1
|
Heissler SM, Chinthalapudi K. Structural and functional mechanisms of actin isoforms. FEBS J 2025; 292:468-482. [PMID: 38779987 DOI: 10.1111/febs.17153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/01/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Actin is a highly conserved and fundamental protein in eukaryotes and participates in a broad spectrum of cellular functions. Cells maintain a conserved ratio of actin isoforms, with muscle and non-muscle actins representing the main actin isoforms in muscle and non-muscle cells, respectively. Actin isoforms have specific and redundant functional roles and display different biochemistries, cellular localization, and interactions with myosins and actin-binding proteins. Understanding the specific roles of actin isoforms from the structural and functional perspective is crucial for elucidating the intricacies of cytoskeletal dynamics and regulation and their implications in health and disease. Here, we review how the structure contributes to the functional mechanisms of actin isoforms with a special emphasis on the questions of how post-translational modifications and disease-linked mutations affect actin isoforms biochemistry, function, and interaction with actin-binding proteins and myosin motors.
Collapse
Affiliation(s)
- Sarah M Heissler
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Krishna Chinthalapudi
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
2
|
Viswanathan MC, Dutta D, Kronert WA, Chitre K, Padrón R, Craig R, Bernstein SI, Cammarato A. Dominant myosin storage myopathy mutations disrupt striated muscles in Drosophila and the myosin tail-tail interactome of human cardiac thick filaments. Genetics 2025; 229:1-34. [PMID: 39485824 PMCID: PMC11708916 DOI: 10.1093/genetics/iyae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
Myosin storage myopathy (MSM) is a rare skeletal muscle disorder caused by mutations in the slow muscle/β-cardiac myosin heavy chain (MHC) gene. MSM missense mutations frequently disrupt the tail's stabilizing heptad repeat motif. Disease hallmarks include subsarcolemmal hyaline-like β-MHC aggregates, muscle weakness, and, occasionally, cardiomyopathy. We generated transgenic, heterozygous Drosophila to examine the dominant physiological and structural effects of the L1793P, R1845W, and E1883K MHC MSM mutations on diverse muscles. The MHC variants reduced lifespan and flight and jump abilities. Moreover, confocal and electron microscopy revealed that they provoked indirect flight muscle breaks and myofibrillar disarray/degeneration with filamentous inclusions. Incorporation of GFP-myosin enabled in situ determination of thick filament lengths, which were significantly reduced in all mutants. Semiautomated heartbeat analysis uncovered aberrant cardiac function, which worsened with age. Thus, our fly models phenocopied traits observed among MSM patients. We additionally mapped the mutations onto a recently determined, 6 Å resolution, cryo-EM structure of the human cardiac thick filament. The R1845W mutation replaces a basic arginine with a polar-neutral, bulkier tryptophan, while E1883K reverses charge at critical filament loci. Both would be expected to disrupt the core and the outer shell of the backbone structure. Replacing L1793 with a proline, a potent breaker of α-helices, could disturb the coiled-coil of the myosin rod and alter the tail-tail interactome. Hence, all mutations likely destabilize and weaken the filament backbone. This may trigger disease in humans, while potentially analogous perturbations are likely to yield the observed thick filament and muscle disruption in our fly models.
Collapse
Affiliation(s)
- Meera C Viswanathan
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA
- Department of Biology, Molecular Biology Institute and Heart Institute San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Debabrata Dutta
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Chan Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - William A Kronert
- Department of Biology, Molecular Biology Institute and Heart Institute San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Kripa Chitre
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Raúl Padrón
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Chan Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Roger Craig
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Chan Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Sanford I Bernstein
- Department of Biology, Molecular Biology Institute and Heart Institute San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Anthony Cammarato
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Liu Y, Zhang F, Hassan A, Zhou X, Huang Q. Accessory gland protein regulates pairing process and oviposition in the subterranean termite Reticulitermes chinensis after swarming. INSECT SCIENCE 2024; 31:1889-1907. [PMID: 38576063 DOI: 10.1111/1744-7917.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 04/06/2024]
Abstract
Swarming and pairing behaviors are significant to population dispersal of termites. Tandem running is a key process in pairing behavior of dealates to find a mate. Succinylation can lead to significant changes in protein structure and function, which is widely involved in metabolism and behavior regulation in many organisms. However, whether succinylation modification regulates termites' tandem running is currently unknown. In this research, we performed quantitative modified proteomics of the subterranean termite Reticulitermes chinensis Snyder before and after alate swarming. The succinylation levels of accessory gland protein (ACP) were significantly altered after alate swarming. We found that ACP is enriched in male accessory gland and female oocytes of termites. The acetylation and succinylation sites of ACP affected tandem running of dealates. The transcriptome and metabolome analyses of alates injected with ACP and its mutant proteins showed that β-alanine metabolism pathway was the major downstream pathway of ACP. Silencing the significantly differentially expressed genes in the β-alanine metabolic pathway (acyl-CoA dehydrogenase, enoyl-CoA hydratase, 3-hydroxyisobutyrate dehydrogenase, methylmalonate-semialdehyde dehydrogenase) suppressed tandem running and altered oviposition of paired dealates. These findings demonstrate that protein translation modification is an important regulator of tandem running behavior of termites, which implies that the succinylation and acetylation modification sites of ACP could be potential targets for insecticide action. Our research offers a potential approach for developing novel dispersal inhibitors against social insect pests.
Collapse
Affiliation(s)
- Yutong Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Fei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Ali Hassan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Qiuying Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Meyer GA, Ferey JLA, Sanford JA, Fitzgerald LS, Greenberg AE, Svensson K, Greenberg MJ, Schenk S. Insights into posttranslational regulation of skeletal muscle contractile function by the acetyltransferases, p300 and CBP. J Appl Physiol (1985) 2024; 136:1559-1567. [PMID: 38722753 PMCID: PMC11365544 DOI: 10.1152/japplphysiol.00156.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024] Open
Abstract
Mice with skeletal muscle-specific and inducible double knockout of the lysine acetyltransferases, p300 (E1A binding protein p300) and CBP (cAMP-response element-binding protein binding protein), referred to as i-mPCKO, demonstrate a dramatic loss of contractile function in skeletal muscle and ultimately die within 7 days. Given that many proteins involved in ATP generation and cross-bridge cycling are acetylated, we investigated whether these processes are dysregulated in skeletal muscle from i-mPCKO mice and, thus, whether they could underlie the rapid loss of muscle contractile function. Just 4-5 days after inducing knockout of p300 and CBP in skeletal muscle from adult i-mPCKO mice, there was ∼90% reduction in ex vivo contractile function in the extensor digitorum longus (EDL) and a ∼65% reduction in in vivo ankle dorsiflexion torque, as compared with wild type (WT; i.e., Cre negative) littermates. Despite this profound loss of contractile force in i-mPCKO mice, there were no genotype-driven differences in fatigability during repeated contractions, nor were there genotype differences in mitochondrial-specific pathway enrichment of the proteome, intermyofibrillar mitochondrial volume, or mitochondrial respiratory function. As it relates to cross-bridge cycling, remarkably, the overt loss of contractile function in i-mPCKO muscle was reversed in permeabilized fibers supplied with exogenous Ca2+ and ATP, with active tension being similar between i-mPCKO and WT mice, regardless of Ca2+ concentration. Actin-myosin motility was also similar in skeletal muscle from i-mPCKO and WT mice. In conclusion, neither mitochondrial abundance/function, nor actomyosin cross-bridge cycling, are the underlying driver of contractile dysfunction in i-mPCKO mice.NEW & NOTEWORTHY The mechanism underlying dramatic loss of muscle contractile function with inducible deletion of both E1A binding protein p300 (p300) and cAMP-response element-binding protein binding protein (CBP) in skeletal muscle remains unknown. Here, we find that impairments in mitochondrial function or cross-bridge cycling are not the underlying mechanism of action. Future work will investigate other aspects of excitation-contraction coupling, such as Ca2+ handling and membrane excitability, as contractile function could be rescued by permeabilizing skeletal muscle, which provides exogenous Ca2+ and bypasses membrane depolarization.
Collapse
Affiliation(s)
- Gretchen A Meyer
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Jeremie L A Ferey
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, Missouri, United States
| | - James A Sanford
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States
| | - Liam S Fitzgerald
- Department of Orthopaedic Surgery, School of Medicine, University of California San Diego, San Diego, California, United States
- Biomedical Sciences Graduate Program, School of Medicine, University of California San Diego, San Diego, California, United States
- Medical Scientist Training Program, School of Medicine, University of California San Diego, San Diego, California, United States
| | - Akiva E Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Kristoffer Svensson
- Department of Orthopaedic Surgery, School of Medicine, University of California San Diego, San Diego, California, United States
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Simon Schenk
- Department of Orthopaedic Surgery, School of Medicine, University of California San Diego, San Diego, California, United States
- Biomedical Sciences Graduate Program, School of Medicine, University of California San Diego, San Diego, California, United States
| |
Collapse
|
5
|
Nikonova E, DeCata J, Canela M, Barz C, Esser A, Bouterwek J, Roy A, Gensler H, Heß M, Straub T, Forne I, Spletter ML. Bruno 1/CELF regulates splicing and cytoskeleton dynamics to ensure correct sarcomere assembly in Drosophila flight muscles. PLoS Biol 2024; 22:e3002575. [PMID: 38683844 PMCID: PMC11081514 DOI: 10.1371/journal.pbio.3002575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 05/09/2024] [Accepted: 03/04/2024] [Indexed: 05/02/2024] Open
Abstract
Muscles undergo developmental transitions in gene expression and alternative splicing that are necessary to refine sarcomere structure and contractility. CUG-BP and ETR-3-like (CELF) family RNA-binding proteins are important regulators of RNA processing during myogenesis that are misregulated in diseases such as Myotonic Dystrophy Type I (DM1). Here, we report a conserved function for Bruno 1 (Bru1, Arrest), a CELF1/2 family homolog in Drosophila, during early muscle myogenesis. Loss of Bru1 in flight muscles results in disorganization of the actin cytoskeleton leading to aberrant myofiber compaction and defects in pre-myofibril formation. Temporally restricted rescue and RNAi knockdown demonstrate that early cytoskeletal defects interfere with subsequent steps in sarcomere growth and maturation. Early defects are distinct from a later requirement for bru1 to regulate sarcomere assembly dynamics during myofiber maturation. We identify an imbalance in growth in sarcomere length and width during later stages of development as the mechanism driving abnormal radial growth, myofibril fusion, and the formation of hollow myofibrils in bru1 mutant muscle. Molecularly, we characterize a genome-wide transition from immature to mature sarcomere gene isoform expression in flight muscle development that is blocked in bru1 mutants. We further demonstrate that temporally restricted Bru1 rescue can partially alleviate hypercontraction in late pupal and adult stages, but it cannot restore myofiber function or correct structural deficits. Our results reveal the conserved nature of CELF function in regulating cytoskeletal dynamics in muscle development and demonstrate that defective RNA processing due to misexpression of CELF proteins causes wide-reaching structural defects and progressive malfunction of affected muscles that cannot be rescued by late-stage gene replacement.
Collapse
Affiliation(s)
- Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, München, Germany
| | - Jenna DeCata
- School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, Missouri, United States of America
| | - Marc Canela
- Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Christiane Barz
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, München, Germany
| | - Alexandra Esser
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, München, Germany
| | - Jessica Bouterwek
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, München, Germany
| | - Akanksha Roy
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, München, Germany
| | - Heidemarie Gensler
- Department of Systematic Zoology, Biocenter, Faculty of Biology, Ludwig-Maximilians-Universität München, München, Germany
| | - Martin Heß
- Department of Systematic Zoology, Biocenter, Faculty of Biology, Ludwig-Maximilians-Universität München, München, Germany
| | - Tobias Straub
- Biomedical Center, Bioinformatics Core Unit, Ludwig-Maximilians-Universität München, München, Germany
| | - Ignasi Forne
- Biomedical Center, Protein Analysis Unit, Ludwig-Maximilians-Universität München, München, Germany
| | - Maria L. Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, München, Germany
- School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, Missouri, United States of America
| |
Collapse
|
6
|
Meyer GA, Ferey JLA, Sanford JA, Fitzgerald LS, Greenberg AE, Svensson K, Greenberg MJ, Schenk S. Insights into post-translational regulation of skeletal muscle contractile function by the acetyltransferases, p300 and CBP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582179. [PMID: 38463996 PMCID: PMC10925228 DOI: 10.1101/2024.02.27.582179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Mice with skeletal muscle-specific inducible double knockout of the lysine acetyltransferases, p300 (E1A binding protein p300) and CBP (cAMP-response element-binding protein binding protein), referred to as i-mPCKO, demonstrate a dramatic loss of contractile function in skeletal muscle and ultimately die within 7 days. Given that many proteins involved in ATP generation and cross-bridge cycling are acetylated, we investigated whether these processes are dysregulated in skeletal muscle from i-mPCKO mice and thus could underlie the rapid loss of muscle contractile function. Just 4-5 days after inducing knockout of p300 and CBP in skeletal muscle from adult i-mPCKO mice, there was ∼90% reduction in ex vivo contractile function in the extensor digitorum longus (EDL) and a ∼65% reduction in in vivo ankle dorsiflexion torque, as compared to wildtype (WT; i.e. Cre negative) littermates. Despite the profound loss of contractile force in i-mPCKO mice, there were no genotype-driven differences in fatigability during repeated contractions, nor were there genotype differences in mitochondrial specific pathway enrichment of the proteome, intermyofibrillar mitochondrial volume or mitochondrial respiratory function. As it relates to cross-bridge cycling, remarkably, the overt loss of contractile function in i-mPCKO muscle was reversed in permeabilized fibers supplied with exogenous Ca 2+ and ATP, with active tension being similar between i-mPCKO and WT mice, regardless of Ca 2+ concentration. Actin-myosin motility was also similar in skeletal muscle from i-mPCKO and WT mice. In conclusion, neither mitochondrial abundance/function, nor actomyosin cross-bridge cycling, are the underlying driver of contractile dysfunction in i-mPCKO mice. New & Noteworthy The mechanism underlying dramatic loss of muscle contractile function with inducible deletion of both p300 and CBP in skeletal muscle remains unknown. Here we find that impairments in mitochondrial function or cross-bridge cycling are not the underlying mechanism of action. Future work will investigate other aspects of excitation-contraction coupling, such as Ca 2+ handling and membrane excitability, as contractile function could be rescued by permeabilizing skeletal muscle, which provides exogenous Ca 2+ and bypasses membrane depolarization.
Collapse
|
7
|
Li C, Bassey AP, Zhou G. Molecular Changes of Meat Proteins During Processing and Their Impact on Quality and Nutritional Values. Annu Rev Food Sci Technol 2023; 14:85-111. [PMID: 36972162 DOI: 10.1146/annurev-food-052720-124932] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Meats are rich in lipids and proteins, exposing them to rapid oxidative changes. Proteins are essential to the human diet, and changes in the structure and functional attributes can greatly influence the quality and nutritional value of meats. In this article, we review the molecular changes of proteins during processing, their impact on the nutritional value of fresh and processed meat, the digestibility and bioavailability of meat proteins, the risks associated with high meat intake, and the preventive strategies employed to mitigate these risks. This information provides new research directions to reduce or prevent oxidative processes that influence the quality and nutritional values of meat.
Collapse
Affiliation(s)
- Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Collaborative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China;
| | - Anthony Pius Bassey
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Collaborative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China;
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Collaborative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China;
| |
Collapse
|
8
|
Al-Sabri MH, Behare N, Alsehli AM, Berkins S, Arora A, Antoniou E, Moysiadou EI, Anantha-Krishnan S, Cosmen PD, Vikner J, Moulin TC, Ammar N, Boukhatmi H, Clemensson LE, Rask-Andersen M, Mwinyi J, Williams MJ, Fredriksson R, Schiöth HB. Statins Induce Locomotion and Muscular Phenotypes in Drosophila melanogaster That Are Reminiscent of Human Myopathy: Evidence for the Role of the Chloride Channel Inhibition in the Muscular Phenotypes. Cells 2022; 11:3528. [PMID: 36428957 PMCID: PMC9688544 DOI: 10.3390/cells11223528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
The underlying mechanisms for statin-induced myopathy (SIM) are still equivocal. In this study, we employ Drosophila melanogaster to dissect possible underlying mechanisms for SIM. We observe that chronic fluvastatin treatment causes reduced general locomotion activity and climbing ability. In addition, transmission microscopy of dissected skeletal muscles of fluvastatin-treated flies reveals strong myofibrillar damage, including increased sarcomere lengths and Z-line streaming, which are reminiscent of myopathy, along with fragmented mitochondria of larger sizes, most of which are round-like shapes. Furthermore, chronic fluvastatin treatment is associated with impaired lipid metabolism and insulin signalling. Mechanistically, knockdown of the statin-target Hmgcr in the skeletal muscles recapitulates fluvastatin-induced mitochondrial phenotypes and lowered general locomotion activity; however, it was not sufficient to alter sarcomere length or elicit myofibrillar damage compared to controls or fluvastatin treatment. Moreover, we found that fluvastatin treatment was associated with reduced expression of the skeletal muscle chloride channel, ClC-a (Drosophila homolog of CLCN1), while selective knockdown of skeletal muscle ClC-a also recapitulated fluvastatin-induced myofibril damage and increased sarcomere lengths. Surprisingly, exercising fluvastatin-treated flies restored ClC-a expression and normalized sarcomere lengths, suggesting that fluvastatin-induced myofibrillar phenotypes could be linked to lowered ClC-a expression. Taken together, these results may indicate the potential role of ClC-a inhibition in statin-associated muscular phenotypes. This study underlines the importance of Drosophila melanogaster as a powerful model system for elucidating the locomotion and muscular phenotypes, promoting a better understanding of the molecular mechanisms underlying SIM.
Collapse
Affiliation(s)
- Mohamed H. Al-Sabri
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
| | - Neha Behare
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Ahmed M. Alsehli
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
- Faculty of Medicine, King Abdulaziz University and Hospital, Al Ehtifalat St., Jeddah 21589, Saudi Arabia
| | - Samuel Berkins
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Aadeya Arora
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Eirini Antoniou
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Eleni I. Moysiadou
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Sowmya Anantha-Krishnan
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Patricia D. Cosmen
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Johanna Vikner
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Thiago C. Moulin
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
- Faculty of Medicine, Department of Experimental Medical Science, Lund University, Sölvegatan 19, BMC F10, 221 84 Lund, Sweden
| | - Nourhene Ammar
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, CNRS, UMR6290, 35065 Rennes, France
| | - Hadi Boukhatmi
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, CNRS, UMR6290, 35065 Rennes, France
| | - Laura E. Clemensson
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Mathias Rask-Andersen
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden
| | - Jessica Mwinyi
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Michael J. Williams
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Robert Fredriksson
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| |
Collapse
|
9
|
Huang Z, He L, Sang W, Wang L, Huang Q, Lei C. Potential role of lysine succinylation in the response of moths to artificial light at night stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112334. [PMID: 34020284 DOI: 10.1016/j.ecoenv.2021.112334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/14/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
Artificial light at night (ALAN) is a widespread environmental pollutant and stressor. Many nocturnal insects have been shown to experience ALAN stress. However, few studies have been conducted to uncover the mechanism by which nocturnal insects respond to ALAN stress. Previous studies suggest that lysine succinylation (Ksuc) is a potential mechanism that coordinates energy metabolism and antioxidant activity under stressful conditions. Mythimna separata (Walker) (M. separata) is a nocturnal insect that has been stressed by ALAN. In this study, we quantified the relative proteomic Ksuc levels in ALAN-stressed M. separata. Of the 466 identified Ksuc-modified proteins, 103 were hypersuccinylated/desuccinylated in ALAN-stressed moths. The hypersuccinylated/desuccinylated proteins were shown to be involved in various biological processes. In particular, they were enriched in metabolic processes, reactive oxygen species (ROS) homeostasis and the neuromuscular system. Furthermore, we demonstrated that Ksuc might affect moth locomotion by intervening with and coordinating these systems under ALAN stress. These findings suggest that Ksuc plays a vital role in the moth response to ALAN stress and moth locomotion behavior and provide a new perspective on the impact of ALAN on nocturnal insect populations and species communities.
Collapse
Affiliation(s)
- Zhijuan Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Li He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wen Sang
- Department of Entomology, South China Agricultural University, Guangzhou 510640, China.
| | - Lijun Wang
- College of Life Sciences, Yantai University, Yantai 264005, China.
| | - Qiuying Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chaoliang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
10
|
Zhang Y, Li X, Zhang D, Ren C, Bai Y, Ijaz M, Wang X, Zhao Y. Acetylation of Sarcoplasmic and Myofibrillar Proteins were Associated with Ovine Meat Quality Attributes at Early Postmortem. Food Sci Anim Resour 2021; 41:650-663. [PMID: 34291213 PMCID: PMC8277182 DOI: 10.5851/kosfa.2021.e22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 01/04/2023] Open
Abstract
The objective of this study was to examine the relationship between meat quality
attributes and the changes of sarcoplasmic protein acetylation and myofibrillar
protein acetylation in lamb longissimus thoracis et lumborum
muscles at different postmortem phases. Protein acetylation, color, pH, shear
force, myofibril fragmentation index and cooking loss were measured. The total
level of acetylated sarcoplasmic proteins showed a negative relation with pH, a
positive relation with a*, b* and cooking loss at the pre-rigor phase.
Sarcoplasmic proteins acetylation affected postmortem pH by regulating
glycolysis, which in turn affects color and cooking loss. The total level of
acetylated myofibrillar proteins showed a positive relation with shear force at
the pre-rigor phase. Myofibrillar proteins acetylation affected meat tenderness
by regulating muscle contraction. This study indicated that acetylation played a
regulatory role of meat color, water-holding capacity, and tenderization process
at early postmortem.
Collapse
Affiliation(s)
- Yejun Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Chi Ren
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yuqiang Bai
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Muawuz Ijaz
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xu Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yingxin Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
11
|
MacTaggart B, Kashina A. Posttranslational modifications of the cytoskeleton. Cytoskeleton (Hoboken) 2021; 78:142-173. [PMID: 34152688 DOI: 10.1002/cm.21679] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
The cytoskeleton plays important roles in many essential processes at the cellular and organismal levels, including cell migration and motility, cell division, and the establishment and maintenance of cell and tissue architecture. In order to facilitate these varied functions, the main cytoskeletal components-microtubules, actin filaments, and intermediate filaments-must form highly diverse intracellular arrays in different subcellular areas and cell types. The question of how this diversity is conferred has been the focus of research for decades. One key mechanism is the addition of posttranslational modifications (PTMs) to the major cytoskeletal proteins. This posttranslational addition of various chemical groups dramatically increases the complexity of the cytoskeletal proteome and helps facilitate major global and local cytoskeletal functions. Cytoskeletal proteins undergo many PTMs, most of which are not well understood. Recent technological advances in proteomics and cell biology have allowed for the in-depth study of individual PTMs and their functions in the cytoskeleton. Here, we provide an overview of the major PTMs that occur on the main structural components of the three cytoskeletal systems-tubulin, actin, and intermediate filament proteins-and highlight the cellular function of these modifications.
Collapse
Affiliation(s)
- Brittany MacTaggart
- School of Veterinary Medicine, Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anna Kashina
- School of Veterinary Medicine, Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Balakrishnan M, Yu SF, Chin SM, Soffar DB, Windner SE, Goode BL, Baylies MK. Cofilin Loss in Drosophila Muscles Contributes to Muscle Weakness through Defective Sarcomerogenesis during Muscle Growth. Cell Rep 2021; 32:107893. [PMID: 32697999 PMCID: PMC7479987 DOI: 10.1016/j.celrep.2020.107893] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/23/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022] Open
Abstract
Sarcomeres, the fundamental contractile units of muscles, are conserved structures composed of actin thin filaments and myosin thick filaments. How sarcomeres are formed and maintained is not well understood. Here, we show that knockdown of Drosophila cofilin (DmCFL), an actin depolymerizing factor, disrupts both sarcomere structure and muscle function. The loss of DmCFL also results in the formation of sarcomeric protein aggregates and impairs sarcomere addition during growth. The activation of the proteasome delays muscle deterioration in our model. Furthermore, we investigate how a point mutation in CFL2 that causes nemaline myopathy (NM) in humans affects CFL function and leads to the muscle phenotypes observed in vivo. Our data provide significant insights to the role of CFLs during sarcomere formation, as well as mechanistic implications for disease progression in NM patients. How sarcomeres are added and maintained in a growing muscle cell is unclear. Balakrishnan et al. observed that DmCFL loss in growing muscles affects sarcomere size and addition through unregulated actin polymerization. This results in a collapse of sarcomere and muscle structure, formation of large protein aggregates, and muscle weakness.
Collapse
Affiliation(s)
- Mridula Balakrishnan
- Biochemistry & Structural Biology, Cell & Developmental Biology, and Molecular Biology (BCMB) Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA; Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shannon F Yu
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Samantha M Chin
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - David B Soffar
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stefanie E Windner
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Mary K Baylies
- Biochemistry & Structural Biology, Cell & Developmental Biology, and Molecular Biology (BCMB) Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA; Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
13
|
Effects of acetylation on dissociation and phosphorylation of actomyosin in postmortem ovine muscle during incubation at 4 °C in vitro. Food Chem 2021; 356:129696. [PMID: 33838605 DOI: 10.1016/j.foodchem.2021.129696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022]
Abstract
This study aimed to assess the effects of acetylation levels on actomyosin disassociation and phosphorylation of lamb during incubation at 4 °C. Samples of whole proteins from lamb longissimus thoracis muscles were prepared and assigned into three treatments (high, middle and low acetylation groups). The results showed that deacetylation of myosin heavy chain and actin was inhibited by lysine deacetylase inhibitor trichostatin A and nicotinamide in this study. Phosphorylation levels of myosin heavy chain and actin were inhibited by their acetylation during incubation in vitro. Actomyosin disassociation degree in high acetylation group was significantly lower than that in middle and low acetylation groups (P < 0.05). The ATPase activity in high acetylation group was significantly higher than that in middle and low acetylation groups (P < 0.05). In conclusion, acetylation of myosin heavy chain and actin inhibited actomyosin dissociation by inhibiting their phosphorylation at 4 °C in vitro.
Collapse
|
14
|
Russell B, Solís C. Mechanosignaling pathways alter muscle structure and function by post-translational modification of existing sarcomeric proteins to optimize energy usage. J Muscle Res Cell Motil 2021; 42:367-380. [PMID: 33595762 DOI: 10.1007/s10974-021-09596-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/04/2021] [Indexed: 12/29/2022]
Abstract
A transduced mechanical signal arriving at its destination in muscle alters sarcomeric structure and function. A major question addressed is how muscle mass and tension generation are optimized to match actual performance demands so that little energy is wasted. Three cases for improved energy efficiency are examined: the troponin complex for tuning force production, control of the myosin heads in a resting state, and the Z-disc proteins for sarcomere assembly. On arrival, the regulation of protein complexes is often controlled by post-translational modification (PTM), of which the most common are phosphorylation by kinases, deacetylation by histone deacetylases and ubiquitination by E3 ligases. Another branch of signals acts not through peptide covalent bonding but via ligand interactions (e.g. Ca2+ and phosphoinositide binding). The myosin head and the regulation of its binding to actin by the troponin complex is the best and earliest example of signal destinations that modify myofibrillar contractility. PTMs in the troponin complex regulate both the efficiency of the contractile function to match physiologic demand for work, and muscle mass via protein degradation. The regulation of sarcomere assembly by integration of incoming signaling pathways causing the same PTMs or ligand binding are discussed in response to mechanical loading and unloading by the Z-disc proteins CapZ, α-actinin, telethonin, titin N-termini, and others. Many human mutations that lead to cardiomyopathy and heart disease occur in the proteins discussed above, which often occur at their PTM or ligand binding sites.
Collapse
Affiliation(s)
- Brenda Russell
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Christopher Solís
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| |
Collapse
|
15
|
A M, Latario CJ, Pickrell LE, Higgs HN. Lysine acetylation of cytoskeletal proteins: Emergence of an actin code. J Biophys Biochem Cytol 2020; 219:211455. [PMID: 33044556 PMCID: PMC7555357 DOI: 10.1083/jcb.202006151] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Reversible lysine acetylation of nuclear proteins such as histones is a long-established important regulatory mechanism for chromatin remodeling and transcription. In the cytoplasm, acetylation of a number of cytoskeletal proteins, including tubulin, cortactin, and the formin mDia2, regulates both cytoskeletal assembly and stability. More recently, acetylation of actin itself was revealed to regulate cytoplasmic actin polymerization through the formin INF2, with downstream effects on ER-to-mitochondrial calcium transfer, mitochondrial fission, and vesicle transport. This finding raises the possibility that actin acetylation, along with other post-translational modifications to actin, might constitute an "actin code," similar to the "histone code" or "tubulin code," controlling functional shifts to these central cellular proteins. Given the multiple roles of actin in nuclear functions, its modifications might also have important roles in gene expression.
Collapse
|
16
|
Schmidt W, Madan A, Foster DB, Cammarato A. Lysine acetylation of F-actin decreases tropomyosin-based inhibition of actomyosin activity. J Biol Chem 2020; 295:15527-15539. [PMID: 32873710 DOI: 10.1074/jbc.ra120.015277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/18/2020] [Indexed: 12/17/2022] Open
Abstract
Recent proteomics studies of vertebrate striated muscle have identified lysine acetylation at several sites on actin. Acetylation is a reversible post-translational modification that neutralizes lysine's positive charge. Positively charged residues on actin, particularly Lys326 and Lys328, are predicted to form critical electrostatic interactions with tropomyosin (Tpm) that promote its binding to filamentous (F)-actin and bias Tpm to an azimuthal location where it impedes myosin attachment. The troponin (Tn) complex also influences Tpm's position along F-actin as a function of Ca2+ to regulate exposure of myosin-binding sites and, thus, myosin cross-bridge recruitment and force production. Interestingly, Lys326 and Lys328 are among the documented acetylated residues. Using an acetic anhydride-based labeling approach, we showed that excessive, nonspecific actin acetylation did not disrupt characteristic F-actin-Tpm binding. However, it significantly reduced Tpm-mediated inhibition of myosin attachment, as reflected by increased F-actin-Tpm motility that persisted in the presence of Tn and submaximal Ca2+ Furthermore, decreasing the extent of chemical acetylation, to presumptively target highly reactive Lys326 and Lys328, also resulted in less inhibited F-actin-Tpm, implying that modifying only these residues influences Tpm's location and, potentially, thin filament regulation. To unequivocally determine the residue-specific consequences of acetylation on Tn-Tpm-based regulation of actomyosin activity, we assessed the effects of K326Q and K328Q acetyl (Ac)-mimetic actin on Ca2+-dependent, in vitro motility parameters of reconstituted thin filaments (RTFs). Incorporation of K328Q actin significantly enhanced Ca2+ sensitivity of RTF activation relative to control. Together, our findings suggest that actin acetylation, especially Lys328, modulates muscle contraction via disrupting inhibitory Tpm positioning.
Collapse
Affiliation(s)
- William Schmidt
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aditi Madan
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - D Brian Foster
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anthony Cammarato
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
17
|
Madan A, Viswanathan MC, Woulfe KC, Schmidt W, Sidor A, Liu T, Nguyen TH, Trinh B, Wilson C, Madathil S, Vogler G, O'Rourke B, Biesiadecki BJ, Tobacman LS, Cammarato A. TNNT2 mutations in the tropomyosin binding region of TNT1 disrupt its role in contractile inhibition and stimulate cardiac dysfunction. Proc Natl Acad Sci U S A 2020; 117:18822-18831. [PMID: 32690703 PMCID: PMC7414051 DOI: 10.1073/pnas.2001692117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Muscle contraction is regulated by the movement of end-to-end-linked troponin-tropomyosin complexes over the thin filament surface, which uncovers or blocks myosin binding sites along F-actin. The N-terminal half of troponin T (TnT), TNT1, independently promotes tropomyosin-based, steric inhibition of acto-myosin associations, in vitro. Recent structural models additionally suggest TNT1 may restrain the uniform, regulatory translocation of tropomyosin. Therefore, TnT potentially contributes to striated muscle relaxation; however, the in vivo functional relevance and molecular basis of this noncanonical role remain unclear. Impaired relaxation is a hallmark of hypertrophic and restrictive cardiomyopathies (HCM and RCM). Investigating the effects of cardiomyopathy-causing mutations could help clarify TNT1's enigmatic inhibitory property. We tested the hypothesis that coupling of TNT1 with tropomyosin's end-to-end overlap region helps anchor tropomyosin to an inhibitory position on F-actin, where it deters myosin binding at rest, and that, correspondingly, cross-bridge cycling is defectively suppressed under diastolic/low Ca2+ conditions in the presence of HCM/RCM lesions. The impact of TNT1 mutations on Drosophila cardiac performance, rat myofibrillar and cardiomyocyte properties, and human TNT1's propensity to inhibit myosin-driven, F-actin-tropomyosin motility were evaluated. Our data collectively demonstrate that removing conserved, charged residues in TNT1's tropomyosin-binding domain impairs TnT's contribution to inhibitory tropomyosin positioning and relaxation. Thus, TNT1 may modulate acto-myosin activity by optimizing F-actin-tropomyosin interfacial contacts and by binding to actin, which restrict tropomyosin's movement to activating configurations. HCM/RCM mutations, therefore, highlight TNT1's essential role in contractile regulation by diminishing its tropomyosin-anchoring effects, potentially serving as the initial trigger of pathology in our animal models and humans.
Collapse
Affiliation(s)
- Aditi Madan
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21205
| | - Meera C Viswanathan
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21205
| | - Kathleen C Woulfe
- Department of Medicine, Division of Cardiology, University of Colorado Denver, Aurora, CO 80045
| | - William Schmidt
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21205
| | - Agnes Sidor
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21205
| | - Ting Liu
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21205
| | - Tran H Nguyen
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21205
| | - Bosco Trinh
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Cortney Wilson
- Department of Medicine, Division of Cardiology, University of Colorado Denver, Aurora, CO 80045
| | - Sineej Madathil
- Department of Medicine, University of Illinois College of Medicine, Chicago, IL 60612
| | - Georg Vogler
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Brian O'Rourke
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21205
| | - Brandon J Biesiadecki
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210
- The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210
| | - Larry S Tobacman
- Department of Medicine, University of Illinois College of Medicine, Chicago, IL 60612
| | - Anthony Cammarato
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21205;
- Department of Physiology, Johns Hopkins University, Baltimore, MD 21205
| |
Collapse
|
18
|
Sujkowski A, Gretzinger A, Soave N, Todi SV, Wessells R. Alpha- and beta-adrenergic octopamine receptors in muscle and heart are required for Drosophila exercise adaptations. PLoS Genet 2020; 16:e1008778. [PMID: 32579604 PMCID: PMC7351206 DOI: 10.1371/journal.pgen.1008778] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 07/10/2020] [Accepted: 04/15/2020] [Indexed: 01/04/2023] Open
Abstract
Endurance exercise has broadly protective effects across organisms, increasing metabolic fitness and reducing incidence of several age-related diseases. Drosophila has emerged as a useful model for studying changes induced by chronic endurance exercise, as exercising flies experience improvements to various aspects of fitness at the cellular, organ and organismal level. The activity of octopaminergic neurons is sufficient to induce the conserved cellular and physiological changes seen following endurance training. All 4 octopamine receptors are required in at least one target tissue, but only one, Octβ1R, is required for all of them. Here, we perform tissue- and adult-specific knockdown of alpha- and beta-adrenergic octopamine receptors in several target tissues. We find that reduced expression of Octβ1R in adult muscles abolishes exercise-induced improvements in endurance, climbing speed, flight, cardiac performance and fat-body catabolism in male Drosophila. Importantly, Octβ1R and OAMB expression in the heart is also required cell-nonautonomously for adaptations in other tissues, such as skeletal muscles in legs and adult fat body. These findings indicate that activation of distinct octopamine receptors in skeletal and cardiac muscle are required for Drosophila exercise adaptations, and suggest that cell non-autonomous factors downstream of octopaminergic activation play a key role.
Collapse
Affiliation(s)
- Alyson Sujkowski
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Anna Gretzinger
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Nicolette Soave
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Sokol V. Todi
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Robert Wessells
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| |
Collapse
|
19
|
Viswanathan MC, Schmidt W, Franz P, Rynkiewicz MJ, Newhard CS, Madan A, Lehman W, Swank DM, Preller M, Cammarato A. A role for actin flexibility in thin filament-mediated contractile regulation and myopathy. Nat Commun 2020; 11:2417. [PMID: 32415060 PMCID: PMC7229152 DOI: 10.1038/s41467-020-15922-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/30/2020] [Indexed: 12/20/2022] Open
Abstract
Striated muscle contraction is regulated by the translocation of troponin-tropomyosin strands over the thin filament surface. Relaxation relies partly on highly-favorable, conformation-dependent electrostatic contacts between actin and tropomyosin, which position tropomyosin such that it impedes actomyosin associations. Impaired relaxation and hypercontractile properties are hallmarks of various muscle disorders. The α-cardiac actin M305L hypertrophic cardiomyopathy-causing mutation lies near residues that help confine tropomyosin to an inhibitory position along thin filaments. Here, we investigate M305L actin in vivo, in vitro, and in silico to resolve emergent pathological properties and disease mechanisms. Our data suggest the mutation reduces actin flexibility and distorts the actin-tropomyosin electrostatic energy landscape that, in muscle, result in aberrant contractile inhibition and excessive force. Thus, actin flexibility may be required to establish and maintain interfacial contacts with tropomyosin as well as facilitate its movement over distinct actin surface features and is, therefore, likely necessary for proper regulation of contraction. The α-cardiac actin M305L hypertrophic cardiomyopathy-causing mutation is located near residues that help confine tropomyosin to an inhibitory position along thin filaments. Here the authors assessed M305L actin in vivo, in vitro, and in silico to characterize emergent pathological properties and define the mechanistic basis of disease.
Collapse
Affiliation(s)
- Meera C Viswanathan
- Department of Medicine, Division of Cardiology, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - William Schmidt
- Department of Medicine, Division of Cardiology, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Peter Franz
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Michael J Rynkiewicz
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street St, Boston, MA, 02118, USA
| | - Christopher S Newhard
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180-3590, USA
| | - Aditi Madan
- Department of Medicine, Division of Cardiology, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - William Lehman
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street St, Boston, MA, 02118, USA
| | - Douglas M Swank
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180-3590, USA
| | - Matthias Preller
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| | - Anthony Cammarato
- Department of Medicine, Division of Cardiology, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD, 21205, USA. .,Department of Physiology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA.
| |
Collapse
|
20
|
Sidisky JM, Babcock DT. Visualizing Synaptic Degeneration in Adult Drosophila in Association with Neurodegeneration. J Vis Exp 2020. [PMID: 32478750 DOI: 10.3791/61363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Drosophila serves as a useful model for assessing synaptic structure and function associated with neurodegenerative diseases. While much work has focused on neuromuscular junctions (NMJs) in Drosophila larvae, assessing synaptic integrity in adult Drosophila has received much less attention. Here we provide a straightforward method for dissection of the dorsal longitudinal muscles (DLMs), which are required for flight ability. In addition to flight as a behavioral readout, this dissection allows for the both DLM synapses and muscle tissue to be amenable to structural analysis using fluorescently labeled antibodies for synaptic markers or proteins of interest. This protocol allows for the evaluation of the structural integrity of synapses in adult Drosophila during aging to model the progressive, age-dependent nature of most neurodegenerative diseases.
Collapse
|
21
|
Svensson K, LaBarge SA, Sathe A, Martins VF, Tahvilian S, Cunliffe JM, Sasik R, Mahata SK, Meyer GA, Philp A, David LL, Ward SR, McCurdy CE, Aslan JE, Schenk S. p300 and cAMP response element-binding protein-binding protein in skeletal muscle homeostasis, contractile function, and survival. J Cachexia Sarcopenia Muscle 2020; 11:464-477. [PMID: 31898871 PMCID: PMC7113519 DOI: 10.1002/jcsm.12522] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/22/2019] [Accepted: 11/14/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Reversible ε-amino acetylation of lysine residues regulates transcription as well as metabolic flux; however, roles for specific lysine acetyltransferases in skeletal muscle physiology and function are unknown. In this study, we investigated the role of the related acetyltransferases p300 and cAMP response element-binding protein-binding protein (CBP) in skeletal muscle transcriptional homeostasis and physiology in adult mice. METHODS Mice with skeletal muscle-specific and inducible knockout of p300 and CBP (PCKO) were generated by crossing mice with a tamoxifen-inducible Cre recombinase expressed under the human α-skeletal actin promoter with mice having LoxP sites flanking exon 9 of the Ep300 and Crebbp genes. Knockout of PCKO was induced at 13-15 weeks of age via oral gavage of tamoxifen for 5 days to both PCKO and littermate control [wildtype (WT)] mice. Body composition, food intake, and muscle function were assessed on day 0 (D0) through 5 (D5). Microarray and tandem mass tag mass spectrometry analyses were performed to assess global RNA and protein levels in skeletal muscle of PCKO and WT mice. RESULTS At D5 after initiating tamoxifen treatment, there was a reduction in body weight (-15%), food intake (-78%), stride length (-46%), and grip strength (-45%) in PCKO compared with WT mice. Additionally, ex vivo contractile function [tetanic tension (kPa)] was severely impaired in PCKO vs. WT mice at D3 (~70-80% lower) and D5 (~80-95% lower) and resulted in lethality within 1 week-a phenotype that is reversed by the presence of a single allele of either p300 or CBP. The impaired muscle function in PCKO mice was paralleled by substantial transcriptional alterations (3310 genes; false discovery rate < 0.1), especially in gene networks central to muscle contraction and structural integrity. This transcriptional uncoupling was accompanied by changes in protein expression patterns indicative of impaired muscle function, albeit to a smaller magnitude (446 proteins; fold-change > 1.25; false discovery rate < 0.1). CONCLUSIONS These data reveal that p300 and CBP are required for the control and maintenance of contractile function and transcriptional homeostasis in skeletal muscle and, ultimately, organism survival. By extension, modulating p300/CBP function may hold promise for the treatment of disorders characterized by impaired contractile function in humans.
Collapse
Affiliation(s)
- Kristoffer Svensson
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, CA, USA
| | - Samuel A LaBarge
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, CA, USA
| | - Abha Sathe
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, CA, USA
| | - Vitor F Martins
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, CA, USA.,Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Shahriar Tahvilian
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, CA, USA
| | - Jennifer M Cunliffe
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Roman Sasik
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sushil K Mahata
- VA San Diego Healthcare System, San Diego, CA, USA.,Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gretchen A Meyer
- Program in Physical Therapy and Departments of Neurology, Biomedical Engineering and Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrew Philp
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Larry L David
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Samuel R Ward
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, CA, USA.,Department of Radiology, University of California San Diego, La Jolla, CA, USA.,Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Carrie E McCurdy
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Joseph E Aslan
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health and Science University, Portland, OR, USA.,Knight Cardiovascular Institute, School of Medicine, Oregon Health and Science University, Portland, OR, USA.,Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, CA, USA.,Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
22
|
Lin YH, Schmidt W, Fritz KS, Jeong MY, Cammarato A, Foster DB, Biesiadecki BJ, McKinsey TA, Woulfe KC. Site-specific acetyl-mimetic modification of cardiac troponin I modulates myofilament relaxation and calcium sensitivity. J Mol Cell Cardiol 2020; 139:135-147. [PMID: 31981571 DOI: 10.1016/j.yjmcc.2020.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Cardiac troponin I (cTnI) is an essential physiological and pathological regulator of cardiac relaxation. Significant to this regulation, the post-translational modification of cTnI through phosphorylation functions as a key mechanism to accelerate myofibril relaxation. Similar to phosphorylation, post-translational modification by acetylation alters amino acid charge and protein function. Recent studies have demonstrated that the acetylation of cardiac myofibril proteins accelerates relaxation and that cTnI is acetylated in the heart. These findings highlight the potential significance of myofilament acetylation; however, it is not known if site-specific acetylation of cTnI can lead to changes in myofilament, myofibril, and/or cellular mechanics. The objective of this study was to determine the effects of mimicking acetylation at a single site of cTnI (lysine-132; K132) on myofilament, myofibril, and cellular mechanics and elucidate its influence on molecular function. METHODS To determine if pseudo-acetylation of cTnI at 132 modulates thin filament regulation of the acto-myosin interaction, we reconstituted thin filaments containing WT or K132Q (to mimic acetylation) cTnI and assessed in vitro motility. To test if mimicking acetylation at K132 alters cellular relaxation, adult rat ventricular cardiomyocytes were infected with adenoviral constructs expressing either cTnI K132Q or K132 replaced with arginine (K132R; to prevent acetylation) and cell shortening and isolated myofibril mechanics were measured. Finally, to confirm that changes in cell shortening and myofibril mechanics were directly due to pseudo-acetylation of cTnI at K132, we exchanged troponin containing WT or K132Q cTnI into isolated myofibrils and measured myofibril mechanical properties. RESULTS Reconstituted thin filaments containing K132Q cTnI exhibited decreased calcium sensitivity compared to thin filaments reconstituted with WT cTnI. Cardiomyocytes expressing K132Q cTnI had faster relengthening and myofibrils isolated from these cells had faster relaxation along with decreased calcium sensitivity compared to cardiomyocytes expressing WT or K132R cTnI. Myofibrils exchanged with K132Q cTnI ex vivo demonstrated faster relaxation and decreased calcium sensitivity. CONCLUSIONS Our results indicate for the first time that mimicking acetylation of a specific cTnI lysine accelerates myofilament, myofibril, and myocyte relaxation. This work underscores the importance of understanding how acetylation of specific sarcomeric proteins affects cardiac homeostasis and disease and suggests that modulation of myofilament lysine acetylation may represent a novel therapeutic target to alter cardiac relaxation.
Collapse
Affiliation(s)
- Ying H Lin
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - William Schmidt
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Kristofer S Fritz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Mark Y Jeong
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Anthony Cammarato
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - D Brian Foster
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Brandon J Biesiadecki
- Department of Physiology and Cell Biology, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Timothy A McKinsey
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America; Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America.
| | - Kathleen C Woulfe
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America.
| |
Collapse
|
23
|
Regulation of INF2-mediated actin polymerization through site-specific lysine acetylation of actin itself. Proc Natl Acad Sci U S A 2019; 117:439-447. [PMID: 31871199 DOI: 10.1073/pnas.1914072117] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
INF2 is a formin protein that accelerates actin polymerization. A common mechanism for formin regulation is autoinhibition, through interaction between the N-terminal diaphanous inhibitory domain (DID) and C-terminal diaphanous autoregulatory domain (DAD). We recently showed that INF2 uses a variant of this mechanism that we term "facilitated autoinhibition," whereby a complex consisting of cyclase-associated protein (CAP) bound to lysine-acetylated actin (KAc-actin) is required for INF2 inhibition, in a manner requiring INF2-DID. Deacetylation of actin in the CAP/KAc-actin complex activates INF2. Here we use lysine-to-glutamine mutations as acetylmimetics to map the relevant lysines on actin for INF2 regulation, focusing on K50, K61, and K328. Biochemically, K50Q- and K61Q-actin, when bound to CAP2, inhibit full-length INF2 but not INF2 lacking DID. When not bound to CAP, these mutant actins polymerize similarly to WT-actin in the presence or absence of INF2, suggesting that the effect of the mutation is directly on INF2 regulation. In U2OS cells, K50Q- and K61Q-actin inhibit INF2-mediated actin polymerization when expressed at low levels. Direct-binding studies show that the CAP WH2 domain binds INF2-DID with submicromolar affinity but has weak affinity for actin monomers, while INF2-DAD binds CAP/K50Q-actin 5-fold better than CAP/WT-actin. Actin in complex with full-length CAP2 is predominately ATP-bound. These interactions suggest an inhibition model whereby CAP/KAc-actin serves as a bridge between INF2 DID and DAD. In U2OS cells, INF2 is 90-fold and 5-fold less abundant than CAP1 and CAP2, respectively, suggesting that there is sufficient CAP for full INF2 inhibition.
Collapse
|
24
|
Jeong MY, Lin YH, Wennersten SA, Demos-Davies KM, Cavasin MA, Mahaffey JH, Monzani V, Saripalli C, Mascagni P, Reece TB, Ambardekar AV, Granzier HL, Dinarello CA, McKinsey TA. Histone deacetylase activity governs diastolic dysfunction through a nongenomic mechanism. Sci Transl Med 2019; 10:10/427/eaao0144. [PMID: 29437146 DOI: 10.1126/scitranslmed.aao0144] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/07/2017] [Accepted: 01/05/2018] [Indexed: 12/21/2022]
Abstract
There are no approved drugs for the treatment of heart failure with preserved ejection fraction (HFpEF), which is characterized by left ventricular (LV) diastolic dysfunction. We demonstrate that ITF2357 (givinostat), a clinical-stage inhibitor of histone deacetylase (HDAC) catalytic activity, is efficacious in two distinct murine models of diastolic dysfunction with preserved EF. ITF2357 blocked LV diastolic dysfunction due to hypertension in Dahl salt-sensitive (DSS) rats and suppressed aging-induced diastolic dysfunction in normotensive mice. HDAC inhibitor-mediated efficacy was not due to lowering blood pressure or inhibiting cellular and molecular events commonly associated with diastolic dysfunction, including cardiac fibrosis, cardiac hypertrophy, or changes in cardiac titin and myosin isoform expression. Instead, ex vivo studies revealed impairment of cardiac myofibril relaxation as a previously unrecognized, myocyte-autonomous mechanism for diastolic dysfunction, which can be ameliorated by HDAC inhibition. Translating these findings to humans, cardiac myofibrils from patients with diastolic dysfunction and preserved EF also exhibited compromised relaxation. These data suggest that agents such as HDAC inhibitors, which potentiate cardiac myofibril relaxation, hold promise for the treatment of HFpEF in humans.
Collapse
Affiliation(s)
- Mark Y Jeong
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ying H Lin
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sara A Wennersten
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kimberly M Demos-Davies
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Maria A Cavasin
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jennifer H Mahaffey
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Chandrasekhar Saripalli
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85724, USA
| | | | - T Brett Reece
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amrut V Ambardekar
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Henk L Granzier
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85724, USA
| | - Charles A Dinarello
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Timothy A McKinsey
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA. .,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
25
|
Wang X, Tao T, Song D, Mao H, Liu M, Wang J, Liu X. Calreticulin stabilizes F-actin by acetylating actin and protects microvascular endothelial cells against microwave radiation. Life Sci 2019; 232:116591. [PMID: 31228513 DOI: 10.1016/j.lfs.2019.116591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/06/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023]
Abstract
AIMS Calreticulin (CRT) is a multifunctional protein that protects endothelial cells by alleviating actin cytoskeleton injury, but the underlying mechanism remains unclear. CRT was recently identified as a novel acyltransferase; acetylation at the N-terminus of actin monomers strengthens actin polymerization. This study was undertaken to determine whether CRT protects human microvascular endothelial cells (HMECs) against microwave radiation through actin acetylation. MATERIALS AND METHODS We prepared a eukaryotic-derived recombinant CRT and incubated the HMECs with it prior to microwave exposure. We then assessed cell injury and endothelial function, detected actin polymerization and acetylation after HMECs exposure to S-band high-power microwaves. Coimmunoprecipitation, pull-down, and ex vitro acetylation reaction were performed to determine whether actin is a novel substrate of CRT acyltransferase. Finally, we employed the mutant experiments to demonstrate the acetylation sites contributing to CRT acetyltransferase activity. KEY FINDINGS Microwave radiation induced severe cell injury and endothelial contact dysfunction, reduced the polymerization of actin filaments, and destroyed the actin arrangement, ultimately reducing acetylated actin expression. CRT treatment upregulated actin acetylation levels, promoted polymerization, and facilitated thicker and longer F-actin stress fibre formation. Pre-incubation with CRT rescued microwave-induced cell injury, decreased actin acetylation, and rendered the actin cytoskeleton radiation-retardant. The level of acetyl-actin was positively correlated with actin polymerization. Actin was identified as a novel substrate of CRT, being acetylated mainly through the CRT P-domain at lys-206 and -207. SIGNIFICANCE This work provides a better understanding of the underlying mechanism of CRT-induced cytoprotection, and suggests a novel therapeutic target for microwave radiation-related diseases with endothelial dysfunction.
Collapse
Affiliation(s)
- Xiaoreng Wang
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing, China
| | - Tianqi Tao
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing, China
| | - Dandan Song
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing, China
| | - Huimin Mao
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing, China
| | - Mi Liu
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing, China
| | - Jianli Wang
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing, China
| | - Xiuhua Liu
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
26
|
Jiang S, Liu Y, Shen Z, Zhou B, Shen QW. Acetylome profiling reveals extensive involvement of lysine acetylation in the conversion of muscle to meat. J Proteomics 2019; 205:103412. [PMID: 31176012 DOI: 10.1016/j.jprot.2019.103412] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/25/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022]
Abstract
Protein lysine acetylation is an post-translational modification that regulates gene expression, metabolism, cell signaling, and diseases, but its implication in the postmortem (PM) meat quality development is basically unclear. In the present study, a quantitative proteomic analysis was conducted to profile acetylome in porcine muscle within 24 h PM. In total 595 acetylation sites assigned to 163 proteins were identified in porcine muscle, of which 460 sites distributing to 110 proteins significantly changed in acetylation levels in the conversion of muscle to meat. The dynamic acetylation/deacetylaion of muscle proteins was closely associated with critical chemical-biophysical changes in PM muscle. Bioinformatic analysis revealed that protein lysine acetylation likely regulated postmortem meat quality development by regulating glycolysis and muscle pH, cell stress reponse and apoptosis, muscle contraction and rigor mortis, calcium signaling and proteolysis, IMP synthesis and meat flavor development, and even the stability of pigment proteins and meat color. This study provided the first overview of protein lysine acetylation in PM muscle and revealed its significance in the conversion of muscle to meat. Future exploration of the exact role of protein lysine acetylation at specific sites will further our understanding regarding the underlying mechanisms and be helpful for meat quality control. SIGNIFICANCE: This is the first analysis of acetylome in farm animal and postmortem muscle. Our data showed that the dynamic acetylation/deacetylation of muscle proteins was closely related to the postmortem changes of muscle that affect the final quality of raw meat. Proteins related to glucose metabolism and muscle contraction were the two largest clusters of acetylproteins identified in postmortem porcine muscle. Networks of acetylproteins involved in apoptosis, calcium signaling and IMP synthesis were identified in postmortem porcine muscle at the same time. Our results revealed that protein lysine acetylation regulated the conversion of muscle to meat. It likely regulated meat quality development by regulating postmortem glycolysis, mitochondrion initiated cell apoptosis, calcium signaling, rigor mortis, meat flavor compound sysnthesis and meat tenderization. Our study broadened our understanding of the biochemistry regulating the postmortem conversion of muscle to meat and final meat quality development, which may be helpful for future meat quality control.
Collapse
Affiliation(s)
- Shengwang Jiang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yisong Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | | | - Bing Zhou
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Qingwu W Shen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
27
|
Bell KM, Kronert WA, Huang A, Bernstein SI, Swank DM. The R249Q hypertrophic cardiomyopathy myosin mutation decreases contractility in Drosophila by impeding force production. J Physiol 2019; 597:2403-2420. [PMID: 30950055 DOI: 10.1113/jp277333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/06/2019] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Hypertrophic cardiomyopathy (HCM) is a genetic disease that causes thickening of the heart's ventricular walls and is a leading cause of sudden cardiac death. HCM is caused by missense mutations in muscle proteins including myosin, but how these mutations alter muscle mechanical performance in largely unknown. We investigated the disease mechanism for HCM myosin mutation R249Q by expressing it in the indirect flight muscle of Drosophila melanogaster and measuring alterations to muscle and flight performance. Muscle mechanical analysis revealed R249Q decreased muscle power production due to slower muscle kinetics and decreased force production; force production was reduced because fewer mutant myosin cross-bridges were bound simultaneously to actin. This work does not support the commonly proposed hypothesis that myosin HCM mutations increase muscle contractility, or causes a gain in function; instead, it suggests that for some myosin HCM mutations, hypertrophy is a compensation for decreased contractility. ABSTRACT Hypertrophic cardiomyopathy (HCM) is an inherited disease that causes thickening of the heart's ventricular walls. A generally accepted hypothesis for this phenotype is that myosin heavy chain HCM mutations increase muscle contractility. To test this hypothesis, we expressed an HCM myosin mutation, R249Q, in Drosophila indirect flight muscle (IFM) and assessed myofibril structure, skinned fibre mechanical properties, and flight ability. Mechanics experiments were performed on fibres dissected from 2-h-old adult flies, prior to degradation of IFM myofilament structure, which started at 2 days old and increased with age. Homozygous and heterozygous R249Q fibres showed decreased maximum power generation by 67% and 44%, respectively. Decreases in force and work and slower overall muscle kinetics caused homozygous fibres to produce less power. While heterozygous fibres showed no overall slowing of muscle kinetics, active force and work production dropped by 68% and 47%, respectively, which hindered power production. The muscle apparent rate constant 2πb decreased 33% for homozygous but increased for heterozygous fibres. The apparent rate constant 2πc was greater for homozygous fibres. This indicates that R249Q myosin is slowing attachment while speeding up detachment from actin, resulting in less time bound. Decreased IFM power output caused 43% and 33% decreases in Drosophila flight ability and 19% and 6% drops in wing beat frequency for homozygous and heterozygous flies, respectively. Overall, our results do not support the increased contractility hypothesis. Instead, our results suggest the ventricular hypertrophy for human R249Q mutation is a compensatory response to decreases in heart muscle power output.
Collapse
Affiliation(s)
- Kaylyn M Bell
- Department of Biological Sciences & Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - William A Kronert
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA, USA
| | - Alice Huang
- Department of Biological Sciences & Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Sanford I Bernstein
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA, USA
| | - Douglas M Swank
- Department of Biological Sciences & Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
28
|
Schmidt W, Cammarato A. The actin 'A-triad's' role in contractile regulation in health and disease. J Physiol 2019; 598:2897-2908. [PMID: 30770548 DOI: 10.1113/jp276741] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/30/2019] [Indexed: 12/15/2022] Open
Abstract
Striated muscle contraction is regulated by Ca2+ -dependent modulation of myosin cross-bridge binding to F-actin by the thin filament troponin (Tn)-tropomyosin (Tm) complex. In the absence of Ca2+ , Tn binds to actin and constrains Tm to an azimuthal location where it sterically occludes myosin binding sites along the thin filament surface. This limits force production and promotes muscle relaxation. In addition to Tn-actin interactions, inhibitory Tm positioning requires associations between other thin filament constituents. For example, the actin 'A-triad', composed of residues K326, K328 and R147, forms numerous, highly favourable electrostatic contacts with Tm that are critical for establishing its inhibitory azimuthal binding position. Here, we review recent findings, including the identification and interrogation of modifications within and proximal to the A-triad that are associated with disease and/or altered muscle behaviour, which highlight the surface feature's role in F-actin-Tm interactions and contractile regulation.
Collapse
Affiliation(s)
- William Schmidt
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, 21205, Baltimore, MD, USA
| | - Anthony Cammarato
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, 21205, Baltimore, MD, USA.,Department of Physiology, Johns Hopkins University School of Medicine, 733 N Broadway, 21205, Baltimore, MD, USA
| |
Collapse
|
29
|
Varland S, Vandekerckhove J, Drazic A. Actin Post-translational Modifications: The Cinderella of Cytoskeletal Control. Trends Biochem Sci 2019; 44:502-516. [PMID: 30611609 DOI: 10.1016/j.tibs.2018.11.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 11/30/2022]
Abstract
Actin is one of the most abundant proteins in eukaryotic cells and the main component of the microfilament system. It plays essential roles in numerous cellular activities, including muscle contraction, maintenance of cell integrity, and motility, as well as transcriptional regulation. Besides interacting with various actin-binding proteins (ABPs), proper actin function is regulated by post-translational modifications (PTMs), such as acetylation, arginylation, oxidation, and others. Here, we explain how actin PTMs can contribute to filament formation and stability, and may have additional actin regulatory functions, which potentially contribute to disease development.
Collapse
Affiliation(s)
- Sylvia Varland
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5020 Bergen, Norway; Department of Biological Sciences, University of Bergen, Thormøhlensgate 53 A, N-5020 Bergen, Norway; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Joël Vandekerckhove
- Department of Biochemistry, UGent Center for Medical Biotechnology, Ghent University, Albert Baertsoenkaai 3, 9000 Gent, Belgium
| | - Adrian Drazic
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5020 Bergen, Norway.
| |
Collapse
|
30
|
Rao DS, Kronert WA, Guo Y, Hsu KH, Sarsoza F, Bernstein SI. Reductions in ATPase activity, actin sliding velocity, and myofibril stability yield muscle dysfunction in Drosophila models of myosin-based Freeman-Sheldon syndrome. Mol Biol Cell 2018; 30:30-41. [PMID: 30379605 PMCID: PMC6337914 DOI: 10.1091/mbc.e18-08-0526] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Using Drosophila melanogaster, we created the first animal models for myosin-based Freeman–Sheldon syndrome (FSS), a dominant form of distal arthrogryposis defined by congenital facial and distal skeletal muscle contractures. Electron microscopy of homozygous mutant indirect flight muscles showed normal (Y583S) or altered (T178I, R672C) myofibril assembly followed by progressive disruption of the myofilament lattice. In contrast, all alleles permitted normal myofibril assembly in the heterozygous state but caused myofibrillar disruption during aging. The severity of myofibril defects in heterozygotes correlated with the level of flight impairment. Thus our Drosophila models mimic the human condition in that FSS mutations are dominant and display varied degrees of phenotypic severity. Molecular modeling indicates that the mutations disrupt communication between the nucleotide-binding site of myosin and its lever arm that drives force production. Each mutant myosin showed reduced in vitro actin sliding velocity, with the two more severe alleles significantly decreasing the catalytic efficiency of actin-activated ATP hydrolysis. The observed reductions in actin motility and catalytic efficiency may serve as the mechanistic basis of the progressive myofibrillar disarray observed in the Drosophila models as well as the prolonged contractile activity responsible for skeletal muscle contractures in FSS patients.
Collapse
Affiliation(s)
- Deepti S Rao
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA 92182-4614
| | - William A Kronert
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA 92182-4614
| | - Yiming Guo
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA 92182-4614
| | - Karen H Hsu
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA 92182-4614
| | - Floyd Sarsoza
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA 92182-4614
| | - Sanford I Bernstein
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA 92182-4614
| |
Collapse
|
31
|
Imaging neural activity in the ventral nerve cord of behaving adult Drosophila. Nat Commun 2018; 9:4390. [PMID: 30348941 PMCID: PMC6197219 DOI: 10.1038/s41467-018-06857-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022] Open
Abstract
To understand neural circuits that control limbs, one must measure their activity during behavior. Until now this goal has been challenging, because limb premotor and motor circuits have been largely inaccessible for large-scale recordings in intact, moving animals—a constraint that is true for both vertebrate and invertebrate models. Here, we introduce a method for 2-photon functional imaging from the ventral nerve cord (VNC) of behaving adult Drosophila melanogaster. We use this method to reveal patterns of activity across nerve cord populations during grooming and walking and to uncover the functional encoding of moonwalker ascending neurons (MANs), moonwalker descending neurons (MDNs), and a previously uncharacterized class of locomotion-associated A1 descending neurons. Finally, we develop a genetic reagent to destroy the indirect flight muscles and to facilitate experimental access to the VNC. Taken together, these approaches enable the direct investigation of circuits associated with complex limb movements. The Drosophila ventral nerve cord (VNC) is functionally equivalent to the vertebrate spinal cord. This study reports a 2-photon imaging approach for recording neural activity in the VNC of walking and grooming adult flies.
Collapse
|
32
|
Viswanathan MC, Tham RC, Kronert WA, Sarsoza F, Trujillo AS, Cammarato A, Bernstein SI. Myosin storage myopathy mutations yield defective myosin filament assembly in vitro and disrupted myofibrillar structure and function in vivo. Hum Mol Genet 2018; 26:4799-4813. [PMID: 28973424 DOI: 10.1093/hmg/ddx359] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/11/2017] [Indexed: 12/19/2022] Open
Abstract
Myosin storage myopathy (MSM) is a congenital skeletal muscle disorder caused by missense mutations in the β-cardiac/slow skeletal muscle myosin heavy chain rod. It is characterized by subsarcolemmal accumulations of myosin that have a hyaline appearance. MSM mutations map near or within the assembly competence domain known to be crucial for thick filament formation. Drosophila MSM models were generated for comprehensive physiological, structural, and biochemical assessment of the mutations' consequences on muscle and myosin structure and function. L1793P, R1845W, and E1883K MSM mutant myosins were expressed in an indirect flight (IFM) and jump muscle myosin null background to study the effects of these variants without confounding influences from wild-type myosin. Mutant animals displayed highly compromised jump and flight ability, disrupted muscle proteostasis, and severely perturbed IFM structure. Electron microscopy revealed myofibrillar disarray and degeneration with hyaline-like inclusions. In vitro assembly assays demonstrated a decreased ability of mutant myosin to polymerize, with L1793P filaments exhibiting shorter lengths. In addition, limited proteolysis experiments showed a reduced stability of L1793P and E1883K filaments. We conclude that the disrupted hydropathy or charge of residues in the heptad repeat of the mutant myosin rods likely alters interactions that stabilize coiled-coil dimers and thick filaments, causing disruption in ordered myofibrillogenesis and/or myofibrillar integrity, and the consequent myosin aggregation. Our Drosophila models are the first to recapitulate the human MSM phenotype with ultrastructural inclusions, suggesting that the diminished ability of the mutant myosin to form stable thick filaments contributes to the dystrophic phenotype observed in afflicted subjects.
Collapse
Affiliation(s)
- Meera C Viswanathan
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA 92182-4614, USA.,Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rick C Tham
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA 92182-4614, USA
| | - William A Kronert
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA 92182-4614, USA
| | - Floyd Sarsoza
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA 92182-4614, USA
| | - Adriana S Trujillo
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA 92182-4614, USA
| | - Anthony Cammarato
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sanford I Bernstein
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA 92182-4614, USA
| |
Collapse
|
33
|
Viswanathan MC, Schmidt W, Rynkiewicz MJ, Agarwal K, Gao J, Katz J, Lehman W, Cammarato A. Distortion of the Actin A-Triad Results in Contractile Disinhibition and Cardiomyopathy. Cell Rep 2018; 20:2612-2625. [PMID: 28903042 PMCID: PMC5902318 DOI: 10.1016/j.celrep.2017.08.070] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/25/2017] [Accepted: 08/21/2017] [Indexed: 12/20/2022] Open
Abstract
Striated muscle contraction is regulated by the movement of tropomyosin over the thin filament surface, which blocks or exposes myosin binding sites on actin. Findings suggest that electrostatic contacts, particularly those between K326, K328, and R147 on actin and tropomyosin, establish an energetically favorable F-actin-tropomyosin configuration, with tropomyosin positioned in a location that impedes actomyosin associations and promotes relaxation. Here, we provide data that directly support a vital role for these actin residues, termed the A-triad, in tropomyosin positioning in intact functioning muscle. By examining the effects of an A295S α-cardiac actin hypertrophic cardiomyopathy-causing mutation, over a range of increasingly complex in silico, in vitro, and in vivo Drosophila muscle models, we propose that subtle A-triad-tropomyosin perturbation can destabilize thin filament regulation, which leads to hypercontractility and triggers disease. Our efforts increase understanding of basic thin filament biology and help unravel the mechanistic basis of a complex cardiac disorder.
Collapse
Affiliation(s)
- Meera C Viswanathan
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - William Schmidt
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael J Rynkiewicz
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Karuna Agarwal
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jian Gao
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Joseph Katz
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - William Lehman
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Anthony Cammarato
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
34
|
Loh JT, Su IH. Post-translational modification-regulated leukocyte adhesion and migration. Oncotarget 2018; 7:37347-37360. [PMID: 26993608 PMCID: PMC5095081 DOI: 10.18632/oncotarget.8135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/28/2016] [Indexed: 12/30/2022] Open
Abstract
Leukocytes undergo frequent phenotypic changes and rapidly infiltrate peripheral and lymphoid tissues in order to carry out immune responses. The recruitment of circulating leukocytes into inflamed tissues depends on integrin-mediated tethering and rolling of these cells on the vascular endothelium, followed by transmigration into the tissues. This dynamic process of migration requires the coordination of large numbers of cytosolic and transmembrane proteins whose functional activities are typically regulated by post-translational modifications (PTMs). Our recent studies have shown that the lysine methyltransferase, Ezh2, critically regulates integrin signalling and governs the adhesion dynamics of leukocytes via direct methylation of talin, a key molecule that controls these processes by linking integrins to the actin cytoskeleton. In this review, we will discuss the various modes of leukocyte migration and examine how PTMs of cytoskeletal/adhesion associated proteins play fundamental roles in the dynamic regulation of leukocyte migration. Furthermore, we will discuss molecular details of the adhesion dynamics controlled by Ezh2-mediated talin methylation and the potential implications of this novel regulatory mechanism for leukocyte migration, immune responses, and pathogenic processes, such as allergic contact dermatitis and tumorigenesis.
Collapse
Affiliation(s)
- Jia Tong Loh
- School of Biological Sciences, College of Science, Nanyang Technological University, Republic of Singapore
| | - I-Hsin Su
- School of Biological Sciences, College of Science, Nanyang Technological University, Republic of Singapore
| |
Collapse
|
35
|
Augustin H, Adcott J, Elliott CJH, Partridge L. Complex roles of myoglianin in regulating adult performance and lifespan. Fly (Austin) 2017; 11:284-289. [PMID: 28837401 PMCID: PMC5721940 DOI: 10.1080/19336934.2017.1369638] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Myoglianin, the Drosophila homolog of the secreted vertebrate proteins Myostatin and GDF-11, is an important regulator of neuronal modeling, and synapse function and morphology. While Myoglianin suppression during development elicits positive effects on the neuromuscular system, genetic manipulations of myoglianin expression levels have a varied effect on the outcome of performance tests in aging flies. Specifically, Myoglianin preserves jumping ability, has no effect on negative geotaxis, and negatively regulates flight performance in aging flies. In addition, Myoglianin exhibits a tissue-specific effect on longevity, with myoglianin upregulation in glial cells increasing the median lifespan. These findings indicate complex role for this TGF-β-like protein in governing neuromuscular signaling and consequent behavioral outputs and lifespan in adult flies.
Collapse
Affiliation(s)
- Hrvoje Augustin
- a Institute of Healthy Ageing, and the Department of Genetics, Evolution, and Environment , University College London , Darwin Building, Gower Street, London , UK.,b Max Planck Institute for Biology of Ageing , Cologne , Germany
| | - Jennifer Adcott
- a Institute of Healthy Ageing, and the Department of Genetics, Evolution, and Environment , University College London , Darwin Building, Gower Street, London , UK.,b Max Planck Institute for Biology of Ageing , Cologne , Germany
| | | | - Linda Partridge
- a Institute of Healthy Ageing, and the Department of Genetics, Evolution, and Environment , University College London , Darwin Building, Gower Street, London , UK.,b Max Planck Institute for Biology of Ageing , Cologne , Germany
| |
Collapse
|