1
|
Sack AS, Samera GJ, Hissen A, Wester RJ, Garcia E, Adams PJ, Snutch TP. A structural analysis of the splice-specific functional impact of the pathogenic familial hemiplegic migraine type 1 S218L mutation on Ca v2.1 P/Q-type channel gating. Mol Brain 2024; 17:82. [PMID: 39568055 PMCID: PMC11580629 DOI: 10.1186/s13041-024-01152-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/20/2024] [Indexed: 11/22/2024] Open
Abstract
P/Q-type (Cav2.1) calcium channels mediate Ca2+ influx essential for neuronal excitability and synaptic transmission. The CACNA1A gene, encoding the Cav2.1 pore forming subunit, is highly expressed throughout the mammalian central nervous system. Alternative splicing of Cav2.1 pre-mRNA generates diverse channel isoforms with distinct biophysical properties and drug affinities, which are differentially expressed in nerve tissues. Splicing variants can also affect channel function under pathological conditions although their phenotypic implication concerning inherited neurological disorders linked to CACNA1A mutations remains unknown. Here, we quantified the expression of Cav2.1 exon 24 (e24) spliced transcripts in human nervous system samples, finding different levels of expression within discrete regions. The corresponding Cav2.1 variants, differing by the presence (+) or absence (Δ) of Ser-Ser-Thr-Arg residues (SSTR) in the domain III S3-S4 linker, were functionally characterized using patch clamp recordings. Further, the + /ΔSSTR isoforms were used to demonstrate the differential impact of the Familial Hemiplegic Migraine Type 1 (FHM-1) S218L mutation, located in the domain I S4-S5 linker, on the molecular structure and electrophysiological properties of Cav2.1 isoforms. S218L has a prominent effect on the voltage-dependence of activation of +SSTR channels when compared to ΔSSTR, indicating a differential effect of the mutation depending on splice-variant context. Structural modeling based upon Cav2.1 cryo-EM data provided further insight reflecting independent contributions of amino acids in distant regions of the channel on gating properties. Our modelling indicates that by increasing hydrophobicity the Leu218 mutation contributes to stabilizing a structural conformation in which the domain I S4-S5 linker is oriented alongside the inner plasma membrane, similar to that occurring when S4 is translocated upon activation.The SSTR insertion appears to exert an influence in the local electric field of domain III due to an change in the distribution of positively charged regions surrounding the voltage sensing domain, which we hypothesize impacts its movement during the transition to the open state. In summary, we reveal molecular changes correlated with distinct functional effects provoked by S218L FHM-1 mutation in hCav2.1 splice isoforms whose differential expression could impact the manifestation of the neurological disorder.
Collapse
Affiliation(s)
- Anne-Sophie Sack
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Gennerick J Samera
- Applied Genomics Centre, Kwantlen Polytechnic University, 12666 - 72 Ave, Surrey, BC, V3W 2M8, Canada
| | - Anna Hissen
- Applied Genomics Centre, Kwantlen Polytechnic University, 12666 - 72 Ave, Surrey, BC, V3W 2M8, Canada
| | - Robert J Wester
- Applied Genomics Centre, Kwantlen Polytechnic University, 12666 - 72 Ave, Surrey, BC, V3W 2M8, Canada
| | - Esperanza Garcia
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Paul J Adams
- Applied Genomics Centre, Kwantlen Polytechnic University, 12666 - 72 Ave, Surrey, BC, V3W 2M8, Canada
| | - Terrance P Snutch
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
2
|
Davoodi Nik B, Hashemi Karoii D, Favaedi R, Ramazanali F, Jahangiri M, Movaghar B, Shahhoseini M. Differential expression of ion channel coding genes in the endometrium of women experiencing recurrent implantation failures. Sci Rep 2024; 14:19822. [PMID: 39192025 PMCID: PMC11349755 DOI: 10.1038/s41598-024-70778-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Our study probed the differences in ion channel gene expression in the endometrium of women with Recurrent Implantation Failure (RIF) compared to fertile women. We analyzed the relative expression of genes coding for T-type Ca2+, ENaC, CFTR, and KCNQ1 channels in endometrial samples from 20 RIF-affected and 10 control women, aged 22-35, via microarray analysis and quantitative real-time PCR. Additionally, we examined DNA methylation in the regulatory region of KCNQ1 using ChIP real-time PCR. The bioinformatics component of our research included Gene Ontology analysis, protein-protein interaction networks, and signaling pathway mapping to identify key biological processes and pathways implicated in RIF. This led to the discovery of significant alterations in the expression of ion channel genes in RIF women's endometrium, most notably an overexpression of CFTR and reduced expression of SCNN1A, SCNN1B, SCNN1G, CACNA1H, and KCNQ1. A higher DNA methylation level of KCNQ1's regulatory region was also observed in RIF patients. Gene-set enrichment analysis highlighted a significant presence of genes involved with ion transport and membrane potential regulation, particularly in sodium and calcium channel complexes, which are vital for cation movement across cell membranes. Genes were also enriched in broader ion channel and transmembrane transporter complexes, underscoring their potential extensive role in cellular ion homeostasis and signaling. These findings suggest a potential involvement of ion channels in the pathology of implantation failure, offering new insights into the mechanisms behind RIF and possible therapeutic targets.
Collapse
Affiliation(s)
- Bahar Davoodi Nik
- Department of Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Danial Hashemi Karoii
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Raha Favaedi
- Department of Genetics, Reproductive Biomedicine Research Centre, Royan Institute for Reproductive Biomedicine, ACECR, No. 12, Hafez St., Banihashem Sq, Resalat Ave., P.O. Box: 19395-4644, Tehran, Iran
| | - Fariba Ramazanali
- Department of Endocrinology and Female Infertility, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maryam Jahangiri
- Department of Embryology, Reproductive Biomedicine Research Centre, Royan Institute for Reproductive Biomedicine, ACECR, No. 12, Hafez St., Banihashem Sq, Resalat Ave., P.O. Box: 19395-4644, Tehran, Iran
| | - Bahar Movaghar
- Department of Embryology, Reproductive Biomedicine Research Centre, Royan Institute for Reproductive Biomedicine, ACECR, No. 12, Hafez St., Banihashem Sq, Resalat Ave., P.O. Box: 19395-4644, Tehran, Iran.
| | - Maryam Shahhoseini
- Department of Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran.
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
- Department of Genetics, Reproductive Biomedicine Research Centre, Royan Institute for Reproductive Biomedicine, ACECR, No. 12, Hafez St., Banihashem Sq, Resalat Ave., P.O. Box: 19395-4644, Tehran, Iran.
| |
Collapse
|
3
|
Yang J, Zhou S, Yang Z, Shi X, Liu H, Yang Z, Peng D, Ding Z, Ye S. Silencing of the T-type voltage-gated calcium channel α 1 subunit by fungus-mediated RNAi altered the structure of F-actin and caused defective behaviors in Ditylenchus destructor. Mol Biol Rep 2024; 51:673. [PMID: 38787479 DOI: 10.1007/s11033-024-09626-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND T-type calcium channels, characterized as low-voltage activated (LVA) calcium channels, play crucial physiological roles across a wide range of tissues, including both the neuronal and nonneuronal systems. Using in situ hybridization and RNA interference (RNAi) techniques in vitro, we previously identified the tissue distribution and physiological function of the T-type calcium channel α1 subunit (DdCα1G) in the plant-parasitic nematode Ditylenchus destructor. METHODS AND RESULTS To further characterize the functional role of DdCα1G, we employed a combination of immunohistochemistry and fungus-mediated RNAi and found that DdCα1G was clearly distributed in stylet-related tissue, oesophageal gland-related tissue, secretory-excretory duct-related tissue and male spicule-related tissue. Silencing DdCα1G led to impairments in the locomotion, feeding, reproductive ability and protein secretion of nematodes. To confirm the defects in behavior, we used phalloidin staining to examine muscle changes in DdCα1G-RNAi nematodes. Our observations demonstrated that defective behaviors are associated with related muscular atrophy. CONCLUSION Our findings provide a deeper understanding of the physiological functions of T-type calcium channels in plant-parasitic nematodes. The T-type calcium channel can be considered a promising target for sustainable nematode management practices.
Collapse
Affiliation(s)
- Jiahao Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Siyu Zhou
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Ziqi Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Xuqi Shi
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Haoran Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zhuhong Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha, Hunan, 410128, China
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhong Ding
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, China.
- Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha, Hunan, 410128, China.
| | - Shan Ye
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, China.
- Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha, Hunan, 410128, China.
| |
Collapse
|
4
|
Dinh HA, Stölting G, Scholl UI. Ca V3.2 (CACNA1H) in Primary Aldosteronism. Handb Exp Pharmacol 2023. [PMID: 37311830 DOI: 10.1007/164_2023_660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aldosterone is a steroid hormone produced in the zona glomerulosa (ZG) of the adrenal cortex. The most prominent function of aldosterone is the control of electrolyte homeostasis and blood pressure via the kidneys. The primary factors regulating aldosterone synthesis are the serum concentrations of angiotensin II and potassium. The T-type voltage-gated calcium channel CaV3.2 (encoded by CACNA1H) is an important component of electrical as well as intracellular calcium oscillations, which govern aldosterone production in the ZG. Excessive aldosterone production that is (partially) uncoupled from physiological stimuli leads to primary aldosteronism, the most common cause of secondary hypertension. Germline gain-of-function mutations in CACNA1H were identified in familial hyperaldosteronism, whereas somatic mutations are a rare cause of aldosterone-producing adenomas. In this review, we summarize these findings, put them in perspective, and highlight missing knowledge.
Collapse
Affiliation(s)
- Hoang An Dinh
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Functional Genomics, Berlin, Germany
| | - Gabriel Stölting
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Functional Genomics, Berlin, Germany
| | - Ute I Scholl
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Functional Genomics, Berlin, Germany.
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
5
|
Morgenstern TJ, Nirwan N, Hernández-Ochoa EO, Bibollet H, Choudhury P, Laloudakis YD, Ben Johny M, Bannister RA, Schneider MF, Minor DL, Colecraft HM. Selective posttranslational inhibition of Ca Vβ 1-associated voltage-dependent calcium channels with a functionalized nanobody. Nat Commun 2022; 13:7556. [PMID: 36494348 PMCID: PMC9734117 DOI: 10.1038/s41467-022-35025-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
Ca2+ influx through high-voltage-activated calcium channels (HVACCs) controls diverse cellular functions. A critical feature enabling a singular signal, Ca2+ influx, to mediate disparate functions is diversity of HVACC pore-forming α1 and auxiliary CaVβ1-CaVβ4 subunits. Selective CaVα1 blockers have enabled deciphering their unique physiological roles. By contrast, the capacity to post-translationally inhibit HVACCs based on CaVβ isoform is non-existent. Conventional gene knockout/shRNA approaches do not adequately address this deficit owing to subunit reshuffling and partially overlapping functions of CaVβ isoforms. Here, we identify a nanobody (nb.E8) that selectively binds CaVβ1 SH3 domain and inhibits CaVβ1-associated HVACCs by reducing channel surface density, decreasing open probability, and speeding inactivation. Functionalizing nb.E8 with Nedd4L HECT domain yielded Chisel-1 which eliminated current through CaVβ1-reconstituted CaV1/CaV2 and native CaV1.1 channels in skeletal muscle, strongly suppressed depolarization-evoked Ca2+ influx and excitation-transcription coupling in hippocampal neurons, but was inert against CaVβ2-associated CaV1.2 in cardiomyocytes. The results introduce an original method for probing distinctive functions of ion channel auxiliary subunit isoforms, reveal additional dimensions of CaVβ1 signaling in neurons, and describe a genetically-encoded HVACC inhibitor with unique properties.
Collapse
Affiliation(s)
- Travis J. Morgenstern
- grid.239585.00000 0001 2285 2675Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY USA
| | - Neha Nirwan
- grid.266102.10000 0001 2297 6811Cardiovascular Research Institute, University of California, San Francisco, CA USA
| | - Erick O. Hernández-Ochoa
- grid.411024.20000 0001 2175 4264Department of Biochemistry and Biology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Hugo Bibollet
- grid.411024.20000 0001 2175 4264Department of Biochemistry and Biology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Papiya Choudhury
- grid.239585.00000 0001 2285 2675Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY USA
| | - Yianni D. Laloudakis
- grid.239585.00000 0001 2285 2675Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY USA
| | - Manu Ben Johny
- grid.239585.00000 0001 2285 2675Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY USA
| | - Roger A. Bannister
- grid.411024.20000 0001 2175 4264Department of Biochemistry and Biology, University of Maryland School of Medicine, Baltimore, MD USA ,grid.411024.20000 0001 2175 4264Department of Pathology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Martin F. Schneider
- grid.411024.20000 0001 2175 4264Department of Biochemistry and Biology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Daniel L. Minor
- grid.266102.10000 0001 2297 6811Cardiovascular Research Institute, University of California, San Francisco, CA USA ,grid.266102.10000 0001 2297 6811Department of Biochemistry and Biophysics, University of California, San Francisco, CA USA ,grid.266102.10000 0001 2297 6811Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA USA ,grid.266102.10000 0001 2297 6811California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA USA ,grid.266102.10000 0001 2297 6811Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA USA ,grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Henry M. Colecraft
- grid.239585.00000 0001 2285 2675Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY USA ,grid.239585.00000 0001 2285 2675Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY USA
| |
Collapse
|
6
|
King DR, Sedovy MW, Eaton X, Dunaway LS, Good ME, Isakson BE, Johnstone SR. Cell-To-Cell Communication in the Resistance Vasculature. Compr Physiol 2022; 12:3833-3867. [PMID: 35959755 DOI: 10.1002/cphy.c210040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The arterial vasculature can be divided into large conduit arteries, intermediate contractile arteries, resistance arteries, arterioles, and capillaries. Resistance arteries and arterioles primarily function to control systemic blood pressure. The resistance arteries are composed of a layer of endothelial cells oriented parallel to the direction of blood flow, which are separated by a matrix layer termed the internal elastic lamina from several layers of smooth muscle cells oriented perpendicular to the direction of blood flow. Cells within the vessel walls communicate in a homocellular and heterocellular fashion to govern luminal diameter, arterial resistance, and blood pressure. At rest, potassium currents govern the basal state of endothelial and smooth muscle cells. Multiple stimuli can elicit rises in intracellular calcium levels in either endothelial cells or smooth muscle cells, sourced from intracellular stores such as the endoplasmic reticulum or the extracellular space. In general, activation of endothelial cells results in the production of a vasodilatory signal, usually in the form of nitric oxide or endothelial-derived hyperpolarization. Conversely, activation of smooth muscle cells results in a vasoconstriction response through smooth muscle cell contraction. © 2022 American Physiological Society. Compr Physiol 12: 1-35, 2022.
Collapse
Affiliation(s)
- D Ryan King
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA
| | - Meghan W Sedovy
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA.,Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, Virginia, USA
| | - Xinyan Eaton
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA
| | - Luke S Dunaway
- Robert M. Berne Cardiovascular Research Centre, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Miranda E Good
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Centre, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Scott R Johnstone
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
7
|
Yokobori T. Editorial Comment on: Functions and Clinical Significance of CACNA2D1 in Gastric Cancer: "Potential for Targeted Therapy against Gastric Cancer Stem Cells Using the Clinically Available Calcium Channel Blocker". Ann Surg Oncol 2022; 29:10.1245/s10434-022-11880-y. [PMID: 35538176 DOI: 10.1245/s10434-022-11880-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022]
Affiliation(s)
- Takehiko Yokobori
- Division of Integrated Oncology Research, Gunma University, Initiative for Advanced Research (GIAR), Maebashi, Japan.
| |
Collapse
|
8
|
Contreras GF, Saavedra J, Navarro-Quezada N, Mellado G, Gonzalez C, Neely A. Direct inhibition of Ca V2.3 by Gem is dynamin dependent and does not require a direct alfa/beta interaction. Biochem Biophys Res Commun 2022; 586:107-113. [PMID: 34837834 DOI: 10.1016/j.bbrc.2021.11.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/21/2021] [Accepted: 11/14/2021] [Indexed: 11/17/2022]
Abstract
The Rad, Rem, Rem2, and Gem/Kir (RGK) sub-family of small GTP-binding proteins are crucial in regulating high voltage-activated (HVA) calcium channels. RGK proteins inhibit calcium current by either promoting endocytosis or reducing channel activity. They all can associate directly with Ca2+ channel β subunit (CaVβ), and the binding between CaVα1/CaVβ appears essential for the endocytic promotion of CaV1.X, CaV2.1, and CaV2.2 channels. In this study, we investigated the inhibition of CaV2.3 channels by RGK proteins in the absence of CaVβ. To this end, Xenopus laevis oocytes expressing CaV2.3 channels devoid of auxiliary subunit were injected with purified Gem and Rem and found that only Gem had an effect. Ca currents and charge movements were reduced by injection of Gem, pointing to a reduction in the number of channels in the plasma membrane. Since this reduction was ablated by co-expression of the dominant-negative mutant of dynamin K44A, enhanced endocytosis appears to mediate this reduction in the number of channels. Thus, Gem inhibition of CaV2.3 channels would be the only example of a CaVβ independent promotion of dynamin-dependent endocytosis.
Collapse
Affiliation(s)
- Gustavo F Contreras
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaiso, Chile; Centro Interdisciplinario de Neurociencias Valparaíso, Chile
| | - Jonathan Saavedra
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaiso, Chile; Centro Interdisciplinario de Neurociencias Valparaíso, Chile; Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Nieves Navarro-Quezada
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaiso, Chile; Centro Interdisciplinario de Neurociencias Valparaíso, Chile
| | - Guido Mellado
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaiso, Chile; Centro Interdisciplinario de Neurociencias Valparaíso, Chile; Doctorado en Ciencias Mención Biofisica y Biología Computacional, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Carlos Gonzalez
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaiso, Chile; Centro Interdisciplinario de Neurociencias Valparaíso, Chile; Cardiovascular Research, Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA
| | - Alan Neely
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaiso, Chile
| |
Collapse
|
9
|
Conrad R, Kortzak D, Guzman GA, Miranda-Laferte E, Hidalgo P. Ca V β controls the endocytic turnover of Ca V 1.2 L-type calcium channel. Traffic 2021; 22:180-193. [PMID: 33890356 DOI: 10.1111/tra.12788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/17/2021] [Accepted: 04/17/2021] [Indexed: 01/10/2023]
Abstract
Membrane depolarization activates the multisubunit CaV 1.2 L-type calcium channel initiating various excitation coupling responses. Intracellular trafficking into and out of the plasma membrane regulates the channel's surface expression and stability, and thus, the strength of CaV 1.2-mediated Ca2+ signals. The mechanisms regulating the residency time of the channel at the cell membrane are unclear. Here, we coexpressed the channel core complex CaV 1.2α1 pore-forming and auxiliary CaV β subunits and analyzed their trafficking dynamics from single-particle-tracking trajectories. Speed histograms obtained for each subunit were best fitted to a sum of diffusive and directed motion terms. The same mean speed for the highest-mobility state underlying directed motion was found for all subunits. The frequency of this component increased by covalent linkage of CaV β to CaV 1.2α1 suggesting that high-speed transport occurs in association with CaV β. Selective tracking of CaV 1.2α1 along the postendocytic pathway failed to show the highly mobile state, implying CaV β-independent retrograde transport. Retrograde speeds of CaV 1.2α1 are compatible with myosin VI-mediated backward transport. Moreover, residency time at the cell surface was significantly prolonged when CaV 1.2α1 was covalently linked to CaV β. Thus, CaV β promotes fast transport speed along anterograde trafficking and acts as a molecular switch controlling the endocytic turnover of L-type calcium channels.
Collapse
Affiliation(s)
- Rachel Conrad
- Institute of Biological Information Processing (IBI-1), Molecular and Cellular Physiology, Forschungszentrum Jülich, Jülich, Germany
| | - Daniel Kortzak
- Institute of Biological Information Processing (IBI-1), Molecular and Cellular Physiology, Forschungszentrum Jülich, Jülich, Germany
| | - Gustavo A Guzman
- Institute of Biological Information Processing (IBI-1), Molecular and Cellular Physiology, Forschungszentrum Jülich, Jülich, Germany
| | - Erick Miranda-Laferte
- Institute of Biological Information Processing (IBI-1), Molecular and Cellular Physiology, Forschungszentrum Jülich, Jülich, Germany
| | - Patricia Hidalgo
- Institute of Biological Information Processing (IBI-1), Molecular and Cellular Physiology, Forschungszentrum Jülich, Jülich, Germany.,Institute of Biochemistry, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
10
|
Demontis GC, Pezzini F, Margari E, Bianchi M, Longoni B, Doccini S, Lalowski MM, Santorelli FM, Simonati A. Electrophysiological Profile Remodeling via Selective Suppression of Voltage-Gated Currents by CLN1/PPT1 Overexpression in Human Neuronal-Like Cells. Front Cell Neurosci 2020; 14:569598. [PMID: 33390903 PMCID: PMC7772423 DOI: 10.3389/fncel.2020.569598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/18/2020] [Indexed: 12/21/2022] Open
Abstract
CLN1 disease (OMIM #256730) is an inherited neurological disorder of early childhood with epileptic seizures and premature death. It is associated with mutations in CLN1 coding for Palmitoyl-Protein Thioesterase 1 (PPT1), a lysosomal enzyme which affects the recycling and degradation of lipid-modified (S-acylated) proteins by removing palmitate residues. Transcriptomic evidence from a neuronal-like cellular model derived from differentiated SH-SY5Y cells disclosed the potential negative roles of CLN1 overexpression, affecting the elongation of neuronal processes and the expression of selected proteins of the synaptic region. Bioinformatic inquiries of transcriptomic data pinpointed a dysregulated expression of several genes coding for proteins related to voltage-gated ion channels, including subunits of calcium and potassium channels (VGCC and VGKC). In SH-SY5Y cells overexpressing CLN1 (SH-CLN1 cells), the resting potential and the membrane conductance in the range of voltages close to the resting potential were not affected. However, patch-clamp recordings indicated a reduction of Ba2+ currents through VGCC of SH-CLN1 cells; Ca2+ imaging revealed reduced Ca2+ influx in the same cellular setting. The results of the biochemical and morphological investigations of CACNA2D2/α2δ-2, an accessory subunit of VGCC, were in accordance with the downregulation of the corresponding gene and consistent with the hypothesis that a lower number of functional channels may reach the plasma membrane. The combined use of 4-AP and NS-1643, two drugs with opposing effects on Kv11 and Kv12 subfamilies of VGKC coded by the KCNH gene family, provides evidence for reduced functional Kv12 channels in SH-CLN1 cells, consistent with transcriptomic data indicating the downregulation of KCNH4. The lack of compelling evidence supporting the palmitoylation of many ion channels subunits investigated in this study stimulates inquiries about the role of PPT1 in the trafficking of channels to the plasma membrane. Altogether, these results indicate a reduction of functional voltage-gated ion channels in response to CLN1/PPT1 overexpression in differentiated SH-SY5Y cells and provide new insights into the altered neuronal excitability which may underlie the severe epileptic phenotype of CLN1 disease. It remains to be shown if remodeling of such functional channels on plasma membrane can occur as a downstream effect of CLN1 disease.
Collapse
Affiliation(s)
| | - Francesco Pezzini
- Neurology (Child Neurology and Neuropathology), Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Elisa Margari
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Marzia Bianchi
- Research Unit for Multi-factorial Diseases, Obesity and Diabetes, Bambino Gesù Children's Hospital Istituto di Ricerca e Cura a Carattere Scientifico, Rome, Italy
| | - Biancamaria Longoni
- Department of Translational Research and New Technology in Medicine, University of Pisa, Pisa, Italy
| | - Stefano Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, Istituto di Ricerca e Cura a Carattere Scientifico Stella Maris Foundation, Pisa, Italy
| | - Maciej Maurycy Lalowski
- Medicum, Biochemistry/Developmental Biology and HiLIFE-Helsinki Institute of Life Science, Meilahti Clinical Proteomics Core Facility, University of Helsinki, Helsinki, Finland
| | - Filippo Maria Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, Istituto di Ricerca e Cura a Carattere Scientifico Stella Maris Foundation, Pisa, Italy
| | - Alessandro Simonati
- Neurology (Child Neurology and Neuropathology), Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| |
Collapse
|
11
|
Characterization and validation of a preventative therapy for hypertrophic cardiomyopathy in a murine model of the disease. Proc Natl Acad Sci U S A 2020; 117:23113-23124. [PMID: 32859761 PMCID: PMC7502707 DOI: 10.1073/pnas.2002976117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hypertrophic cardiomyopathy affects 1:500 of the general population. Current drug therapy is used to manage symptoms in patients. There is an unmet need for treatments that can prevent the cardiomyopathy. Here we identify biomarkers of hypertrophic cardiomyopathy resulting from causing cardiac troponin I mutation Gly203Ser, and present a safe, nontoxic, preventative approach for the treatment of associated cardiomyopathy. Currently there is an unmet need for treatments that can prevent hypertrophic cardiomyopathy (HCM). Using a murine model we previously identified that HCM causing cardiac troponin I mutation Gly203Ser (cTnI-G203S) is associated with increased mitochondrial metabolic activity, consistent with the human condition. These alterations precede development of the cardiomyopathy. Here we examine the efficacy of in vivo treatment of cTnI-G203S mice with a peptide derived against the α-interaction domain of the cardiac L-type calcium channel (AID-TAT) on restoring mitochondrial metabolic activity, and preventing HCM. cTnI-G203S or age-matched wt mice were treated with active or inactive AID-TAT. Following treatment, targeted metabolomics was utilized to evaluate myocardial substrate metabolism. Cardiac myocyte mitochondrial metabolic activity was assessed as alterations in mitochondrial membrane potential and flavoprotein oxidation. Cardiac morphology and function were examined using echocardiography. Cardiac uptake was assessed using an in vivo multispectral imaging system. We identified alterations in six biochemical intermediates in cTnI-G203S hearts consistent with increased anaplerosis. We also reveal that AID-TAT treatment of precardiomyopathic cTnI-G203S mice, but not mice with established cardiomyopathy, restored cardiac myocyte mitochondrial membrane potential and flavoprotein oxidation, and prevented myocardial hypertrophy. Importantly, AID-TAT was rapidly targeted to the heart, and not retained by the liver or kidneys. Overall, we identify biomarkers of HCM resulting from the cTnI mutation Gly203Ser, and present a safe, preventative therapy for associated cardiomyopathy. Utilizing AID-TAT to modulate cardiac metabolic activity may be beneficial in preventing HCM in “at risk” patients with identified Gly203Ser gene mutations.
Collapse
|
12
|
Liu Y, Yan S, Chen S, Zhang J, Shen Y, Su J, He G, Feng R, Shao D, Hao L. Calmodulin mutant in central linker reduces the binding affinity with PreIQ and IQ while interacting with Ca V1.2 channels. Biochem Biophys Res Commun 2020; 526:78-84. [PMID: 32197840 DOI: 10.1016/j.bbrc.2020.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/02/2020] [Indexed: 11/26/2022]
Abstract
Calmodulin (CaM) was reported to interact with PreIQ and IQ of CaV1.2 channels, but to date, no explicit binding sites of CaM were illustrated. Therefore, in the present study, we firstly used MOE (Molecular Operating Environment) for protein-protein docking and we found that the most likely residues of CaM that play an important role in the interface are concentrated in central linker region. Next we examined the binding properties of CaM and its mutants to PreIQ and IQ by GST pull-down assays. Here we confirmed that CaM binds to PreIQ and IQ in a concentration-dependent and [Ca2+]-dependent manner. However, silencing the effect of N-lobe and C-lobe by mutating two Ca2+ binding sites of each lobe abolished [Ca2+]-dependence of CaM binding, but could not influence the combination. And the mutant in central linker reduced the binding of CaM/PreIQ and CaM/IQ especially at low [Ca2+]. We confirmed that N-lobe and C-lobe play vital role in sensing the change of Ca2+, and found that the central linker of CaM is involved in the binding of CaM to CaV1.2 channels in particular at low [Ca2+], not only participates in the combination with PreIQ, but also with IQ.
Collapse
Affiliation(s)
- Yan Liu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 100122, China
| | - Shan Yan
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 100122, China
| | - Sichong Chen
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 100122, China
| | - Jie Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 100122, China
| | - Yixuan Shen
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 100122, China
| | - Jingyang Su
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 100122, China
| | - Guilin He
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 100122, China
| | - Rui Feng
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 100122, China
| | - Dongxue Shao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 100122, China
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 100122, China.
| |
Collapse
|
13
|
Tyagi S, Ribera AB, Bannister RA. Zebrafish as a Model System for the Study of Severe Ca V2.1 (α 1A) Channelopathies. Front Mol Neurosci 2020; 12:329. [PMID: 32116539 PMCID: PMC7018710 DOI: 10.3389/fnmol.2019.00329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/23/2019] [Indexed: 02/02/2023] Open
Abstract
The P/Q-type CaV2.1 channel regulates neurotransmitter release at neuromuscular junctions (NMJ) and many central synapses. CACNA1A encodes the pore-containing α1A subunit of CaV2.1 channels. In humans, de novo CACNA1A mutations result in a wide spectrum of neurological, neuromuscular, and movement disorders, such as familial hemiplegic migraine type 1 (FHM1), episodic ataxia type 2 (EA2), as well as a more recently discovered class of more severe disorders, which are characterized by ataxia, hypotonia, cerebellar atrophy, and cognitive/developmental delay. Heterologous expression of CaV2.1 channels has allowed for an understanding of the consequences of CACNA1A missense mutations on channel function. In contrast, a mechanistic understanding of how specific CACNA1A mutations lead in vivo to the resultant phenotypes is lacking. In this review, we present the zebrafish as a model to both study in vivo mechanisms of CACNA1A mutations that result in synaptic and behavioral defects and to screen for effective drug therapies to combat these and other CaV2.1 channelopathies.
Collapse
Affiliation(s)
- Sidharth Tyagi
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, United States
| | - Angeles B Ribera
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Roger A Bannister
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
14
|
Zhang L, Wen Y, Zhang Q, Chen Y, Wang J, Shi K, Du L, Bao X. CACNA1A Gene Variants in Eight Chinese Patients With a Wide Range of Phenotypes. Front Pediatr 2020; 8:577544. [PMID: 33425808 PMCID: PMC7793878 DOI: 10.3389/fped.2020.577544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/20/2020] [Indexed: 11/13/2022] Open
Abstract
Background: The CACNA1A gene encodes the voltage-dependent P/Q-type calcium channel subunit alpha-1A, which is widely expressed throughout the CNS. The biological roles of the P/Q channel are diverse and the phenotypic spectrum caused by CACNA1A mutations is wide. The aim of this study is to demonstrate its phenotypic diversity and analyze the genotype-phenotype correlations in a cohort of Chinese patients. Methods: Patients with hemiplegic migraine, cerebellar ataxia, developmental delay, or epilepsy without known causes were tested by trios whole-exome sequencing. Patients with pathogenic CACNA1A gene variants were recruited. The clinical information of the patients was collected, and the association between the genotype and the phenotype was investigated. Results: In total, eight patients (six females and two males) were found to have CACNA1A gene variants. All the variants were de novo including six missense variants and one frameshift variant. Four de novo missense variants were found in five patients located in the S4, S5, or S6 transmembrane segments of Domain II and III (p.R1352Q, p.G701V, p.A713T, p.V1393M). All of them were correlated with severe phenotypes, including three with sporadic hemiplegic migraine type 1 and epilepsy, and two with developmental and epileptic encephalopathy. The other two missense variants, p.Y62C and p.F1814L, located in the cytoplasmic side of the N-terminus and C-terminus, respectively. The variant p.Y62C was associated with severe hemiconvulsion-hemiplegia-epilepsy syndrome, and p.F1814L was associated with relatively mild phenotypes. All the missense variants were speculated as gain-of-function (GOF) mutations. The only frameshift variant, p.Q681Rfs*100, a lose-of-function (LOF) mutation, was found in a patient with episodic ataxia type 2. Meanwhile, all the patients had developmental delay ranging from mild to severe, as well as cerebellar ataxia including one with congenital ataxia, one with episodic ataxia, and six with non-progressive ataxia. Conclusions: CACNA1A variants could lead to a wide spectrum of neurological disorders including epileptic or non-epileptic paroxysmal events, cerebellar ataxia, and developmental delay. The variants could be both GOF and LOF mutations. There appeared to be some correlations between genotypes and phenotypes.
Collapse
Affiliation(s)
- Linxia Zhang
- Department of Pediatric, Peking University First Hospital, Beijing, China.,Department of Neurology, Children's Hospital of Shanxi, Taiyuan, China
| | - Yongxin Wen
- Department of Pediatric, Peking University First Hospital, Beijing, China
| | - Qingping Zhang
- Department of Pediatric, Peking University First Hospital, Beijing, China
| | - Yan Chen
- Department of Pediatric, Peking University First Hospital, Beijing, China
| | - Jiaping Wang
- Department of Pediatric, Peking University First Hospital, Beijing, China
| | - Kaili Shi
- Department of Neurology, Children's Hospital of Shanxi, Taiyuan, China
| | - Lijun Du
- Department of Neurology, Children's Hospital of Shanxi, Taiyuan, China
| | - Xinhua Bao
- Department of Pediatric, Peking University First Hospital, Beijing, China
| |
Collapse
|
15
|
Vierra NC, Kirmiz M, van der List D, Santana LF, Trimmer JS. Kv2.1 mediates spatial and functional coupling of L-type calcium channels and ryanodine receptors in mammalian neurons. eLife 2019; 8:49953. [PMID: 31663850 PMCID: PMC6839919 DOI: 10.7554/elife.49953] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/29/2019] [Indexed: 12/16/2022] Open
Abstract
The voltage-gated K+ channel Kv2.1 serves a major structural role in the soma and proximal dendrites of mammalian brain neurons, tethering the plasma membrane (PM) to endoplasmic reticulum (ER). Although Kv2.1 clustering at neuronal ER-PM junctions (EPJs) is tightly regulated and highly conserved, its function remains unclear. By identifying and evaluating proteins in close spatial proximity to Kv2.1-containing EPJs, we discovered that a significant role of Kv2.1 at EPJs is to promote the clustering and functional coupling of PM L-type Ca2+ channels (LTCCs) to ryanodine receptor (RyR) ER Ca2+ release channels. Kv2.1 clustering also unexpectedly enhanced LTCC opening at polarized membrane potentials. This enabled Kv2.1-LTCC-RyR triads to generate localized Ca2+ release events (i.e., Ca2+ sparks) independently of action potentials. Together, these findings uncover a novel mode of LTCC regulation and establish a unique mechanism whereby Kv2.1-associated EPJs provide a molecular platform for localized somatodendritic Ca2+ signals in mammalian brain neurons.
Collapse
Affiliation(s)
- Nicholas C Vierra
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States.,Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, United States
| | - Michael Kirmiz
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, United States
| | - Deborah van der List
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States.,Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, United States
| | - L Fernando Santana
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States
| | - James S Trimmer
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States.,Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, United States
| |
Collapse
|
16
|
Guerra MJ, González‐Jamett AM, Báez‐Matus X, Navarro‐Quezada N, Martínez AD, Neely A, Cárdenas AM. The Ca2+channel subunit CaVβ2a‐subunit down‐regulates voltage‐activated ion current densities by disrupting actin‐dependent traffic in chromaffin cells. J Neurochem 2019; 151:703-715. [DOI: 10.1111/jnc.14851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/01/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Affiliation(s)
- María J. Guerra
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia Universidad de Valparaíso Valparaíso Chile
| | - Arlek M. González‐Jamett
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia Universidad de Valparaíso Valparaíso Chile
| | - Ximena Báez‐Matus
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia Universidad de Valparaíso Valparaíso Chile
| | - Nieves Navarro‐Quezada
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia Universidad de Valparaíso Valparaíso Chile
| | - Agustín D. Martínez
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia Universidad de Valparaíso Valparaíso Chile
| | - Alan Neely
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia Universidad de Valparaíso Valparaíso Chile
| | - Ana M. Cárdenas
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia Universidad de Valparaíso Valparaíso Chile
| |
Collapse
|
17
|
Modica TME, Dituri F, Mancarella S, Pisano C, Fabregat I, Giannelli G. Calcium Regulates HCC Proliferation as well as EGFR Recycling/Degradation and Could Be a New Therapeutic Target in HCC. Cancers (Basel) 2019; 11:cancers11101588. [PMID: 31635301 PMCID: PMC6826902 DOI: 10.3390/cancers11101588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/13/2019] [Indexed: 01/08/2023] Open
Abstract
Calcium is the most abundant element in the human body. Its role is essential in physiological and biochemical processes such as signal transduction from outside to inside the cell between the cells of an organ, as well as the release of neurotransmitters from neurons, muscle contraction, fertilization, bone building, and blood clotting. As a result, intra- and extracellular calcium levels are tightly regulated by the body. The liver is the most specialized organ of the body, as its functions, carried out by hepatocytes, are strongly governed by calcium ions. In this work, we analyze the role of calcium in human hepatoma (HCC) cell lines harboring a wild type form of the Epidermal Growth Factor Receptor (EGFR), particularly its role in proliferation and in EGFR downmodulation. Our results highlight that calcium is involved in the proliferative capability of HCC cells, as its subtraction is responsible for EGFR degradation by proteasome machinery and, as a consequence, for EGFR intracellular signaling downregulation. However, calcium-regulated EGFR signaling is cell line-dependent. In cells responding weakly to the epidermal growth factor (EGF), calcium seems to have an opposite effect on EGFR internalization/degradation mechanisms. These results suggest that besides EGFR, calcium could be a new therapeutic target in HCC.
Collapse
Affiliation(s)
- Teresa Maria Elisa Modica
- Department of Biomedical Science and Human Oncology, Università degli Studi di Bari Aldo Moro, 70121 Bari, Italy.
- Biogem S.C.A.R.L., 83031 Ariano Irpino (AV), Italy.
| | | | | | | | - Isabel Fabregat
- Bellvitge Biomedical Research Institute (IDIBELL) L'Hospitalet, 08907 Barcelona, Spain.
- Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain.
- Oncology Program, CIBEREHD, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | | |
Collapse
|
18
|
Andrade A, Brennecke A, Mallat S, Brown J, Gomez-Rivadeneira J, Czepiel N, Londrigan L. Genetic Associations between Voltage-Gated Calcium Channels and Psychiatric Disorders. Int J Mol Sci 2019; 20:E3537. [PMID: 31331039 PMCID: PMC6679227 DOI: 10.3390/ijms20143537] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 12/23/2022] Open
Abstract
Psychiatric disorders are mental, behavioral or emotional disorders. These conditions are prevalent, one in four adults suffer from any type of psychiatric disorders world-wide. It has always been observed that psychiatric disorders have a genetic component, however, new methods to sequence full genomes of large cohorts have identified with high precision genetic risk loci for these conditions. Psychiatric disorders include, but are not limited to, bipolar disorder, schizophrenia, autism spectrum disorder, anxiety disorders, major depressive disorder, and attention-deficit and hyperactivity disorder. Several risk loci for psychiatric disorders fall within genes that encode for voltage-gated calcium channels (CaVs). Calcium entering through CaVs is crucial for multiple neuronal processes. In this review, we will summarize recent findings that link CaVs and their auxiliary subunits to psychiatric disorders. First, we will provide a general overview of CaVs structure, classification, function, expression and pharmacology. Next, we will summarize tools to study risk loci associated with psychiatric disorders. We will examine functional studies of risk variations in CaV genes when available. Finally, we will review pharmacological evidence of the use of CaV modulators to treat psychiatric disorders. Our review will be of interest for those studying pathophysiological aspects of CaVs.
Collapse
Affiliation(s)
- Arturo Andrade
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA.
| | - Ashton Brennecke
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Shayna Mallat
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Julian Brown
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | | | - Natalie Czepiel
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Laura Londrigan
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
19
|
Gandini MA, Souza IA, Fan J, Li K, Wang D, Zamponi GW. Interactions of Rabconnectin-3 with Cav2 calcium channels. Mol Brain 2019; 12:62. [PMID: 31253182 PMCID: PMC6599304 DOI: 10.1186/s13041-019-0483-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022] Open
Abstract
This study describes the interaction between Cav2 calcium channels and Rabconnectin-3, a di-subunit protein that is associated with synaptic vesicles. Immunostaining reveals that both Rabconnectin-3α (RB-3α) and Rabconnectin-3β (RB-3β) are colocalized in mouse hippocampal neurons. Co-immunoprecipitations from brain tissue is consistent with the formation of a protein complex between RB-3α and RB-3β and both Cav2.2 and the related Cav2.1 calcium channel. The coexpression of either RB-3α or RB-3β with Cav2.2 calcium channels in tsA-201 cells led to a reduction in Cav2.2 current density without any effects on the voltage-dependence of activation or inactivation. Coexpression of both Rabconnectin-3 subunits did not cause an additive effect on current densities. Finally, the presence of Rabconnectin-3 did not interfere with μ-opioid receptor mediated Gβγ modulation of Cav2.2 channels. Altogether, our findings show that Rabconnectin-3 has the propensity to regulate calcium entry mediated by Cav2.2 channels.
Collapse
Affiliation(s)
- Maria A Gandini
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Ivana A Souza
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Jing Fan
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Katherine Li
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Decheng Wang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada.
| |
Collapse
|
20
|
Villalobo A, González-Muñoz M, Berchtold MW. Proteins with calmodulin-like domains: structures and functional roles. Cell Mol Life Sci 2019; 76:2299-2328. [PMID: 30877334 PMCID: PMC11105222 DOI: 10.1007/s00018-019-03062-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 12/21/2022]
Abstract
The appearance of modular proteins is a widespread phenomenon during the evolution of proteins. The combinatorial arrangement of different functional and/or structural domains within a single polypeptide chain yields a wide variety of activities and regulatory properties to the modular proteins. In this review, we will discuss proteins, that in addition to their catalytic, transport, structure, localization or adaptor functions, also have segments resembling the helix-loop-helix EF-hand motifs found in Ca2+-binding proteins, such as calmodulin (CaM). These segments are denoted CaM-like domains (CaM-LDs) and play a regulatory role, making these CaM-like proteins sensitive to Ca2+ transients within the cell, and hence are able to transduce the Ca2+ signal leading to specific cellular responses. Importantly, this arrangement allows to this group of proteins direct regulation independent of other Ca2+-sensitive sensor/transducer proteins, such as CaM. In addition, this review also covers CaM-binding proteins, in which their CaM-binding site (CBS), in the absence of CaM, is proposed to interact with other segments of the same protein denoted CaM-like binding site (CLBS). CLBS are important regulatory motifs, acting either by keeping these CaM-binding proteins inactive in the absence of CaM, enhancing the stability of protein complexes and/or facilitating their dimerization via CBS/CLBS interaction. The existence of proteins containing CaM-LDs or CLBSs substantially adds to the enormous versatility and complexity of Ca2+/CaM signaling.
Collapse
Affiliation(s)
- Antonio Villalobo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain.
- Instituto de Investigaciones Sanitarias, Hospital Universitario La Paz, Edificio IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - María González-Muñoz
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain
| | - Martin W Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, 2100, Copenhagen, Denmark.
| |
Collapse
|
21
|
Filić V, Marinović M, Šoštar M, Weber I. Modulation of small GTPase activity by NME proteins. J Transl Med 2018; 98:589-601. [PMID: 29434248 DOI: 10.1038/s41374-018-0023-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 12/06/2017] [Accepted: 12/29/2017] [Indexed: 12/26/2022] Open
Abstract
NME proteins are reported to influence signal transduction activity of small GTPases from the Ras superfamily by diverse mechanisms in addition to their generic NDP kinase activity, which replenishes the cytoplasmic pool of GTP. Comprehensive evidence shows that NME proteins modulate the activity of Ras GTPases, in particular members of the Rho family, via binding to their major activators GEFs. Direct interaction between several NMEs and Ras GTPases were also indicated in vitro and in vivo. These modes of regulation are mainly independent of the NME's kinase activity. NMEs also modulate the Ras-mediated signal transduction by interfering with the formation of a Ras signaling complex at the plasma membrane. In several examples, NMEs were proposed to perform the role of GAP proteins by promoting hydrolysis of the bound GTP, but this activity still requires additional verification. Early suggestions that NMEs can activate small GTPases by direct phosphorylation of the bound GDP, or by high-rate loading of GTP onto a closely apposed GTPase, were largely dismissed. In this review article, we survey and put into perspective published examples of identified and hypothetical mechanisms of Ras signaling modulation by NME proteins. We also point out involvement of NMEs in the transcriptional regulation of components of Ras GTPases-mediated signal transduction pathways, and reciprocal regulation of NME function by small GTPases, particularly related to NME's binding to membranes.
Collapse
Affiliation(s)
- Vedrana Filić
- Ruđer Bošković Institute, Division of Molecular Biology, Bijenička 54, HR-10000, Zagreb, Croatia
| | - Maja Marinović
- Ruđer Bošković Institute, Division of Molecular Biology, Bijenička 54, HR-10000, Zagreb, Croatia
| | - Marko Šoštar
- Ruđer Bošković Institute, Division of Molecular Biology, Bijenička 54, HR-10000, Zagreb, Croatia
| | - Igor Weber
- Ruđer Bošković Institute, Division of Molecular Biology, Bijenička 54, HR-10000, Zagreb, Croatia.
| |
Collapse
|
22
|
Kondo D, Saegusa H, Tanabe T. Involvement of phosphatidylinositol-3 kinase/Akt/mammalian target of rapamycin/peroxisome proliferator-activated receptor γ pathway for induction and maintenance of neuropathic pain. Biochem Biophys Res Commun 2018; 499:253-259. [PMID: 29567475 DOI: 10.1016/j.bbrc.2018.03.139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/19/2018] [Indexed: 01/02/2023]
Abstract
Peripheral nerve injury induces neuropathic pain, which is characterized by the tactile allodynia and thermal hyperalgesia. N-type voltage-dependent Ca2+ channel (VDCC) plays pivotal roles in the development of neuropathic pain, since mice lacking Cav2.2, the pore-forming subunit of N-type VDCC, show greatly reduced symptoms of both tactile allodynia and thermal hyperalgesia. Our study on gene expression profiles of the wild-type and N-type VDCC knockout (KO) spinal cord and several pain-related brain regions after spinal nerve ligation (SNL) injury revealed altered expression of genes encoding catalytic subunits of phosphatidylinositol-3 kinase (PI3K). PI3K/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling is considered to be very important for cancer development and drugs targeting the molecules in this pathway have been tested in oncology trials. In the present study, we have tested whether the changes in expression of molecules in this pathway in mice having spinal nerve injury are causally related to neuropathic pain. Our results suggest that spinal nerve injury induces activation of N-type VDCC and the following Ca2+ entry through this channel may change the expression of genes encoding PI3K catalytic subunits (p110α and p110γ), Akt, retinoid X receptor α (RXRα) and RXRγ. Furthermore, the blockers of the molecules in this pathway are found to be effective in reducing neuropathic pain both at the spinal and at the supraspinal levels. Thus, the activation of PI3K/Akt/mTOR/peroxisome proliferator activated receptor gamma (PPARγ) pathway would be a hallmark of the induction and maintenance of neuropathic pain.
Collapse
Affiliation(s)
- Daisuke Kondo
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| | - Hironao Saegusa
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| | - Tsutomu Tanabe
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| |
Collapse
|
23
|
Modica TME, Maiorani O, Sartori G, Pivetta E, Doliana R, Capuano A, Colombatti A, Spessotto P. The extracellular matrix protein EMILIN1 silences the RAS-ERK pathway via α4β1 integrin and decreases tumor cell growth. Oncotarget 2018; 8:27034-27046. [PMID: 28177903 PMCID: PMC5432316 DOI: 10.18632/oncotarget.15067] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/09/2017] [Indexed: 01/29/2023] Open
Abstract
The extracellular matrix plays a fundamental role in physiological and pathological proliferation. It exerts its function through a signal cascade starting from the integrins that take direct contact with matrix constituents most of which behave as pro-proliferative clues. On the contrary, EMILIN1, a glycoprotein interacting with the α4β1 integrin through its gC1q domain, plays a paradigmatic anti-proliferative role. Here, we demonstrate that the EMILIN1-α4 interaction de-activates the MAPK pathway through HRas. Epithelial cells expressing endogenous α4 integrin and persistently plated on gC1q inhibited pERK1/2 increasing HRasGTP and especially the HRasGTP ubiquitinated form (HRasGTP-Ub). The drug salirasib reversed this effect. In addition, only the gC1q-ligated α4 integrin chain co-immunoprecipitated the ubiquitinated HRas. Only epithelial cells transfected with the wild type form of the α4 integrin chain showed the EMILIN1/α4β1/HRas/pERK1/2 link, whereas cells transfected with a α4 integrin chain carrying a truncated cytoplasmic tail had no effect. In this study we unveiled the pathway activated by the gC1q domain of EMILIN1 through α4β1 integrin engagement and leading to the decrease of proliferation in an epithelial system.
Collapse
Affiliation(s)
- Teresa Maria Elisa Modica
- Department of Translational Research, Experimental Oncology 2 Division, CRO Aviano, National Cancer Institute, Aviano, PN 33081, Italy
| | - Orlando Maiorani
- Department of Translational Research, Experimental Oncology 2 Division, CRO Aviano, National Cancer Institute, Aviano, PN 33081, Italy
| | - Giulio Sartori
- Department of Translational Research, Experimental Oncology 2 Division, CRO Aviano, National Cancer Institute, Aviano, PN 33081, Italy
| | - Eliana Pivetta
- Department of Translational Research, Experimental Oncology 2 Division, CRO Aviano, National Cancer Institute, Aviano, PN 33081, Italy
| | - Roberto Doliana
- Department of Translational Research, Experimental Oncology 2 Division, CRO Aviano, National Cancer Institute, Aviano, PN 33081, Italy
| | - Alessandra Capuano
- Department of Translational Research, Experimental Oncology 2 Division, CRO Aviano, National Cancer Institute, Aviano, PN 33081, Italy
| | - Alfonso Colombatti
- Department of Translational Research, Experimental Oncology 2 Division, CRO Aviano, National Cancer Institute, Aviano, PN 33081, Italy
| | - Paola Spessotto
- Department of Translational Research, Experimental Oncology 2 Division, CRO Aviano, National Cancer Institute, Aviano, PN 33081, Italy
| |
Collapse
|
24
|
González-Ramírez R, Felix R. Transcriptional regulation of voltage-gated Ca 2+ channels. Acta Physiol (Oxf) 2018; 222. [PMID: 28371478 DOI: 10.1111/apha.12883] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/14/2017] [Accepted: 03/21/2017] [Indexed: 12/30/2022]
Abstract
The transcriptional regulation of voltage-gated Ca2+ (CaV ) channels is an emerging research area that promises to improve our understanding of how many relevant physiological events are shaped in the central nervous system, the skeletal muscle and other tissues. Interestingly, a picture of how transcription of CaV channel subunit genes is controlled is evolving with the identification of the promoter regions required for tissue-specific expression and the identification of transcription factors that control their expression. These promoters share several characteristics that include multiple transcriptional start sites, lack of a TATA box and the presence of elements conferring tissue-selective expression. Likewise, changes in CaV channel expression occur throughout development, following ischaemia, seizures or chronic drug administration. This review focuses on insights achieved regarding the control of CaV channel gene expression. To further understand the complexities of expression and to increase the possibilities of detecting CaV channel alterations causing human disease, a deeper knowledge on the structure of the 5' upstream regions of the genes encoding these remarkable proteins will be necessary.
Collapse
Affiliation(s)
- R. González-Ramírez
- Departamento de Biología Molecular e Histocompatibilidad; Hospital General ‘Dr. Manuel Gea González’; Secretaría de Salud; Ciudad de México México
| | - R. Felix
- Departmento de Biología Celular; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN); Ciudad de México México
| |
Collapse
|
25
|
Savalli N, Pantazis A, Sigg D, Weiss JN, Neely A, Olcese R. The α2δ-1 subunit remodels CaV1.2 voltage sensors and allows Ca2+ influx at physiological membrane potentials. J Gen Physiol 2017; 148:147-59. [PMID: 27481713 PMCID: PMC4969795 DOI: 10.1085/jgp.201611586] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/30/2016] [Indexed: 12/30/2022] Open
Abstract
Voltage-sensing domains (VSDs) in voltage-gated calcium channels sense the potential difference across membranes and interact with the pore to open it. Savalli et al. find that the accessory subunit α2δ-1 increases the sensitivity of VSDs I–III and also their efficiency of coupling to the pore. Excitation-evoked calcium influx across cellular membranes is strictly controlled by voltage-gated calcium channels (CaV), which possess four distinct voltage-sensing domains (VSDs) that direct the opening of a central pore. The energetic interactions between the VSDs and the pore are critical for tuning the channel’s voltage dependence. The accessory α2δ-1 subunit is known to facilitate CaV1.2 voltage-dependent activation, but the underlying mechanism is unknown. In this study, using voltage clamp fluorometry, we track the activation of the four individual VSDs in a human L-type CaV1.2 channel consisting of α1C and β3 subunits. We find that, without α2δ-1, the channel complex displays a right-shifted voltage dependence such that currents mainly develop at nonphysiological membrane potentials because of very weak VSD–pore interactions. The presence of α2δ-1 facilitates channel activation by increasing the voltage sensitivity (i.e., the effective charge) of VSDs I–III. Moreover, the α2δ-1 subunit also makes VSDs I–III more efficient at opening the channel by increasing the coupling energy between VSDs II and III and the pore, thus allowing Ca influx within the range of physiological membrane potentials.
Collapse
Affiliation(s)
- Nicoletta Savalli
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Antonios Pantazis
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | | | - James N Weiss
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Alan Neely
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Riccardo Olcese
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
26
|
Huang Y, Xiao H, Qin X, Nong Y, Zou D, Wu Y. The genetic relationship between epilepsy and hemiplegic migraine. Neuropsychiatr Dis Treat 2017; 13:1175-1179. [PMID: 28479855 PMCID: PMC5411172 DOI: 10.2147/ndt.s132451] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Epilepsy and migraine are common diseases of the nervous system and share genetic and pathophysiological mechanisms. Familial hemiplegic migraine is an autosomal dominant disease. It is often used as a model of migraine. Four genes often contain one or more mutations in both epilepsy and hemiplegic migraine patients (ie, CACNA1A, ATP1A2, SCN1A, and PRRT2). A better understanding of the shared genetics of epilepsy and hemiplegic migraine may reveal new strategic directions for research and treatment of both the disorders.
Collapse
Affiliation(s)
- Yiqing Huang
- Department of Neurology, Guigang City People's Hospital and the Eighth Affiliated Hospital of Guangxi Medical University, Guigang, People's Republic of China
| | - Hai Xiao
- Department of Neurology, Guigang City People's Hospital and the Eighth Affiliated Hospital of Guangxi Medical University, Guigang, People's Republic of China
| | - Xingyue Qin
- Department of Neurology, Guigang City People's Hospital and the Eighth Affiliated Hospital of Guangxi Medical University, Guigang, People's Republic of China
| | - Yuan Nong
- Department of Neurology, Guigang City People's Hospital and the Eighth Affiliated Hospital of Guangxi Medical University, Guigang, People's Republic of China
| | - Donghua Zou
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University and the First People's Hospital of Nanning, Nanning, People's Republic of China
| | - Yuan Wu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
27
|
Sun J, Tang S, Peng H, Saunders DMV, Doering JA, Hecker M, Jones PD, Giesy JP, Wiseman S. Combined Transcriptomic and Proteomic Approach to Identify Toxicity Pathways in Early Life Stages of Japanese Medaka (Oryzias latipes) Exposed to 1,2,5,6-Tetrabromocyclooctane (TBCO). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:7781-90. [PMID: 27322799 DOI: 10.1021/acs.est.6b01249] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Currently, the novel brominated flame retardant 1,2,5,6-tetrabromocyclooctane (TBCO) is considered a potential replacement for hexabromocyclododecane (HBCD). Therefore, use of TBCO could increase in the near future. To assess potential toxicological risks to aquatic organisms, embryos of Japanese medaka (Oryzias latipes) were exposed to 10, 100, or 1000 μg/L TBCO from 2 h postfertilization until 1 day post-hatch. TBCO accumulated in embryos in the order of 0.43-1.3 × 10(4)-fold, and the rate constant of accumulation was 1.7-1.8 per day. The number of days to hatch and the hatching success of embryos exposed to the medium and the greatest concentrations of TBCO were impaired. Responses of the transcriptome (RNA-seq) and proteome were characterized in embryos exposed to 100 μg/L TBCO because this was the least concentration of TBCO that caused an effect on hatching. Consistent with effects on hatching, proteins whose abundances were reduced by exposure to TBCO were enriched in embryo development and hatching pathways. Also, on the basis of the responses of transcriptome and proteome, it was predicted that TBCO might impair vision and contraction of cardiac muscle, respectively, and these effects were confirmed by targeted bioassays. This study provided a comprehensive understanding of effects of TBCO on medaka at early life stages and illustrated the power of "omics" to explain and predict phenotypic responses to chemicals.
Collapse
Affiliation(s)
- Jianxian Sun
- Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Song Tang
- School of Environment and Sustainability, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5C8, Canada
| | - Hui Peng
- Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
| | - David M V Saunders
- Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Jon A Doering
- Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
- School of Environment and Sustainability, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5C8, Canada
| | - Paul D Jones
- Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
- School of Environment and Sustainability, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5C8, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B4, Canada
- Zoology Department, Center for Integrative Toxicology, Michigan State University , East Lansing, Michigan 48824, United States
- School of Biological Sciences, University of Hong Kong , Hong Kong Special Administrative Region 999077, People's Republic of China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210093, People's Republic of China
| | - Steve Wiseman
- Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
| |
Collapse
|
28
|
Puckerin AA, Chang DD, Subramanyam P, Colecraft HM. Similar molecular determinants on Rem mediate two distinct modes of inhibition of Ca V1.2 channels. Channels (Austin) 2016; 10:379-394. [PMID: 27115600 PMCID: PMC4988437 DOI: 10.1080/19336950.2016.1180489] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Rad/Rem/Rem2/Gem (RGK) proteins are Ras-like GTPases that potently inhibit all high-voltage-gated calcium (CaV1/CaV2) channels and are, thus, well-positioned to tune diverse physiological processes. Understanding how RGK proteins inhibit CaV channels is important for perspectives on their (patho)physiological roles and could advance their development and use as genetically-encoded CaV channel blockers. We previously reported that Rem can block surface CaV1.2 channels in 2 independent ways that engage distinct components of the channel complex: (1) by binding auxiliary β subunits (β-binding-dependent inhibition, or BBD); and (2) by binding the pore-forming α1C subunit N-terminus (α1C-binding-dependent inhibition, or ABD). By contrast, Gem uses only the BBD mechanism to block CaV1.2. Rem molecular determinants required for BBD CaV1.2 inhibition are the distal C-terminus and the guanine nucleotide binding G-domain which interact with the plasma membrane and CaVβ, respectively. However, Rem determinants for ABD CaV1.2 inhibition are unknown. Here, combining fluorescence resonance energy transfer, electrophysiology, systematic truncations, and Rem/Gem chimeras we found that the same Rem distal C-terminus and G-domain also mediate ABD CaV1.2 inhibition, but with different interaction partners. Rem distal C-terminus interacts with α1C N-terminus to anchor the G-domain which likely interacts with an as-yet-unidentified site. In contrast to some previous studies, neither the C-terminus of Rem nor Gem was sufficient to inhibit CaV1/CaV2 channels. The results reveal that similar molecular determinants on Rem are repurposed to initiate 2 independent mechanisms of CaV1.2 inhibition.
Collapse
Affiliation(s)
- Akil A Puckerin
- a Department of Pharmacology & Molecular Signaling , Columbia University , New York , NY , USA
| | - Donald D Chang
- b Department of Physiology & Cellular Biophysics , Columbia University , New York , NY , USA
| | - Prakash Subramanyam
- b Department of Physiology & Cellular Biophysics , Columbia University , New York , NY , USA
| | - Henry M Colecraft
- a Department of Pharmacology & Molecular Signaling , Columbia University , New York , NY , USA.,b Department of Physiology & Cellular Biophysics , Columbia University , New York , NY , USA
| |
Collapse
|
29
|
Hu R, Li SL, Bai HT, Wang YX, Liu LB, Lv FT, Wang S. Regulation of oxidative stress inside living cells through polythiophene derivatives. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2016.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Kaur G, Pinggera A, Ortner NJ, Lieb A, Sinnegger-Brauns MJ, Yarov-Yarovoy V, Obermair GJ, Flucher BE, Striessnig J. A Polybasic Plasma Membrane Binding Motif in the I-II Linker Stabilizes Voltage-gated CaV1.2 Calcium Channel Function. J Biol Chem 2015; 290:21086-21100. [PMID: 26100638 PMCID: PMC4543666 DOI: 10.1074/jbc.m115.645671] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Indexed: 12/27/2022] Open
Abstract
L-type voltage-gated Ca(2+) channels (LTCCs) regulate many physiological functions like muscle contraction, hormone secretion, gene expression, and neuronal excitability. Their activity is strictly controlled by various molecular mechanisms. The pore-forming α1-subunit comprises four repeated domains (I-IV), each connected via an intracellular linker. Here we identified a polybasic plasma membrane binding motif, consisting of four arginines, within the I-II linker of all LTCCs. The primary structure of this motif is similar to polybasic clusters known to interact with polyphosphoinositides identified in other ion channels. We used de novo molecular modeling to predict the conformation of this polybasic motif, immunofluorescence microscopy and live cell imaging to investigate the interaction with the plasma membrane, and electrophysiology to study its role for Cav1.2 channel function. According to our models, this polybasic motif of the I-II linker forms a straight α-helix, with the positive charges facing the lipid phosphates of the inner leaflet of the plasma membrane. Membrane binding of the I-II linker could be reversed after phospholipase C activation, causing polyphosphoinositide breakdown, and was accelerated by elevated intracellular Ca(2+) levels. This indicates the involvement of negatively charged phospholipids in the plasma membrane targeting of the linker. Neutralization of four arginine residues eliminated plasma membrane binding. Patch clamp recordings revealed facilitated opening of Cav1.2 channels containing these mutations, weaker inhibition by phospholipase C activation, and reduced expression of channels (as quantified by ON-gating charge) at the plasma membrane. Our data provide new evidence for a membrane binding motif within the I-II linker of LTCC α1-subunits essential for stabilizing normal Ca(2+) channel function.
Collapse
Affiliation(s)
- Gurjot Kaur
- Institute of Pharmacy, Department of Pharmacology and Toxicology, and Center for Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Alexandra Pinggera
- Institute of Pharmacy, Department of Pharmacology and Toxicology, and Center for Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Nadine J Ortner
- Institute of Pharmacy, Department of Pharmacology and Toxicology, and Center for Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Andreas Lieb
- Institute of Pharmacy, Department of Pharmacology and Toxicology, and Center for Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Martina J Sinnegger-Brauns
- Institute of Pharmacy, Department of Pharmacology and Toxicology, and Center for Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, UC Davis School of Medicine, Davis, California 95616
| | - Gerald J Obermair
- Division of Physiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Bernhard E Flucher
- Division of Physiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Jörg Striessnig
- Institute of Pharmacy, Department of Pharmacology and Toxicology, and Center for Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria.
| |
Collapse
|
31
|
Kim TY, Maki T, Zhou Y, Sakai K, Mizuno Y, Ishikawa A, Tanaka R, Niimi K, Li W, Nagano N, Takahashi E. Absence-like seizures and their pharmacological profile in tottering-6j mice. Biochem Biophys Res Commun 2015; 463:148-53. [PMID: 26002462 DOI: 10.1016/j.bbrc.2015.05.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/10/2015] [Indexed: 10/23/2022]
Abstract
We previously showed that recessive ataxic tottering-6j mice carried a base substitution (C-to-A) in the consensus splice acceptor sequence linked to exon 5 of the α1 subunit of the Cav2.1 channel gene (Cacna1a), resulting in the skipping of exon 5 and deletion of part of the S4-S5 linker, S5, and part of the S5-S6 linker in domain I of the α1 subunit of the Cav2.1 channel. However, the electrophysiological and pharmacological consequences of this mutation have not previously been investigated. Upon whole-cell patch recording of the recombinant Cav2.1 channel in heterologous reconstitution expression systems, the mutant-type channel exhibited a lower recovery time after inactivation of Ca(2+) channel current, without any change in peak current density or the current-voltage relationship. Tottering-6j mice exhibited absence-like seizures, characterized by bilateral and synchronous 5-8 Hz spike-and-wave discharges on cortical and hippocampal electroencephalograms, concomitant with sudden immobility and staring. The pharmacological profile of the seizures was similar to that of human absence epilepsy; the seizures were inhibited by ethosuximide and valproic acid, but not by phenytoin. Thus, the tottering-6j mouse is a useful model for studying Cav2.1 channel functions and Cacna1a-related diseases, including absence epilepsy.
Collapse
Affiliation(s)
- Tae Yeon Kim
- Research Resources Center, RIKEN Brain Science Institute, Saitama, 351-0198, Japan
| | - Takehiro Maki
- Sleep Science Laboratories, HAMRI Co. Ltd., Ibaraki, 306-0128, Japan
| | - Ying Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Keita Sakai
- Sleep Science Laboratories, HAMRI Co. Ltd., Ibaraki, 306-0128, Japan
| | - Yuri Mizuno
- Sleep Science Laboratories, HAMRI Co. Ltd., Ibaraki, 306-0128, Japan
| | - Akiyoshi Ishikawa
- Sleep Science Laboratories, HAMRI Co. Ltd., Ibaraki, 306-0128, Japan
| | - Ryo Tanaka
- Sleep Science Laboratories, HAMRI Co. Ltd., Ibaraki, 306-0128, Japan
| | - Kimie Niimi
- Research Resources Center, RIKEN Brain Science Institute, Saitama, 351-0198, Japan
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Norihiro Nagano
- Sleep Science Laboratories, HAMRI Co. Ltd., Ibaraki, 306-0128, Japan
| | - Eiki Takahashi
- Research Resources Center, RIKEN Brain Science Institute, Saitama, 351-0198, Japan; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
32
|
Buraei Z, Lumen E, Kaur S, Yang J. RGK regulation of voltage-gated calcium channels. SCIENCE CHINA-LIFE SCIENCES 2015; 58:28-38. [PMID: 25576452 PMCID: PMC9074095 DOI: 10.1007/s11427-014-4788-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 09/02/2014] [Indexed: 01/01/2023]
Abstract
Voltage-gated calcium channels (VGCCs) play critical roles in cardiac and skeletal muscle contractions, hormone and neurotransmitter release, as well as slower processes such as cell proliferation, differentiation, migration and death. Mutations in VGCCs lead to numerous cardiac, muscle and neurological disease, and their physiological function is tightly regulated by kinases, phosphatases, G-proteins, calmodulin and many other proteins. Fifteen years ago, RGK proteins were discovered as the most potent endogenous regulators of VGCCs. They are a family of monomeric GTPases (Rad, Rem, Rem2, and Gem/Kir), in the superfamily of Ras GTPases, and they have two known functions: regulation of cytoskeletal dynamics including dendritic arborization and inhibition of VGCCs. Here we review the mechanisms and molecular determinants of RGK-mediated VGCC inhibition, the physiological impact of this inhibition, and recent evidence linking the two known RGK functions.
Collapse
Affiliation(s)
- Zafir Buraei
- Department of Biology, Pace University, New York, NY, 10038, USA,
| | | | | | | |
Collapse
|
33
|
Functional heterogeneity of the four voltage sensors of a human L-type calcium channel. Proc Natl Acad Sci U S A 2014; 111:18381-6. [PMID: 25489110 DOI: 10.1073/pnas.1411127112] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Excitation-evoked Ca(2+) influx is the fastest and most ubiquitous chemical trigger for cellular processes, including neurotransmitter release, muscle contraction, and gene expression. The voltage dependence and timing of Ca(2+) entry are thought to be functions of voltage-gated calcium (CaV) channels composed of a central pore regulated by four nonidentical voltage-sensing domains (VSDs I-IV). Currently, the individual voltage dependence and the contribution to pore opening of each VSD remain largely unknown. Using an optical approach (voltage-clamp fluorometry) to track the movement of the individual voltage sensors, we discovered that the four VSDs of CaV1.2 channels undergo voltage-evoked conformational rearrangements, each exhibiting distinct voltage- and time-dependent properties over a wide range of potentials and kinetics. The voltage dependence and fast kinetic components in the activation of VSDs II and III were compatible with the ionic current properties, suggesting that these voltage sensors are involved in CaV1.2 activation. This view is supported by an obligatory model, in which activation of VSDs II and III is necessary to open the pore. When these data were interpreted in view of an allosteric model, where pore opening is intrinsically independent but biased by VSD activation, VSDs II and III were each found to supply ∼50 meV (∼2 kT), amounting to ∼85% of the total energy, toward stabilizing the open state, with a smaller contribution from VSD I (∼16 meV). VSD IV did not appear to participate in channel opening.
Collapse
|
34
|
Ackels T, von der Weid B, Rodriguez I, Spehr M. Physiological characterization of formyl peptide receptor expressing cells in the mouse vomeronasal organ. Front Neuroanat 2014; 8:134. [PMID: 25484858 PMCID: PMC4240171 DOI: 10.3389/fnana.2014.00134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/01/2014] [Indexed: 12/14/2022] Open
Abstract
The mouse vomeronasal organ (VNO) is a chemosensory structure that detects both hetero- and conspecific social cues. Based on largely monogenic expression of either type 1 or 2 vomeronasal receptors (V1Rs/V2Rs) or members of the formyl peptide receptor (FPR) family, the vomeronasal sensory epithelium harbors at least three neuronal subpopulations. While various neurophysiological properties of both V1R- and V2R-expressing neurons have been described using genetically engineered mouse models, the basic biophysical characteristics of the more recently identified FPR-expressing vomeronasal neurons have not been studied. Here, we employ a transgenic mouse strain that coexpresses an enhanced variant of yellow fluorescent protein together with FPR-rs3 allowing to identify and analyze FPR-rs3-expressing neurons in acute VNO tissue slices. Single neuron electrophysiological recordings allow comparative characterization of the biophysical properties inherent to a prototypical member of the FPR-expressing subpopulation of VNO neurons. In this study, we provide an in-depth analysis of both passive and active membrane properties, including detailed characterization of several types of voltage-activated conductances and action potential discharge patterns, in fluorescently labeled vs. unmarked vomeronasal neurons. Our results reveal striking similarities in the basic (electro) physiological architecture of both transgene-expressing and non-expressing neurons, confirming the suitability of this genetically engineered mouse model for future studies addressing more specialized issues in vomeronasal FPR neurobiology.
Collapse
Affiliation(s)
- Tobias Ackels
- Department of Chemosensation, RWTH Aachen University Aachen, Germany
| | - Benoît von der Weid
- Department of Genetics and Evolution, University of Geneva Geneva, Switzerland
| | - Ivan Rodriguez
- Department of Genetics and Evolution, University of Geneva Geneva, Switzerland
| | - Marc Spehr
- Department of Chemosensation, RWTH Aachen University Aachen, Germany
| |
Collapse
|
35
|
Adachi-Akahane S. [Regulation of L-type Ca(2+) channels via cross-talk of Ca(2+) signaling in cardiac myocytes]. Nihon Yakurigaku Zasshi 2014; 144:211-216. [PMID: 25381889 DOI: 10.1254/fpj.144.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|