2024.1326231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
Extracellular acidification of tumors is common. Through proton-sensing ion channels or proton-sensing G protein-coupled receptors (GPCRs), tumor cells sense extracellular acidification to stimulate a variety of intracellular signaling pathways including the calcium signaling, which consequently exerts global impacts on tumor cells. Proton-sensing ion channels, and proton-sensing GPCRs have natural advantages as drug targets of anticancer therapy. However, they and the calcium signaling regulated by them attracted limited attention as potential targets of anticancer drugs. In the present review, we discuss the progress in studies on proton-sensing ion channels, and proton-sensing GPCRs, especially emphasizing the effects of calcium signaling activated by them on the characteristics of tumors, including proliferation, migration, invasion, metastasis, drug resistance, angiogenesis. In addition, we review the drugs targeting proton-sensing channels or GPCRs that are currently in clinical trials, as well as the relevant potential drugs for cancer treatments, and discuss their future prospects. The present review aims to elucidate the important role of proton-sensing ion channels, GPCRs and calcium signaling regulated by them in cancer initiation and development. This review will promote the development of drugs targeting proton-sensing channels or GPCRs for cancer treatments, effectively taking their unique advantage as anti-cancer drug targets.
Collapse
Affiliation(s)
- Renhui Ji
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
| | - Li Chang
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
| | - Caiyan An
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
| | - Junjing Zhang
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
| |
Collapse
|
24
|
Kerry J, Specker EJ, Mizzoni M, Brumwell A, Fell L, Goodbrand J, Rosen MN, Uniacke J. Autophagy-dependent alternative splicing of ribosomal protein S24 produces a more stable isoform that aids in hypoxic cell survival. FEBS Lett 2024; 598:503-520. [PMID: 38281767 DOI: 10.1002/1873-3468.14804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/08/2023] [Accepted: 12/24/2023] [Indexed: 01/30/2024]
Abstract
Cells remodel splicing and translation machineries to mount specialized gene expression responses to stress. Here, we show that hypoxic human cells in 2D and 3D culture models increase the relative abundance of a longer mRNA variant of ribosomal protein S24 (RPS24L) compared to a shorter mRNA variant (RPS24S) by favoring the inclusion of a 22 bp cassette exon. Mechanistically, RPS24L and RPS24S are induced and repressed, respectively, by distinct pathways in hypoxia: RPS24L is induced in an autophagy-dependent manner, while RPS24S is reduced by mTORC1 repression in a hypoxia-inducible factor-dependent manner. RPS24L produces a more stable protein isoform that aids in hypoxic cell survival and growth, which could be exploited by cancer cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Jenna Kerry
- Department of Molecular and Cellular Biology, University of Guelph, Canada
| | - Erin J Specker
- Department of Molecular and Cellular Biology, University of Guelph, Canada
| | - Morgan Mizzoni
- Department of Molecular and Cellular Biology, University of Guelph, Canada
| | - Andrea Brumwell
- Department of Molecular and Cellular Biology, University of Guelph, Canada
| | - Leslie Fell
- Department of Molecular and Cellular Biology, University of Guelph, Canada
| | - Jenna Goodbrand
- Department of Molecular and Cellular Biology, University of Guelph, Canada
| | - Michael N Rosen
- Department of Molecular and Cellular Biology, University of Guelph, Canada
| | - James Uniacke
- Department of Molecular and Cellular Biology, University of Guelph, Canada
| |
Collapse
|
25
|
Dhanisha SS, Drishya S, Guruvayoorappan C. Encapsulating Naringenin in biomimetic proteolipid vesicles abrogates cancer metastasis by targeting apoptotic signaling axis. Food Chem 2024; 434:137445. [PMID: 37741236 DOI: 10.1016/j.foodchem.2023.137445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/03/2023] [Accepted: 09/07/2023] [Indexed: 09/25/2023]
Abstract
Naringenin (NG) belongs to the class of flavanones having impressive pharmacological properties. Unfortunately, the in vivo bioavailability of NG is very low due to its higher hydrophobicity, which limits its practical use. Thus, in this study, we tried to develop NG-loaded macrophage membrane-coated liposome-based biomimetic nanoparticles with distinct physicochemical compositions and biological attributes for improving their bioavailability at the target site. The developed biomimetic nanoparticle (BNP) has shown good biocompatibility, stability, satisfactory particle size, pH-responsive drug (NG) release kinetics, and higher cellular uptake in vitro. The anti-metastatic efficacy of NGBNP has confirmed in syngeneic athymic BALB/c nude experimental models. By western blot analysis, semi-quantitative PCR, real-time PCR, and IHC, we conclude that NGBNP gets localized on the metastatic niche via its surface receptor α4, β1 integrin, and VCAM1 of metastatic cells and reduces the number of metastatic colonies in the lungs via regulating the apoptotic signaling axis.
Collapse
Affiliation(s)
- Suresh Sulekha Dhanisha
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011, Kerala, India
| | - Sudarsanan Drishya
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011, Kerala, India
| | - Chandrasekharan Guruvayoorappan
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011, Kerala, India.
| |
Collapse
|
26
|
Williams CH, Neitzel LR, Cornell J, Rea S, Mills I, Silver MS, Ahmad JD, Birukov KG, Birukova A, Brem H, Tyler B, Bar EE, Hong CC. GPR68-ATF4 signaling is a novel prosurvival pathway in glioblastoma activated by acidic extracellular microenvironment. Exp Hematol Oncol 2024; 13:13. [PMID: 38291540 PMCID: PMC10829393 DOI: 10.1186/s40164-023-00468-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/25/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) stands as a formidable challenge in oncology because of its aggressive nature and severely limited treatment options. Despite decades of research, the survival rates for GBM remain effectively stagnant. A defining hallmark of GBM is a highly acidic tumor microenvironment, which is thought to activate pro-tumorigenic pathways. This acidification is the result of altered tumor metabolism favoring aerobic glycolysis, a phenomenon known as the Warburg effect. Low extracellular pH confers radioresistant tumors to glial cells. Notably GPR68, an acid sensing GPCR, is upregulated in radioresistant GBM. Usage of Lorazepam, which has off target agonism of GPR68, is linked to worse clinical outcomes for a variety of cancers. However, the role of tumor microenvironment acidification in GPR68 activation has not been assessed in cancer. Here we interrogate the role of GPR68 specifically in GBM cells using a novel highly specific small molecule inhibitor of GPR68 named Ogremorphin (OGM) to induce the iron mediated cell death pathway: ferroptosis. METHOD OGM was identified in a non-biased zebrafish embryonic development screen and validated with Morpholino and CRISPR based approaches. Next, A GPI-anchored pH reporter, pHluorin2, was stably expressed in U87 glioblastoma cells to probe extracellular acidification. Cell survival assays, via nuclei counting and cell titer glo, were used to demonstrate sensitivity to GPR68 inhibition in twelve immortalized and PDX GBM lines. To determine GPR68 inhibition's mechanism of cell death we use DAVID pathway analysis of RNAseq. Our major indication, ferroptosis, was then confirmed by western blotting and qRT-PCR of reporter genes including TFRC. This finding was further validated by transmission electron microscopy and liperfluo staining to assess lipid peroxidation. Lastly, we use siRNA and CRISPRi to demonstrate the critical role of ATF4 suppression via GPR68 for GBM survival. RESULTS We used a pHLourin2 probe to demonstrate how glioblastoma cells acidify their microenvironment to activate the commonly over expressed acid sensing GPCR, GPR68. Using our small molecule inhibitor OGM and genetic means, we show that blocking GPR68 signaling results in robust cell death in all thirteen glioblastoma cell lines tested, irrespective of genetic and phenotypic heterogeneity, or resistance to the mainstay GBM chemotherapeutic temozolomide. We use U87 and U138 glioblastoma cell lines to show how selective induction of ferroptosis occurs in an ATF4-dependent manner. Importantly, OGM was not-acutely toxic to zebrafish and its inhibitory effects were found to spare non-malignant neural cells. CONCLUSION These results indicate GPR68 emerges as a critical sensor for an autocrine pro-tumorigenic signaling cascade triggered by extracellular acidification in glioblastoma cells. In this context, GPR68 suppresses ATF4, inhibition of GPR68 increases expression of ATF4 which leads to ferroptotic cell death. These findings provide a promising therapeutic approach to selectively induce ferroptosis in glioblastoma cells while sparing healthy neural tissue.
Collapse
Affiliation(s)
- Charles H Williams
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA
| | - Leif R Neitzel
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA
| | - Jessica Cornell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Samantha Rea
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ian Mills
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maya S Silver
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jovanni D Ahmad
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Konstantin G Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anna Birukova
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eli E Bar
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Charles C Hong
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA.
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA.
| |
Collapse
|
27
|
Qi J, Liu S, Zhang Z. What role does GPR65 play in the progression of osteosarcoma? Its mechanism and clinical significance. Cancer Cell Int 2024; 24:31. [PMID: 38218960 PMCID: PMC10788037 DOI: 10.1186/s12935-024-03216-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND GPR65 is a pH-sensing G-protein-coupled receptor that acts as a key innate immune checkpoint in the human tumor microenvironment, inhibiting the release of inflammatory factors and inducing significant upregulation of tissue repair genes. However, the expression pattern and function of GPR65 in osteosarcoma (OS) remain unclear. The purpose of this study was to investigate and elucidate the role of GPR65 in the microenvironment, proliferation and migration of OS. METHODS Retrospective RNA-seq data analysis was conducted in a cohort of 97 patients with OS data in the TAEGET database. In addition, single-cell sequencing data from six surgical specimens of human OS patients was used to analyze the molecular evolution process during OS genesis. Tissues chips and bioinformatics results were used to verify GPR65 expression level in OS. MTT, colony formation, EdU assay, wound healing, transwell assay and F-actin assay were utilized to analyze cell proliferation and invasion of OS cancer cells. RNA-seq was used to explore the potential mechanism of GPR65's role in OS. RESULTS GPR65 expression was significantly low in OS, and subgroup analysis found that younger OS patients, OS patients in metastatic status, and overall survival and progression free survival OS patients had lower GPR65 expression. From ScRNA-seq data of GSE162454, we found the expression of GPR65 is significantly positively correlated with CD4 + T cells CD8 + T cells and OS related macrophage infiltration. Verification experiment found that silencing the expression of GPR65 in osteosarcoma cells U2OS and HOS could promote the proliferation and invasion process, RNA-seq results showed that the role of GPR65 in OS cells was related to immune system, metabolism and signal transduction. CONCLUSION The low expression of GPR65 in OS leads to high metastasis rate and poor prognosis in OS patients. The suppression of immune escape and inhibition of proliferation may be a key pathway for GPR65 to participate in the progression of OS. The current study strengthens the role of GPR65 in OS development and provides a potential biomarker for the prognosis of OS patients.
Collapse
Affiliation(s)
- Jin Qi
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui Province, China
| | - Sihang Liu
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui Province, China
| | - Zhirui Zhang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui Province, China.
| |
Collapse
|
28
|
Li J, Yang D, Ge S, Liu L, Huo Y, Hu Z. Identifying hub genes of sepsis-associated and hepatic encephalopathies based on bioinformatic analysis-focus on the two common encephalopathies of septic cirrhotic patients in ICU. BMC Med Genomics 2024; 17:19. [PMID: 38212812 PMCID: PMC10785360 DOI: 10.1186/s12920-023-01774-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND In the ICU ward, septic cirrhotic patients are susceptible to suffering from sepsis-associated encephalopathy and/or hepatic encephalopathy, which are two common neurological complications in such patients. However, the mutual pathogenesis between sepsis-associated and hepatic encephalopathies remains unclear. We aimed to identify the mutual hub genes, explore effective diagnostic biomarkers and therapeutic targets for the two common encephalopathies and provide novel, promising insights into the clinical management of such septic cirrhotic patients. METHODS The precious human post-mortem cerebral tissues were deprived of the GSE135838, GSE57193, and GSE41919 datasets, downloaded from the Gene Expression Omnibus database. Furthermore, we identified differentially expressed genes and screened hub genes with weighted gene co-expression network analysis. The hub genes were then subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway functional enrichment analyses, and protein-protein interaction networks were constructed. Receiver operating characteristic curves and correlation analyses were set up for the hub genes. Finally, we explored principal and common signaling pathways by using Gene Set Enrichment Analysis and the association between the hub genes and immune cell subtype distribution by using CIBERSORT algorithm. RESULTS We identified seven hub genes-GPR4, SOCS3, BAG3, ZFP36, CDKN1A, ADAMTS9, and GADD45B-by using differentially expressed gene analysis and weighted gene co-expression network analysis method. The AUCs of these genes were all greater than 0.7 in the receiver operating characteristic curves analysis. The Gene Set Enrichment Analysis results demonstrated that mutual signaling pathways were mainly enriched in hypoxia and inflammatory response. CIBERSORT indicated that these seven hub genes were closely related to innate and adaptive immune cells. CONCLUSIONS We identified seven hub genes with promising diagnostic value and therapeutic targets in septic cirrhotic patients with sepsis-associated encephalopathy and/or hepatic encephalopathy. Hypoxia, inflammatory, and immunoreaction responses may share the common downstream pathways of the two common encephalopathies, for which earlier recognition and timely intervention are crucial for management of such septic cirrhotic patients in ICU.
Collapse
Affiliation(s)
- Juan Li
- Department of Intensive Care Unit, Hebei Key Laboratory of Critical Disease Mechanism and Intervention, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
| | - Dong Yang
- Department of Emergency (Xiangjiang Hospital), The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China
| | - Shengmei Ge
- Department of Intensive Care Unit, Hebei Key Laboratory of Critical Disease Mechanism and Intervention, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
| | - Lixia Liu
- Department of Intensive Care Unit, Hebei Key Laboratory of Critical Disease Mechanism and Intervention, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
| | - Yan Huo
- Department of Intensive Care Unit, Hebei Key Laboratory of Critical Disease Mechanism and Intervention, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
| | - Zhenjie Hu
- Department of Intensive Care Unit, Hebei Key Laboratory of Critical Disease Mechanism and Intervention, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China.
| |
Collapse
|
29
|
Ma PQ, Huang FW, Xie YQ, Li HR, Li HD, Ye BC, Yin BC. Universal DNA-Based Sensing Toolbox for Programming Cell Functions. J Am Chem Soc 2023; 145:28224-28232. [PMID: 38108623 DOI: 10.1021/jacs.3c11232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
By recombining natural cell signaling systems and further reprogramming cell functions, use of genetically engineered cells and bacteria as therapies is an innovative emerging concept. However, the inherent properties and structures of the natural signal sensing and response pathways constrain further development. We present a universal DNA-based sensing toolbox on the cell surface to endow new signal sensing abilities for cells, control cell states, and reprogram multiple cell functions. The sensing toolbox contains a triangular-prismatic-shaped DNA origami framework and a sensing core anchored inside the internal confined space to enhance the specificity and efficacy of the toolbox. As a proof of principle, the sensing toolbox uses the customizable sensing core with signal sensing switches and converters to recognize unconventional signal inputs, deliver functional components to cells, and then control cell responses, including specific tumor cell death, immune cell disinhibition and adhesion, and bacterial expression. This work expands the diversity of cell sensing signals and reprograms biological functions by constructing nanomechanical-natural hybrid cells, providing new strategies for engineering cells and bacteria in diagnosis and treatment applications.
Collapse
Affiliation(s)
- Pei-Qiang Ma
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Fu-Wen Huang
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Ya-Qi Xie
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Hong-Rui Li
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Hua-Dong Li
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Bin-Cheng Yin
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832000, China
| |
Collapse
|
30
|
Edwards C, Shah SA, Gebhardt T, Jewell CM. Exploiting Unique Features of Microneedles to Modulate Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302410. [PMID: 37380199 PMCID: PMC10753036 DOI: 10.1002/adma.202302410] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/01/2023] [Indexed: 06/30/2023]
Abstract
Microneedle arrays (MNAs) are small patches containing hundreds of short projections that deliver signals directly to dermal layers without causing pain. These technologies are of special interest for immunotherapy and vaccine delivery because they directly target immune cells concentrated in the skin. The targeting abilities of MNAs result in efficient immune responses-often more protective or therapeutic-compared to conventional needle delivery. MNAs also offer logistical benefits, such as self-administration and transportation without refrigeration. Thus, numerous preclinical and clinical studies are exploring these technologies. Here the unique advantages of MNA, as well as critical challenges-such as manufacturing and sterility issues-the field faces to enable widespread deployment are discussed. How MNA design parameters can be exploited for controlled release of vaccines and immunotherapies, and the application to preclinical models of infection, cancer, autoimmunity, and allergies are explained. Specific strategies are also discussed to reduce off-target effects compared to conventional vaccine delivery routes, and novel chemical and manufacturing controls that enable cargo stability in MNAs across flexible intervals and temperatures. Clinical research using MNAs is then examined. Drawbacks of MNAs and the implications, and emerging opportunities to exploit MNAs for immune engineering and clinical use are concluded.
Collapse
Affiliation(s)
- Camilla Edwards
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Shrey A Shah
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Thomas Gebhardt
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, VIC, 3000, Australia
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- US Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, 21201, USA
- Robert E. Fischell Institute for Biomedical Devices, College Park, MD, 20742, USA
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, 21201, USA
| |
Collapse
|
31
|
Browne D, Briggs F, Asuri P. Role of Polymer Concentration on the Release Rates of Proteins from Single- and Double-Network Hydrogels. Int J Mol Sci 2023; 24:16970. [PMID: 38069293 PMCID: PMC10707672 DOI: 10.3390/ijms242316970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Controlled delivery of proteins has immense potential for the treatment of various human diseases, but effective strategies for their delivery are required before this potential can be fully realized. Recent research has identified hydrogels as a promising option for the controlled delivery of therapeutic proteins, owing to their ability to respond to diverse chemical and biological stimuli, as well as their customizable properties that allow for desired delivery rates. This study utilized alginate and chitosan as model polymers to investigate the effects of hydrogel properties on protein release rates. The results demonstrated that polymer properties, concentration, and crosslinking density, as well as their responses to pH, can be tailored to regulate protein release rates. The study also revealed that hydrogels may be combined to create double-network hydrogels to provide an additional metric to control protein release rates. Furthermore, the hydrogel scaffolds were also found to preserve the long-term function and structure of encapsulated proteins before their release from the hydrogels. In conclusion, this research demonstrates the significance of integrating porosity and response to stimuli as orthogonal control parameters when designing hydrogel-based scaffolds for therapeutic protein release.
Collapse
Affiliation(s)
| | | | - Prashanth Asuri
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053, USA; (D.B.); (F.B.)
| |
Collapse
|
32
|
Zhang K, Zhang MX, Meng XX, Zhu J, Wang JJ, He YF, Li YH, Zhao SC, Shi ZM, Zheng LN, Han T, Hong W. Targeting GPR65 alleviates hepatic inflammation and fibrosis by suppressing the JNK and NF-κB pathways. Mil Med Res 2023; 10:56. [PMID: 38001521 PMCID: PMC10675918 DOI: 10.1186/s40779-023-00494-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND G-protein coupled receptors (GPCRs) are recognized as attractive targets for drug therapy. However, it remains poorly understood how GPCRs, except for a few chemokine receptors, regulate the progression of liver fibrosis. Here, we aimed to reveal the role of GPR65, a proton-sensing receptor, in liver fibrosis and to elucidate the underlying mechanism. METHODS The expression level of GPR65 was evaluated in both human and mouse fibrotic livers. Furthermore, Gpr65-deficient mice were treated with either bile duct ligation (BDL) for 21 d or carbon tetrachloride (CCl4) for 8 weeks to investigate the role of GPR65 in liver fibrosis. A combination of experimental approaches, including Western blotting, quantitative real-time reverse transcription‑polymerase chain reaction (qRT-PCR), and enzyme-linked immunosorbent assay (ELISA), confocal microscopy and rescue studies, were used to explore the underlying mechanisms of GPR65's action in liver fibrosis. Additionally, the therapeutic potential of GPR65 inhibitor in the development of liver fibrosis was investigated. RESULTS We found that hepatic macrophages (HMs)-enriched GPR65 was upregulated in both human and mouse fibrotic livers. Moreover, knockout of Gpr65 significantly alleviated BDL- and CCl4-induced liver inflammation, injury and fibrosis in vivo, and mouse bone marrow transplantation (BMT) experiments further demonstrated that the protective effect of Gpr65 knockout is primarily mediated by bone marrow-derived macrophages (BMMs). Additionally, in vitro data demonstrated that Gpr65 silencing and GPR65 antagonist inhibited, while GPR65 overexpression and application of GPR65 endogenous and exogenous agonists enhanced the expression and release of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and transforming growth factor-β (TGF-β), all of which subsequently promoted the activation of hepatic stellate cells (HSCs) and the damage of hepatocytes (HCs). Mechanistically, GPR65 overexpression, the acidic pH and GPR65 exogenous agonist induced up-regulation of TNF-α and IL-6 via the Gαq-Ca2+-JNK/NF-κB pathways, while promoted the expression of TGF-β through the Gαq-Ca2+-MLK3-MKK7-JNK pathway. Notably, pharmacological GPR65 inhibition retarded the development of inflammation, HCs injury and fibrosis in vivo. CONCLUSIONS GPR65 is a major regulator that modulates the progression of liver fibrosis. Thus, targeting GPR65 could be an effective therapeutic strategy for the prevention of liver fibrosis.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Meng-Xia Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xiao-Xiang Meng
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Jing Zhu
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Jia-Jun Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yi-Fan He
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ye-Hua Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Si-Cong Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Zhe-Min Shi
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Li-Na Zheng
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Tao Han
- Department of Hepatology and Gastroenterology, Tianjin Union Medical Center, Tianjin Medical University, Tianjin Union Medical Center affiliated to Nankai University, Tianjin, 300000, China.
| | - Wei Hong
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
33
|
Stepanova M, Nikiforov A, Tennikova T, Korzhikova-Vlakh E. Polypeptide-Based Systems: From Synthesis to Application in Drug Delivery. Pharmaceutics 2023; 15:2641. [PMID: 38004619 PMCID: PMC10674432 DOI: 10.3390/pharmaceutics15112641] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Synthetic polypeptides are biocompatible and biodegradable macromolecules whose composition and architecture can vary over a wide range. Their unique ability to form secondary structures, as well as different pathways of modification and biofunctionalization due to the diversity of amino acids, provide variation in the physicochemical and biological properties of polypeptide-containing materials. In this review article, we summarize the advances in the synthesis of polypeptides and their copolymers and the application of these systems for drug delivery in the form of (nano)particles or hydrogels. The issues, such as the diversity of polypeptide-containing (nano)particle types, the methods for their preparation and drug loading, as well as the influence of physicochemical characteristics on stability, degradability, cellular uptake, cytotoxicity, hemolysis, and immunogenicity of polypeptide-containing nanoparticles and their drug formulations, are comprehensively discussed. Finally, recent advances in the development of certain drug nanoformulations for peptides, proteins, gene delivery, cancer therapy, and antimicrobial and anti-inflammatory systems are summarized.
Collapse
Affiliation(s)
- Mariia Stepanova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| | - Alexey Nikiforov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Universitetskiy pr. 26, Petergof, 198504 St. Petersburg, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| |
Collapse
|
34
|
Esperante D, Gutiérrez MIM, Issa ME, Schcolnik-Cabrera A, Mendlovic F. Similarities and divergences in the metabolism of immune cells in cancer and helminthic infections. Front Oncol 2023; 13:1251355. [PMID: 38044996 PMCID: PMC10690632 DOI: 10.3389/fonc.2023.1251355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/16/2023] [Indexed: 12/05/2023] Open
Abstract
Energetic and nutritional requirements play a crucial role in shaping the immune cells that infiltrate tumor and parasite infection sites. The dynamic interaction between immune cells and the microenvironment, whether in the context of tumor or helminth infection, is essential for understanding the mechanisms of immunological polarization and developing strategies to manipulate them in order to promote a functional and efficient immune response that could aid in the treatment of these conditions. In this review, we present an overview of the immune response triggered during tumorigenesis and establishment of helminth infections, highlighting the transition to chronicity in both cases. We discuss the energetic demands of immune cells under normal conditions and in the presence of tumors and helminths. Additionally, we compare the metabolic changes that occur in the tumor microenvironment and the infection site, emphasizing the alterations that are induced to redirect the immune response, thereby promoting the survival of cancer cells or helminths. This emerging discipline provides valuable insights into disease pathogenesis. We also provide examples of novel strategies to enhance immune activity by targeting metabolic pathways that shape immune phenotypes, with the aim of achieving positive outcomes in cancer and helminth infections.
Collapse
Affiliation(s)
- Diego Esperante
- Plan de Estudios Combinados en Medicina (PECEM), Facultad de Medicina, Universidad Nacional Autonóma de México (UNAM), Mexico City, Mexico
| | - Mónica Itzel Martínez Gutiérrez
- Plan de Estudios Combinados en Medicina (PECEM), Facultad de Medicina, Universidad Nacional Autonóma de México (UNAM), Mexico City, Mexico
| | - Mark E. Issa
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, United States
| | - Alejandro Schcolnik-Cabrera
- Département de Biochimie et Médicine Moléculaire, Université de Montréal, Succursale Centre-Ville, Montréal, QC, Canada
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada
| | - Fela Mendlovic
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, Huixquilucan, Mexico
| |
Collapse
|
35
|
Dash P, Samal S, Prasad Panda G, Piras AM, Dash M. Polymeric Nanoformulation of Zoledronic Acid Rescues Osteoblasts from the Harmful Effect of its Native Form: An In Vitro Investigation of Cytotoxic Potential on Osteoblasts and Osteosarcoma Cells. Macromol Biosci 2023; 23:e2300211. [PMID: 37384621 DOI: 10.1002/mabi.202300211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Osteosarcoma (OS) is a malignant tumor, fatal for pediatric patients who do not respond to chemotherapy, alternative therapies and drugs can provide better outcomes. Zoledronic acid (Zol) belonging to the class of bisphosphonates (BPs) has a direct antitumor ability to prevent Ras GTPases modification and stimulate apoptosis. Despite advances in maintaining balance in skeletal events and direct anticancer properties, Zol causes cytotoxicity to normal healthy pre-osteoblast cells, hampering mineralization and differentiation. The study reports the preparation and evaluation of a nanoformulation that can diminish the existing drawbacks of native Zol. The cytotoxic effect is evaluated on bone cancer cells and healthy bone cells with three different cell lines namely, K7M2 (mouse OS cell line), SaOS2 (human OS cell line), and MC3T3E1 (healthy cell counterpart). It is observed that Zol nanoformulation is uptaken more (95%) in K7M2 whereas in MC3T3E1, the percent population internalizing nanoparticles (NPs) is 45%. Zol has a sustained release of 15% after 96 h from the NP which leads to a rescuing effect on the normal pre-osteoblast cells. In conclusion, it can be stated that Zol nanoformulation can be used as a good platform for a sustained release system with minimum side effects to normal bone cells.
Collapse
Affiliation(s)
- Pratigyan Dash
- Institute of Life Sciences, DBT-ILS, ILS, Nalco Nagar Rd, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
- School of Biotechnology, KIIT University, KIIT Rd, Patia, Bhubaneswar, Odisha, 751024, India
| | - Sasmita Samal
- Institute of Life Sciences, DBT-ILS, ILS, Nalco Nagar Rd, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
- School of Biotechnology, KIIT University, KIIT Rd, Patia, Bhubaneswar, Odisha, 751024, India
| | - Gyanendra Prasad Panda
- Institute of Life Sciences, DBT-ILS, ILS, Nalco Nagar Rd, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
| | - Anna Maria Piras
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 12, Pisa, PI, 56126, Italy
| | - Mamoni Dash
- Institute of Life Sciences, DBT-ILS, ILS, Nalco Nagar Rd, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
| |
Collapse
|
36
|
Yoo S, Choi S, Kim I, Kim IS. Hypoxic regulation of extracellular vesicles: Implications for cancer therapy. J Control Release 2023; 363:201-220. [PMID: 37739015 DOI: 10.1016/j.jconrel.2023.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/18/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Extracellular vesicles (EVs) play a pivotal role in intercellular communication and have been implicated in cancer progression. Hypoxia, a pervasive hallmark of cancer, is known to regulate EV biogenesis and function. Hypoxic EVs contain a specific set of proteins, nucleic acids, lipids, and metabolites, capable of reprogramming the biology and fate of recipient cells. Enhancing the intrinsic therapeutic efficacy of EVs can be achieved by strategically modifying their structure and contents. Moreover, the use of EVs as drug delivery vehicles holds great promise for cancer treatment. However, various hurdles must be overcome to enable their clinical application as cancer therapeutics. In this review, we aim to discuss the current knowledge on the hypoxic regulation of EVs. Additionally, we will describe the underlying mechanisms by which EVs contribute to cancer progression in hypoxia and outline the progress and limitations of hypoxia-related EV therapeutics for cancer.
Collapse
Affiliation(s)
- Seongkyeong Yoo
- Department of Pharmacology and Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, South Korea; Research Center for Controlling Intercellular Communication, Inha University College of Medicine, Incheon 22212, South Korea
| | - Sanga Choi
- Department of Pharmacology and Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, South Korea; Research Center for Controlling Intercellular Communication, Inha University College of Medicine, Incheon 22212, South Korea
| | - Iljin Kim
- Department of Pharmacology and Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, South Korea; Research Center for Controlling Intercellular Communication, Inha University College of Medicine, Incheon 22212, South Korea.
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, South Korea; Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute Science and Technology, Seoul 02792, South Korea.
| |
Collapse
|
37
|
Hajjar S, Zhou X. pH sensing at the intersection of tissue homeostasis and inflammation. Trends Immunol 2023; 44:807-825. [PMID: 37714775 PMCID: PMC10543622 DOI: 10.1016/j.it.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/13/2023] [Accepted: 08/13/2023] [Indexed: 09/17/2023]
Abstract
pH is tightly maintained at cellular, tissue, and systemic levels, and altered pH - particularly in the acidic range - is associated with infection, injury, solid tumors, and physiological and pathological inflammation. However, how pH is sensed and regulated and how it influences immune responses remain poorly understood at the tissue level. Applying conceptual frameworks of homeostatic and inflammatory circuitries, we categorize cellular and tissue components engaged in pH regulation, drawing parallels from established cases in physiology. By expressing various intracellular (pHi) and extracellular pH (pHe)-sensing receptors, the immune system may integrate information on tissue and cellular states into the regulation of homeostatic and inflammatory programs. We introduce the novel concept of resistance and adaptation responses to rationalize pH-dependent immunomodulation intertwined with homeostatic equilibrium and inflammatory control. We discuss emerging challenges and opportunities in understanding the immunological roles of pH sensing, which might reveal new strategies to combat inflammation and restore tissue homeostasis.
Collapse
Affiliation(s)
- Stephanie Hajjar
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, 300 Longwood Ave, Boston, MA 02115, USA
| | - Xu Zhou
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, 300 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
38
|
Yu M, He T, Wang Q, Cui C. Unraveling the Possibilities: Recent Progress in DNA Biosensing. BIOSENSORS 2023; 13:889. [PMID: 37754122 PMCID: PMC10526863 DOI: 10.3390/bios13090889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/29/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023]
Abstract
Due to the advantages of its numerous modification sites, predictable structure, high thermal stability, and excellent biocompatibility, DNA is the ideal choice as a key component of biosensors. DNA biosensors offer significant advantages over existing bioanalytical techniques, addressing limitations in sensitivity, selectivity, and limit of detection. Consequently, they have attracted significant attention from researchers worldwide. Here, we exemplify four foundational categories of functional nucleic acids: aptamers, DNAzymes, i-motifs, and G-quadruplexes, from the perspective of the structure-driven functionality in constructing DNA biosensors. Furthermore, we provide a concise overview of the design and detection mechanisms employed in these DNA biosensors. Noteworthy advantages of DNA as a sensor component, including its programmable structure, reaction predictility, exceptional specificity, excellent sensitivity, and thermal stability, are highlighted. These characteristics contribute to the efficacy and reliability of DNA biosensors. Despite their great potential, challenges remain for the successful application of DNA biosensors, spanning storage and detection conditions, as well as associated costs. To overcome these limitations, we propose potential strategies that can be implemented to solve these issues. By offering these insights, we aim to inspire subsequent researchers in related fields.
Collapse
Affiliation(s)
| | | | | | - Cheng Cui
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China; (M.Y.)
| |
Collapse
|
39
|
Tafech A, Jacquet P, Beaujean C, Fertin A, Usson Y, Stéphanou A. Characterization of the Intracellular Acidity Regulation of Brain Tumor Cells and Consequences for Therapeutic Optimization of Temozolomide. BIOLOGY 2023; 12:1221. [PMID: 37759620 PMCID: PMC10525637 DOI: 10.3390/biology12091221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
A well-known feature of tumor cells is high glycolytic activity, leading to acidification of the tumor microenvironment through extensive lactate production. This acidosis promotes processes such as metastasis, aggressiveness, and invasiveness, which have been associated with a worse clinical prognosis. Moreover, the function and expression of transporters involved in regulation of intracellular pH might be altered. In this study, the capacity of tumor cells to regulate their intracellular pH when exposed to a range of pH from very acidic to basic was characterized in two glioma cell lines (F98 and U87) using a new recently published method of fluorescence imaging. Our results show that the regulation of acidity in tumors is not the same for the two investigated cell lines; U87 cells are able to reduce their intracellular acidity, whereas F98 cells do not exhibit this property. On the other hand, F98 cells show a higher level of resistance to acidity than U87 cells. Intracellular regulation of acidity appears to be highly cell-dependent, with different mechanisms activated to preserve cell integrity and function. This characterization was performed on 2D monolayer cultures and 3D spheroids. Spatial heterogeneities were exhibited in 3D, suggesting a spatially modulated regulation in this context. Based on the corpus of knowledge available in the literature, we propose plausible mechanisms to interpret our results, together with some new lines of investigation to validate our hypotheses. Our results might have implications on therapy, since the activity of temozolomide is highly pH-dependent. We show that the drug efficiency can be enhanced, depending on the cell type, by manipulating the extracellular pH. Therefore, personalized treatment involving a combination of temozolomide and pH-regulating agents can be considered.
Collapse
Affiliation(s)
| | | | | | | | | | - Angélique Stéphanou
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France; (A.T.); (P.J.); (C.B.); (A.F.); (Y.U.)
| |
Collapse
|
40
|
Conza D, Mirra P, Fiory F, Insabato L, Nicolò A, Beguinot F, Ulianich L. Metformin: A New Inhibitor of the Wnt Signaling Pathway in Cancer. Cells 2023; 12:2182. [PMID: 37681914 PMCID: PMC10486775 DOI: 10.3390/cells12172182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
The biguanide drug metformin is widely used in type 2 diabetes mellitus therapy, due to its ability to decrease serum glucose levels, mainly by reducing hepatic gluconeogenesis and glycogenolysis. A considerable number of studies have shown that metformin, besides its antidiabetic action, can improve other disease states, such as polycystic ovary disease, acute kidney injury, neurological disorders, cognitive impairment and renal damage. In addition, metformin is well known to suppress the growth and progression of different types of cancer cells both in vitro and in vivo. Accordingly, several epidemiological studies suggest that metformin is capable of lowering cancer risk and reducing the rate of cancer deaths among diabetic patients. The antitumoral effects of metformin have been proposed to be mainly mediated by the activation of the AMP-activated protein kinase (AMPK). However, a number of signaling pathways, both dependent and independent of AMPK activation, have been reported to be involved in metformin antitumoral action. Among these, the Wingless and Int signaling pathway have recently been included. Here, we will focus our attention on the main molecular mechanisms involved.
Collapse
Affiliation(s)
- Domenico Conza
- URT Genomics of Diabetes, Institute of Endocrinology and Experimental Oncology, National Research Council & Department of Translational Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.C.); (P.M.); (F.F.); (A.N.); (F.B.)
| | - Paola Mirra
- URT Genomics of Diabetes, Institute of Endocrinology and Experimental Oncology, National Research Council & Department of Translational Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.C.); (P.M.); (F.F.); (A.N.); (F.B.)
| | - Francesca Fiory
- URT Genomics of Diabetes, Institute of Endocrinology and Experimental Oncology, National Research Council & Department of Translational Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.C.); (P.M.); (F.F.); (A.N.); (F.B.)
| | - Luigi Insabato
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Antonella Nicolò
- URT Genomics of Diabetes, Institute of Endocrinology and Experimental Oncology, National Research Council & Department of Translational Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.C.); (P.M.); (F.F.); (A.N.); (F.B.)
| | - Francesco Beguinot
- URT Genomics of Diabetes, Institute of Endocrinology and Experimental Oncology, National Research Council & Department of Translational Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.C.); (P.M.); (F.F.); (A.N.); (F.B.)
| | - Luca Ulianich
- URT Genomics of Diabetes, Institute of Endocrinology and Experimental Oncology, National Research Council & Department of Translational Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.C.); (P.M.); (F.F.); (A.N.); (F.B.)
| |
Collapse
|
41
|
N SR, Piao H, Choi G, Choy JH. Curcumin in exfoliated layered double hydroxide nanoparticles: Pre-clinical evaluation as lung cancer nanomedicine. Colloids Surf B Biointerfaces 2023; 228:113386. [PMID: 37290202 DOI: 10.1016/j.colsurfb.2023.113386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/05/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023]
Abstract
Rationally designed ∼ 100 nm sized curcumin (CRC) loaded exfoliated layered double hydroxide nanoparticles (X-LDH/CRC-NPs) have been tested for its suitability as nanomedicine in non-small cell lung cancer (NSCLC) cell lines (A549 and NCI-H460) resulting enhanced apoptosis. Preclinical evaluation on A549 tumor bearing nude mouse model confirmed that such a well-designed X-LDH/CRC NPs would be highly advantageous for treating lung cancers.
Collapse
Affiliation(s)
- Sanoj Rejinold N
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, the Republic of Korea
| | - Huiyan Piao
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, the Republic of Korea
| | - Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, the Republic of Korea; College of Science and Technology, Dankook University, Cheonan 31116, the Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, the Republic of Korea
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, the Republic of Korea; Department of Pre-medical Course, College of Medicine, Dankook University, Cheonan 31116, the Republic of Korea; Division of Natural Sciences, The National Academy of Sciences, Seoul 06579, the Republic of Korea; International Research Frontier Initiative (IRFI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan.
| |
Collapse
|
42
|
Tao H, Zhong X, Zeng A, Song L. Unveiling the veil of lactate in tumor-associated macrophages: a successful strategy for immunometabolic therapy. Front Immunol 2023; 14:1208870. [PMID: 37564659 PMCID: PMC10411982 DOI: 10.3389/fimmu.2023.1208870] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023] Open
Abstract
Lactate, traditionally regarded as a metabolic waste product at the terminal of the glycolysis process, has recently been found to have multifaceted functional roles in metabolism and beyond. A metabolic reprogramming phenomenon commonly seen in tumor cells, known as the "Warburg effect," sees high levels of aerobic glycolysis result in an excessive production of lactate. This lactate serves as a substrate that sustains not only the survival of cancer cells but also immune cells. However, it also inhibits the function of tumor-associated macrophages (TAMs), a group of innate immune cells ubiquitously present in solid tumors, thereby facilitating the immune evasion of malignant tumor cells. Characterized by their high plasticity, TAMs are generally divided into the pro-inflammatory M1 phenotype and the pro-tumour M2 phenotype. Through a process of 'education' by lactate, TAMs tend to adopt an immunosuppressive phenotype and collaborate with tumor cells to promote angiogenesis. Additionally, there is growing evidence linking metabolic reprogramming with epigenetic modifications, suggesting the participation of histone modification in diverse cellular events within the tumor microenvironment (TME). In this review, we delve into recent discoveries concerning lactate metabolism in tumors, with a particular focus on the impact of lactate on the function of TAMs. We aim to consolidate the molecular mechanisms underlying lactate-induced TAM polarization and angiogenesis and explore the lactate-mediated crosstalk between TAMs and tumor cells. Finally, we also touch upon the latest progress in immunometabolic therapies and drug delivery strategies targeting glycolysis and lactate production, offering new perspectives for future therapeutic approaches.
Collapse
Affiliation(s)
- Hongxia Tao
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xuansheng Zhong
- Clinical Medicine Department, Bengbu Medical College, Bengbu, China
| | - Anqi Zeng
- Institute of Translational Pharmacology and Clinical Application, Sichuan Academy of Chinese Medical Science, Chengdu, Sichuan, China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
43
|
Tran P, Crawford T, Ragnarsson L, Deuis JR, Mobli M, Sharpe SJ, Schroeder CI, Vetter I. Structural Conformation and Activity of Spider-Derived Inhibitory Cystine Knot Peptide Pn3a Are Modulated by pH. ACS OMEGA 2023; 8:26276-26286. [PMID: 37521635 PMCID: PMC10373202 DOI: 10.1021/acsomega.3c02664] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023]
Abstract
Numerous spider venom-derived gating modifier toxins exhibit conformational heterogeneity during purification by reversed-phase high-performance liquid chromatography (RP-HPLC). This conformational exchange is especially peculiar for peptides containing an inhibitor cystine knot motif, which confers excellent structural stability under conditions that are not conducive to disulfide shuffling. This phenomenon is often attributed to proline cis/trans isomerization but has also been observed in peptides that do not contain a proline residue. Pn3a is one such peptide forming two chromatographically distinguishable peaks that readily interconvert following the purification of either conformer. The nature of this exchange was previously uncharacterized due to the fast rate of conversion in solution, making isolation of the conformers impossible. In the present study, an N-terminal modification of Pn3a enabled the isolation of the individual conformers, allowing activity assays to be conducted on the individual conformers using electrophysiology. The conformers were analyzed separately by nuclear magnetic resonance spectroscopy (NMR) to study their structural differences. RP-HPLC and NMR were used to study the mechanism of exchange. The later-eluting conformer was the active conformer with a rigid structure that corresponds to the published structure of Pn3a, while NMR analysis revealed the earlier-eluting conformer to be inactive and disordered. The exchange was found to be pH-dependent, arising in acidic solutions, possibly due to reversible disruption and formation of intramolecular salt bridges. This study reveals the nature of non-proline conformational exchange observed in Pn3a and possibly other disulfide-rich peptides, highlighting that the structure and activity of some disulfide-stabilized peptides can be dramatically susceptible to disruption.
Collapse
Affiliation(s)
- Poanna Tran
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane, Queensland 4072, Australia
| | - Theo Crawford
- Centre
for Advanced Imaging, The University of
Queensland, Brisbane, Queensland 4072, Australia
| | - Lotten Ragnarsson
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane, Queensland 4072, Australia
| | - Jennifer R. Deuis
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane, Queensland 4072, Australia
| | - Mehdi Mobli
- Centre
for Advanced Imaging, The University of
Queensland, Brisbane, Queensland 4072, Australia
| | - Simon J. Sharpe
- Molecular
Medicine Program, Research Institute, The
Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department
of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Christina I. Schroeder
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane, Queensland 4072, Australia
- Center
for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702-1201, United States
- Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Irina Vetter
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane, Queensland 4072, Australia
- School
of Pharmacy, The University of Queensland, Brisbane, Queensland 4102, Australia
| |
Collapse
|
44
|
Gui W, Giardina SF, Balzarini M, Barany F, Kodadek T. Reversible Assembly of Proteolysis Targeting Chimeras. ACS Chem Biol 2023; 18:1582-1593. [PMID: 37422908 DOI: 10.1021/acschembio.3c00199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
PROteolysis TArgeting Chimeras (PROTACs) are of significant current interest for the development of probe molecules and drug leads. However, they suffer from certain limitations. PROTACs are rule-breaking molecules with sub-optimal cellular permeability, solubility, and other drug-like properties. In particular, they exhibit an unusual dose-response curve where high concentrations of the bivalent molecule inhibit degradation activity, a phenomenon known as the hook effect. This will likely complicate their use in vivo. In this study, we explore a novel approach to create PROTACs that do not exhibit a hook effect. This is achieved by equipping the target protein and E3 ubiquitin ligase ligands with functionalities that undergo rapid and reversible covalent assembly in cellulo. We report the development of Self-Assembled Proteolysis Targeting Chimeras that mediate the degradation of the Von Hippel-Lindau E3 ubiquitin ligase and do not evince a hook effect.
Collapse
Affiliation(s)
- Weijun Gui
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 120 Scripps Way, Jupiter, Florida 33458, United States
| | - Sarah F Giardina
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| | - Madeline Balzarini
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 120 Scripps Way, Jupiter, Florida 33458, United States
| | - Francis Barany
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| | - Thomas Kodadek
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 120 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
45
|
Shafiei G, Jafari-Gharabaghlou D, Farhoudi-Sefidan-Jadid M, Alizadeh E, Fathi M, Zarghami N. Targeted delivery of silibinin via magnetic niosomal nanoparticles: potential application in treatment of colon cancer cells. Front Pharmacol 2023; 14:1174120. [PMID: 37441534 PMCID: PMC10335571 DOI: 10.3389/fphar.2023.1174120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/23/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction: In recent years, various nanoparticles (NPs) have been discovered and synthesized for the targeted therapy of cancer cells. Targeted delivery increases the local concentration of therapeutics and minimizes side effects. Therefore, NPs-mediated targeted drug delivery systems have become a promising approach for the treatment of various cancers. As a result, in the current study, we aimed to design silibinin-loaded magnetic niosomes nanoparticles (MNNPs) and investigate their cytotoxicity property in colorectal cancer cell treatment. Methods: MNPs ferrofluids were prepared and encapsulated into niosomes (NIOs) by the thin film hydration method. Afterward, the morphology, size, and chemical structure of the synthesized MNNPs were evaluated using the TEM, DLS, and FT-IR techniques, respectively. Results and Discussion: The distribution number of MNNPs was obtained at about 50 nm and 70 nm with a surface charge of -19.0 mV by TEM and DLS analysis, respectively. Silibinin loading efficiency in NIOs was about 90%, and the drug release pattern showed a controlled release with a maximum amount of about 49% and 70%, within 4 h in pH = 7.4 and pH = 5.8, respectively. To investigate the cytotoxicity effect, HT-29 cells were treated with the various concentration of the drugs for 24 and 48 h and evaluated by the MTT as well as flow cytometry assays. Obtained results demonstrated promoted cell cytotoxicity of silibinin-loaded MNNPs (5-fold decrease in cell viability) compared to pure silibinin (3-fold decrease in cell viability) while had no significant cytotoxic effect on HEK-293 (normal cell line) cells, and the cellular uptake level of MNNPs by the HT-29 cell line was enhanced compared to the control group. In conclusion, silibinin-loaded MNNPs complex can be considered as an efficient treatment approach for colorectal cancer cells.
Collapse
Affiliation(s)
- Golchin Shafiei
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Jafari-Gharabaghlou
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Farhoudi-Sefidan-Jadid
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| |
Collapse
|
46
|
Demina PA, Khaydukov KV, Babayeva G, Varaksa PO, Atanova AV, Stepanov ME, Nikolaeva ME, Krylov IV, Evstratova II, Pokrovsky VS, Zhigarkov VS, Akasov RA, Egorova TV, Khaydukov EV, Generalova AN. Upconversion Nanoparticles Intercalated in Large Polymer Micelles for Tumor Imaging and Chemo/Photothermal Therapy. Int J Mol Sci 2023; 24:10574. [PMID: 37445751 DOI: 10.3390/ijms241310574] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Frontiers in theranostics are driving the demand for multifunctional nanoagents. Upconversion nanoparticle (UCNP)-based systems activated by near-infrared (NIR) light deeply penetrating biotissue are a powerful tool for the simultaneous diagnosis and therapy of cancer. The intercalation into large polymer micelles of poly(maleic anhydride-alt-1-octadecene) provided the creation of biocompatible UCNPs. The intrinsic properties of UCNPs (core@shell structure NaYF4:Yb3+/Tm3+@NaYF4) embedded in micelles delivered NIR-to-NIR visualization, photothermal therapy, and high drug capacity. Further surface modification of micelles with a thermosensitive polymer (poly-N-vinylcaprolactam) exhibiting a conformation transition provided gradual drug (doxorubicin) release. In addition, the decoration of UCNP micelles with Ag nanoparticles (Ag NPs) synthesized in situ by silver ion reduction enhanced the cytotoxicity of micelles at cell growth temperature. Cell viability assessment on Sk-Br-3, MDA-MB-231, and WI-26 cell lines confirmed this effect. The efficiency of the prepared UCNP complex was evaluated in vivo by Sk-Br-3 xenograft regression in mice for 25 days after peritumoral injection and photoactivation of the lesions with NIR light. The designed polymer micelles hold promise as a photoactivated theranostic agent with quattro-functionalities (NIR absorption, photothermal effect, Ag NP cytotoxicity, and Dox loading) that provides imaging along with chemo- and photothermal therapy enhanced with Ag NPs.
Collapse
Affiliation(s)
- Polina A Demina
- Federal Scientific Research Center «Crystallography and Photonics» of the Russian Academy of Sciences, 119333 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
- Institute of Physics, Technology, and Informational Systems, Moscow State Pedagogical University, 119435 Moscow, Russia
| | - Kirill V Khaydukov
- Federal Scientific Research Center «Crystallography and Photonics» of the Russian Academy of Sciences, 119333 Moscow, Russia
- Institute of Physics, Technology, and Informational Systems, Moscow State Pedagogical University, 119435 Moscow, Russia
| | - Gulalek Babayeva
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 115478 Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Pavel O Varaksa
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 115478 Moscow, Russia
| | - Alexandra V Atanova
- Federal Scientific Research Center «Crystallography and Photonics» of the Russian Academy of Sciences, 119333 Moscow, Russia
| | - Maxim E Stepanov
- Institute of Physics, Technology, and Informational Systems, Moscow State Pedagogical University, 119435 Moscow, Russia
| | - Maria E Nikolaeva
- Institute of Physics, Technology, and Informational Systems, Moscow State Pedagogical University, 119435 Moscow, Russia
| | - Ivan V Krylov
- Federal Scientific Research Center «Crystallography and Photonics» of the Russian Academy of Sciences, 119333 Moscow, Russia
| | - Irina I Evstratova
- Institute of Physics, Technology, and Informational Systems, Moscow State Pedagogical University, 119435 Moscow, Russia
| | - Vadim S Pokrovsky
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 115478 Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Vyacheslav S Zhigarkov
- Federal Scientific Research Center «Crystallography and Photonics» of the Russian Academy of Sciences, 119333 Moscow, Russia
| | - Roman A Akasov
- Federal Scientific Research Center «Crystallography and Photonics» of the Russian Academy of Sciences, 119333 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
- Institute of Physics, Technology, and Informational Systems, Moscow State Pedagogical University, 119435 Moscow, Russia
- Institute of Molecular Theranostics, Sechenov University, 119991 Moscow, Russia
| | - Tatiana V Egorova
- Institute of Physics, Technology, and Informational Systems, Moscow State Pedagogical University, 119435 Moscow, Russia
| | - Evgeny V Khaydukov
- Federal Scientific Research Center «Crystallography and Photonics» of the Russian Academy of Sciences, 119333 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
- Institute of Physics, Technology, and Informational Systems, Moscow State Pedagogical University, 119435 Moscow, Russia
- Institute of Molecular Theranostics, Sechenov University, 119991 Moscow, Russia
| | - Alla N Generalova
- Federal Scientific Research Center «Crystallography and Photonics» of the Russian Academy of Sciences, 119333 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
| |
Collapse
|
47
|
Sridhar V, Yildiz E, Rodríguez‐Camargo A, Lyu X, Yao L, Wrede P, Aghakhani A, Akolpoglu BM, Podjaski F, Lotsch BV, Sitti M. Designing Covalent Organic Framework-Based Light-Driven Microswimmers toward Therapeutic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301126. [PMID: 37003701 PMCID: PMC11475396 DOI: 10.1002/adma.202301126] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/18/2023] [Indexed: 06/19/2023]
Abstract
While micromachines with tailored functionalities enable therapeutic applications in biological environments, their controlled motion and targeted drug delivery in biological media require sophisticated designs for practical applications. Covalent organic frameworks (COFs), a new generation of crystalline and nanoporous polymers, offer new perspectives for light-driven microswimmers in heterogeneous biological environments including intraocular fluids, thus setting the stage for biomedical applications such as retinal drug delivery. Two different types of COFs, uniformly spherical TABP-PDA-COF sub-micrometer particles and texturally nanoporous, micrometer-sized TpAzo-COF particles are described and compared as light-driven microrobots. They can be used as highly efficient visible-light-driven drug carriers in aqueous ionic and cellular media. Their absorption ranging down to red light enables phototaxis even in deeper and viscous biological media, while the organic nature of COFs ensures their biocompatibility. Their inherently porous structures with ≈2.6 and ≈3.4 nm pores, and large surface areas allow for targeted and efficient drug loading even for insoluble drugs, which can be released on demand. Additionally, indocyanine green (ICG) dye loading in the pores enables photoacoustic imaging, optical coherence tomography, and hyperthermia in operando conditions. This real-time visualization of the drug-loaded COF microswimmers enables unique insights into the action of photoactive porous drug carriers for therapeutic applications.
Collapse
Affiliation(s)
- Varun Sridhar
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Erdost Yildiz
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Andrés Rodríguez‐Camargo
- Nanochemistry DepartmentMax Planck Institute for Solid State Research70569StuttgartGermany
- Department of ChemistryUniversity of Stuttgart70569StuttgartGermany
| | - Xianglong Lyu
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Liang Yao
- Nanochemistry DepartmentMax Planck Institute for Solid State Research70569StuttgartGermany
| | - Paul Wrede
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Institute for Biomedical EngineeringETH Zurich8092ZurichSwitzerland
| | - Amirreza Aghakhani
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Birgul M. Akolpoglu
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Institute for Biomedical EngineeringETH Zurich8092ZurichSwitzerland
| | - Filip Podjaski
- Nanochemistry DepartmentMax Planck Institute for Solid State Research70569StuttgartGermany
- Department of ChemistryImperial College LondonW12 0BZLondonUK
| | - Bettina V. Lotsch
- Nanochemistry DepartmentMax Planck Institute for Solid State Research70569StuttgartGermany
- Department of ChemistryUniversity of Stuttgart70569StuttgartGermany
- Cluster of Excellence e‐conversion85748Lichtenbergstrasse 4GarchingGermany
- Department of ChemistryUniversity of Munich (LMU)81377MunichGermany
| | - Metin Sitti
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Institute for Biomedical EngineeringETH Zurich8092ZurichSwitzerland
- School of Medicine and College of EngineeringKoç University34450IstanbulTurkey
| |
Collapse
|
48
|
Yin B, Wong WK, Ng YM, Yang M, Leung FKC, Wong DSH. Smart Design of Nanostructures for Boosting Tumor Immunogenicity in Cancer Immunotherapy. Pharmaceutics 2023; 15:pharmaceutics15051427. [PMID: 37242669 DOI: 10.3390/pharmaceutics15051427] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Although tumor immunotherapy has emerged as a promising therapeutic method for oncology, it encounters several limitations, especially concerning low response rates and potential off-targets that elicit side effects. Furthermore, tumor immunogenicity is the critical factor that predicts the success rate of immunotherapy, which can be boosted by the application of nanotechnology. Herein, we introduce the current approach of cancer immunotherapy and its challenges and the general methods to enhance tumor immunogenicity. Importantly, this review highlights the integration of anticancer chemo/immuno-based drugs with multifunctional nanomedicines that possess imaging modality to determine tumor location and can respond to stimuli, such as light, pH, magnetic field, or metabolic changes, to trigger chemotherapy, phototherapy, radiotherapy, or catalytic therapy to upregulate tumor immunogenicity. This promotion rouses immunological memory, such as enhanced immunogenic cell death, promoted maturation of dendritic cells, and activation of tumor-specific T cells against cancer. Finally, we express the related challenges and personal perspectives of bioengineered nanomaterials for future cancer immunotherapy.
Collapse
Affiliation(s)
- Bohan Yin
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Wai-Ki Wong
- State Key Laboratory for Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Yip-Ming Ng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Franco King-Chi Leung
- State Key Laboratory for Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Dexter Siu-Hong Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| |
Collapse
|
49
|
Ji HB, Kim CR, Min CH, Han JH, Kim S, Lee C, Choy YB. Fe-containing metal-organic framework with D-penicillamine for cancer-specific hydrogen peroxide generation and enhanced chemodynamic therapy. Bioeng Transl Med 2023; 8:e10477. [PMID: 37206221 PMCID: PMC10189484 DOI: 10.1002/btm2.10477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 02/04/2023] Open
Abstract
Chemodynamic therapy (CDT) is based on the production of cytotoxic reactive oxygen species, such as hydroxyl radicals (•OH). Thus, CDT can be advantageous when it is cancer-specific, in terms of efficacy and safety. Therefore, we propose NH2-MIL-101(Fe), a Fe-containing metal-organic framework (MOF), as a carrier of Cu (copper)-chelating agent, d-penicillamine (d-pen; i.e., the NH2-MIL-101(Fe)/d-pen), as well as a catalyst with Fe-metal clusters for Fenton reaction. NH2-MIL-101(Fe)/d-pen in the form of nanoparticles was efficiently taken into cancer cells and released d-pen in a sustained manner. The released d-pen chelated Cu that is highly expressed in cancer environments and this produces extra H2O2, which is then decomposed by Fe in NH2-MIL-101(Fe) to generate •OH. Therefore, the cytotoxicity of NH2-MIL-101(Fe)/d-pen was observed in cancer cells, not in normal cells. We also suggest a formulation of NH2-MIL-101(Fe)/d-pen combined with NH2-MIL-101(Fe) loaded with the chemotherapeutic drug, irinotecan (CPT-11; NH2-MIL-101(Fe)/CPT-11). When intratumorally injected into tumor-bearing mice in vivo, this combined formulation exhibited the most prominent anticancer effects among all tested formulations, owing to the synergistic effect of CDT and chemotherapy.
Collapse
Affiliation(s)
- Han Bi Ji
- Interdisciplinary Program in BioengineeringCollege of Engineering, Seoul National UniversitySeoulRepublic of Korea
| | - Cho Rim Kim
- Interdisciplinary Program in BioengineeringCollege of Engineering, Seoul National UniversitySeoulRepublic of Korea
| | - Chang Hee Min
- Interdisciplinary Program in BioengineeringCollege of Engineering, Seoul National UniversitySeoulRepublic of Korea
| | - Jae Hoon Han
- Interdisciplinary Program in BioengineeringCollege of Engineering, Seoul National UniversitySeoulRepublic of Korea
| | - Se‐Na Kim
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National UniversitySeoulRepublic of Korea
| | - Cheol Lee
- Department of PathologySeoul National University College of MedicineSeoulRepublic of Korea
| | - Young Bin Choy
- Interdisciplinary Program in BioengineeringCollege of Engineering, Seoul National UniversitySeoulRepublic of Korea
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National UniversitySeoulRepublic of Korea
- Department of Biomedical EngineeringSeoul National University College of MedicineSeoulRepublic of Korea
| |
Collapse
|
50
|
Kim S, Lee W, Park H, Kim K. Tumor Microenvironment-Responsive 6-Mercaptopurine-Releasing Injectable Hydrogel for Colon Cancer Treatment. Gels 2023; 9:gels9040319. [PMID: 37102931 PMCID: PMC10138092 DOI: 10.3390/gels9040319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/02/2023] [Accepted: 04/08/2023] [Indexed: 04/28/2023] Open
Abstract
Colon cancer is a significant health concern. The development of effective drug delivery systems is critical for improving treatment outcomes. In this study, we developed a drug delivery system for colon cancer treatment by embedding 6-mercaptopurine (6-MP), an anticancer drug, in a thiolated gelatin/polyethylene glycol diacrylate hydrogel (6MP-GPGel). The 6MP-GPGel continuously released 6-MP, the anticancer drug. The release rate of 6-MP was further accelerated in an acidic or glutathione environment that mimicked a tumor microenvironment. In addition, when pure 6-MP was used for treatment, cancer cells proliferated again from day 5, whereas a continuous supply of 6-MP from the 6MP-GPGel continuously suppressed the survival rate of cancer cells. In conclusion, our study demonstrates that embedding 6-MP in a hydrogel formulation can improve the efficacy of colon cancer treatment and may serve as a promising minimally invasive and localized drug delivery system for future development.
Collapse
Affiliation(s)
- Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul 22012, Republic of Korea
| | - Wonjeong Lee
- Department of Chemical & Biochemical Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul 22012, Republic of Korea
| | - Heewon Park
- Department of Chemical & Biochemical Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul 22012, Republic of Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul 22012, Republic of Korea
| |
Collapse
|