1
|
Baum O. Expression of neuronal NO synthase α- and β-isoforms in skeletal muscle of mice. Biochem J 2024; 481:601-613. [PMID: 38592741 DOI: 10.1042/bcj20230458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/10/2024]
Abstract
Knowledge of the primary structure of neuronal NO synthase (nNOS) in skeletal muscle is still conflicting and needs further clarification. To elucidate the expression patterns of nNOS isoforms at both mRNA and protein level, systematic reverse transcription (RT)-PCR and epitope mapping by qualitative immunoblot analysis on skeletal muscle of C57/BL6 mice were performed. The ability of the nNOS isoforms to form aggregates was characterized by native low-temperature polyacrylamide electrophoresis (LT-PAGE). The molecular analysis was focused on the rectus femoris (RF) muscle, a skeletal muscle with a nearly balanced ratio of nNOS α- and β-isoforms. RT-PCR amplificates from RF muscles showed exclusive exon-1d mRNA expression, either with or without exon-μ. Epitope mapping demonstrated the simultaneous expression of the nNOS splice variants α/μ, α/non-μ, β/μ and β/non-μ. Furthermore, immunoblotting suggests that the transition between nNOS α- and β-isoforms lies within exon-3. In LT-PAGE, three protein nNOS associated aggregates were detected in homogenates of RF muscle and tibialis anterior muscle: a 320 kDa band containing nNOS α-isoforms, while 250 and 300 kDa bands consist of nNOS β-isoforms that form homodimers or heterodimers with non-nNOS proteins.
Collapse
Affiliation(s)
- Oliver Baum
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| |
Collapse
|
2
|
Melnikov IY, Tyganov SA, Sharlo KA, Ulanova AD, Vikhlyantsev IM, Mirzoev TM, Shenkman BS. Calpain-dependent degradation of cytoskeletal proteins as a key mechanism for a reduction in intrinsic passive stiffness of unloaded rat postural muscle. Pflugers Arch 2022; 474:1171-1183. [PMID: 35931829 DOI: 10.1007/s00424-022-02740-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/24/2022] [Accepted: 08/01/2022] [Indexed: 11/25/2022]
Abstract
In mammals, prolonged mechanical unloading results in a significant decrease in passive stiffness of postural muscles. The nature of this phenomenon remains unclear. The aim of the present study was to investigate possible causes for a reduction in rat soleus passive stiffness after 7 and 14 days of unloading (hindlimb suspension, HS). We hypothesized that HS-induced decrease in passive stiffness would be associated with calpain-dependent degradation of cytoskeletal proteins or a decrease in actomyosin interaction. Wistar rats were subjected to HS for 7 and 14 days with or without PD150606 (calpain inhibitor) treatment. Soleus muscles were subjected to biochemical analysis and ex vivo measurements of passive tension with or without blebbistatin treatment (an inhibitor of actomyosin interactions). Passive tension of isolated soleus muscle was significantly reduced after 7- and 14-day HS compared to the control values. PD150606 treatment during 7- and 14-day HS induced an increase in alpha-actinin-2 and -3, desmin contents compared to control, partly prevented a decrease in intact titin (T1) content, and prevented a decrease in soleus passive tension. Incubation of soleus muscle with blebbistatin did not affect HS-induced reductions in specific passive tension in soleus muscle. Our study suggests that calpain-dependent breakdown of cytoskeletal proteins, but not a change in actomyosin interaction, significantly contributes to unloading-induced reductions in intrinsic passive stiffness of rat soleus muscle.
Collapse
Affiliation(s)
- I Y Melnikov
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 76a Khoroshevskoe shosse, Moscow, Russian Federation
| | - Sergey A Tyganov
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 76a Khoroshevskoe shosse, Moscow, Russian Federation.
| | - K A Sharlo
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 76a Khoroshevskoe shosse, Moscow, Russian Federation
| | - A D Ulanova
- Laboratory of Structure and Functions of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - I M Vikhlyantsev
- Laboratory of Structure and Functions of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - T M Mirzoev
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 76a Khoroshevskoe shosse, Moscow, Russian Federation
| | - B S Shenkman
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 76a Khoroshevskoe shosse, Moscow, Russian Federation
| |
Collapse
|
3
|
Tyganov SA, Mochalova E, Belova S, Sharlo K, Rozhkov S, Kalashnikov V, Turtikova O, Mirzoev T, Shenkman B. Plantar mechanical stimulation attenuates protein synthesis decline in disused skeletal muscle via modulation of nitric oxide level. Sci Rep 2021; 11:9806. [PMID: 33963253 PMCID: PMC8105341 DOI: 10.1038/s41598-021-89362-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 04/19/2021] [Indexed: 01/04/2023] Open
Abstract
Both research conducted under microgravity conditions and ground-based space analog studies have shown that air pump-based plantar mechanical stimulation (PMS) of cutaneous mechanoreceptors of the sole of the foot is able to increase neuromuscular activity in the musculature of the lower limbs. This type of stimulation is able to attenuate unloading-induced skeletal muscle atrophy and impaired muscle function. The aim of the present study was to evaluate the effects of PMS on anabolic signaling pathways in rat soleus muscle following 7-day hindlimb suspension (HS) and to elucidate if the effects of PMS on anabolic processes would be NO-dependent. The soles of the feet were stimulated with a frequency of 1-s inflation/1-s deflation with a total of 20 min followed by 10 min rest. This cycle was repeated for 4 h each day. We observed a decrease in the soleus muscle mass after 7-day HS, which was not prevented by PMS. We also observed a decrease in slow-type fiber cross-sectional area (CSA) by 56%, which significantly exceeded a decrease (-22%) in fast-type fiber CSA. PMS prevented a reduction in slow-twitch fiber CSA, but had no effect on fast-twitch fiber CSA. PMS prevented a 63% decrease in protein synthesis after 7-day HS as well as changes in several key anabolic signaling regulators, such as p70S6k, 4E-BP1, GSK3β, eEF-2, p90RSK. PMS also prevented a decrease in the markers of translational capacity (18S and 28S rRNA, c-myc, 45S pre-rRNA). Some effects of PMS on anabolic signaling were altered due to NO-synthase inhibitor (L-NAME) administration. Thus, PMS is able to partially prevent atrophic processes in rat soleus muscle during 7-day HS, affecting slow-type muscle fibers. This effect is mediated by alterations in anabolic signaling pathways and may depend on NO-synthase activity.
Collapse
Affiliation(s)
- Sergey A Tyganov
- Myology Laboratory, Institute of Biomedical Problems RAS, Khoroshevskoe shosse 76a, Moscow, Russian Federation, 123007.
| | - Ekaterina Mochalova
- Myology Laboratory, Institute of Biomedical Problems RAS, Khoroshevskoe shosse 76a, Moscow, Russian Federation, 123007
| | - Svetlana Belova
- Myology Laboratory, Institute of Biomedical Problems RAS, Khoroshevskoe shosse 76a, Moscow, Russian Federation, 123007
| | - Kristina Sharlo
- Myology Laboratory, Institute of Biomedical Problems RAS, Khoroshevskoe shosse 76a, Moscow, Russian Federation, 123007
| | - Sergey Rozhkov
- Myology Laboratory, Institute of Biomedical Problems RAS, Khoroshevskoe shosse 76a, Moscow, Russian Federation, 123007
| | - Vitaliy Kalashnikov
- Myology Laboratory, Institute of Biomedical Problems RAS, Khoroshevskoe shosse 76a, Moscow, Russian Federation, 123007
| | - Olga Turtikova
- Myology Laboratory, Institute of Biomedical Problems RAS, Khoroshevskoe shosse 76a, Moscow, Russian Federation, 123007
| | - Timur Mirzoev
- Myology Laboratory, Institute of Biomedical Problems RAS, Khoroshevskoe shosse 76a, Moscow, Russian Federation, 123007
| | - Boris Shenkman
- Myology Laboratory, Institute of Biomedical Problems RAS, Khoroshevskoe shosse 76a, Moscow, Russian Federation, 123007
| |
Collapse
|
4
|
Shenkman BS, Tsaturyan AK, Vikhlyantsev IM, Kozlovskaya IB, Grigoriev AI. Molecular Mechanisms of Muscle Tone Impairment under Conditions of Real and Simulated Space Flight. Acta Naturae 2021; 13:85-97. [PMID: 34377559 PMCID: PMC8327152 DOI: 10.32607/actanaturae.10953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023] Open
Abstract
Kozlovskaya et al. [1] and Grigoriev et al. [2] showed that enormous loss of muscle stiffness (atonia) develops in humans under true (space flight) and simulated microgravity conditions as early as after the first days of exposure. This phenomenon is attributed to the inactivation of slow motor units and called reflectory atonia. However, a lot of evidence indicating that even isolated muscle or a single fiber possesses substantial stiffness was published at the end of the 20th century. This intrinsic stiffness is determined by the active component, i.e. the ability to form actin-myosin cross-bridges during muscle stretch and contraction, as well as by cytoskeletal and extracellular matrix proteins, capable of resisting muscle stretch. The main facts on intrinsic muscle stiffness under conditions of gravitational unloading are considered in this review. The data obtained in studies of humans under dry immersion and rodent hindlimb suspension is analyzed. The results and hypotheses regarding reduced probability of cross-bridge formation in an atrophying muscle due to increased interfilament spacing are described. The evidence of cytoskeletal protein (titin, nebulin, etc.) degradation during gravitational unloading is also discussed. The possible mechanisms underlying structural changes in skeletal muscle collagen and its role in reducing intrinsic muscle stiffness are presented. The molecular mechanisms of changes in intrinsic stiffness during space flight and simulated microgravity are reviewed.
Collapse
Affiliation(s)
- B. S. Shenkman
- State Scientific Center of Russian Federation – Institute of Biomedical Problems, Moscow, 123007 Russia
| | - A. K. Tsaturyan
- Lomonosov Moscow State University Research Institute of Mechanics, Moscow, 119192 Russia
| | - I. M. Vikhlyantsev
- Institute of Experimental and Theoretical Biophysics, Moscow Region, Pushchino, 142290 Russia
| | - I. B. Kozlovskaya
- State Scientific Center of Russian Federation – Institute of Biomedical Problems, Moscow, 123007 Russia
| | - A. I. Grigoriev
- State Scientific Center of Russian Federation – Institute of Biomedical Problems, Moscow, 123007 Russia
| |
Collapse
|
5
|
Uda M, Yoshihara T, Ichinoseki-Sekine N, Baba T, Yoshioka T. Potential roles of neuronal nitric oxide synthase and the PTEN-induced kinase 1 (PINK1)/Parkin pathway for mitochondrial protein degradation in disuse-induced soleus muscle atrophy in adult rats. PLoS One 2020; 15:e0243660. [PMID: 33296434 PMCID: PMC7725317 DOI: 10.1371/journal.pone.0243660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022] Open
Abstract
Excessive nitric oxide (NO) production and mitochondrial dysfunction can activate protein degradation in disuse-induced skeletal muscle atrophy. However, the increase in NO production in atrophied muscles remains controversial. In addition, although several studies have investigated the PTEN-induced kinase 1 (PINK1)/Parkin pathway, a mitophagy pathway, in atrophied muscle, the involvement of this pathway in soleus muscle atrophy is unclear. In this study, we investigated the involvement of neuronal nitric oxide synthase (nNOS) and the PINK1/Parkin pathway in soleus muscle atrophy induced by 14 days of hindlimb unloading (HU) in adult rats. HU lowered the weight of the soleus muscles. nNOS expression showed an increase in atrophied soleus muscles. Although HU increased malondialdehyde as oxidative modification of the protein, it decreased 6-nitrotryptophan, a marker of protein nitration. Additionally, the nitrosocysteine content and S-nitrosylated Parkin were not altered, suggesting the absence of excessive nitrosative stress after HU. The expression of PINK1 and Parkin was also unchanged, whereas the expression of heat shock protein 70 (HSP70), which is required for Parkin activity, was reduced in atrophied soleus muscles. Moreover, we observed accumulation and reduced ubiquitination of high molecular weight mitofusin 2, which is a target of Parkin, in atrophied soleus muscles. These results indicate that excessive NO is not produced in atrophied soleus muscles despite nNOS accumulation, suggesting that excessive NO dose not mediate in soleus muscle atrophy at least after 14 days of HU. Furthermore, the PINK1/Parkin pathway may not play a role in mitophagy at this time point. In contrast, the activity of Parkin may be downregulated because of reduced HSP70 expression, which may contribute to attenuated degradation of target proteins in the atrophied soleus muscles after 14 days of HU. The present study provides new insights into the roles of nNOS and a protein degradation pathway in soleus muscle atrophy.
Collapse
Affiliation(s)
- Munehiro Uda
- School of Nursing, Hirosaki Gakuin University, Hirosaki, Aomori, Japan
- * E-mail: ,
| | - Toshinori Yoshihara
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Noriko Ichinoseki-Sekine
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
- Faculty of Liberal Arts, The Open University of Japan, Chiba, Japan
| | - Takeshi Baba
- School of Medicine, Juntendo University, Inzai, Chiba, Japan
| | | |
Collapse
|
6
|
Shenkman BS. How Postural Muscle Senses Disuse? Early Signs and Signals. Int J Mol Sci 2020; 21:E5037. [PMID: 32708817 PMCID: PMC7404025 DOI: 10.3390/ijms21145037] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
A mammalian soleus muscle along with other "axial" muscles ensures the stability of the body under the Earth's gravity. In rat experiments with hindlimb suspension, zero-gravity parabolic flights as well as in human dry immersion studies, a dramatic decrease in the electromyographic (EMG) activity of the soleus muscle has been repeatedly shown. Most of the motor units of the soleus muscle convert from a state of activity to a state of rest which is longer than under natural conditions. And the state of rest gradually converts to the state of disuse. This review addresses a number of metabolic events that characterize the earliest stage of the cessation of the soleus muscle contractile activity. One to three days of mechanical unloading are accompanied by energy-dependent dephosphorylation of AMPK, accumulation of the reactive oxygen species, as well as accumulation of resting myoplasmic calcium. In this transition period, a rapid rearrangement of the various signaling pathways occurs, which, primarily, results in a decrease in the rate of protein synthesis (primarily via inhibition of ribosomal biogenesis and activation of endogenous inhibitors of mRNA translation, such as GSK3β) and an increase in proteolysis (via upregulation of muscle-specific E3-ubiquitin ligases).
Collapse
Affiliation(s)
- Boris S Shenkman
- Myology Laboratory, Institute of Biomedical Problems RAS, 123007 Moscow, Russia
| |
Collapse
|
7
|
Purslow PP. The Structure and Role of Intramuscular Connective Tissue in Muscle Function. Front Physiol 2020; 11:495. [PMID: 32508678 PMCID: PMC7248366 DOI: 10.3389/fphys.2020.00495] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular matrix (ECM) structures within skeletal muscle play an important, but under-appreciated, role in muscle development, function and adaptation. Each individual muscle is surrounded by epimysial connective tissue and within the muscle there are two distinct extracellular matrix (ECM) structures, the perimysium and endomysium. Together, these three ECM structures make up the intramuscular connective tissue (IMCT). There are large variations in the amount and composition of IMCT between functionally different muscles. Although IMCT acts as a scaffold for muscle fiber development and growth and acts as a carrier for blood vessels and nerves to the muscle cells, the variability in IMCT between different muscles points to a role in the variations in active and passive mechanical properties of muscles. Some traditional measures of the contribution of endomysial IMCT to passive muscle elasticity relied upon tensile measurements on single fiber preparations. These types of measurements may now be thought to be missing the important point that endomysial IMCT networks within a muscle fascicle coordinate forces and displacements between adjacent muscle cells by shear and that active contractile forces can be transmitted by this route (myofascial force transmission). The amount and geometry of the perimysial ECM network separating muscle fascicles varies more between different muscle than does the amount of endomysium. While there is some evidence for myofascial force transmission between fascicles via the perimysium, the variations in this ECM network appears to be linked to the amount of shear displacements between fascicles that must necessarily occur when the whole muscle contracts and changes shape. Fast growth of muscle by fiber hypertrophy is not always associated with a high turnover of ECM components, but slower rates of growth and muscle wasting may be associated with IMCT remodeling. A hypothesis arising from this observation is that the level of cell signaling via shear between integrin and dystroglycan linkages on the surface of the muscle cells and the overlying endomysium may be the controlling factor for IMCT turnover, although this idea is yet to be tested.
Collapse
Affiliation(s)
- Peter P Purslow
- Centro de Investigacion Veterinaria de Tandil, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| |
Collapse
|
8
|
Qaisar R, Karim A, Elmoselhi AB. Muscle unloading: A comparison between spaceflight and ground-based models. Acta Physiol (Oxf) 2020; 228:e13431. [PMID: 31840423 DOI: 10.1111/apha.13431] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022]
Abstract
Prolonged unloading of skeletal muscle, a common outcome of events such as spaceflight, bed rest and hindlimb unloading, can result in extensive metabolic, structural and functional changes in muscle fibres. With advancement in investigations of cellular and molecular mechanisms, understanding of disuse muscle atrophy has significantly increased. However, substantial gaps exist in our understanding of the processes dictating muscle plasticity during unloading, which prevent us from developing effective interventions to combat muscle loss. This review aims to update the status of knowledge and underlying mechanisms leading to cellular and molecular changes in skeletal muscle during unloading. We have also discussed advances in the understanding of contractile dysfunction during spaceflights and in ground-based models of muscle unloading. Additionally, we have elaborated on potential therapeutic interventions that show promising results in boosting muscle mass and strength during mechanical unloading. Finally, we have identified key gaps in our knowledge as well as possible research direction for the future.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Department of Basic Medical Sciences College of Medicine University of Sharjah Sharjah UAE
| | - Asima Karim
- Department of Basic Medical Sciences College of Medicine University of Sharjah Sharjah UAE
| | - Adel B. Elmoselhi
- Department of Basic Medical Sciences College of Medicine University of Sharjah Sharjah UAE
- Department of Physiology Michigan State University East Lansing MI USA
| |
Collapse
|
9
|
Recovery of muscle mass and muscle oxidative phenotype following disuse does not require GSK-3 inactivation. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165740. [PMID: 32087280 DOI: 10.1016/j.bbadis.2020.165740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/24/2020] [Accepted: 02/18/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Physical inactivity contributes to muscle wasting and reductions in mitochondrial oxidative phenotype (OXPHEN), reducing physical performance and quality of life during aging and in chronic disease. Previously, it was shown that inactivation of glycogen synthase kinase (GSK)-3β stimulates muscle protein accretion, myogenesis, and mitochondrial biogenesis. Additionally, GSK-3β is inactivated during recovery of disuse-induced muscle atrophy. AIM Therefore, we hypothesize that GSK-3 inhibition is required for reloading-induced recovery of skeletal muscle mass and OXPHEN. METHODS Wild-type (WT) and whole-body constitutively active (C.A.) Ser21/9 GSK-3α/β knock-in mice were subjected to a 14-day hind-limb suspension/14-day reloading protocol. Soleus muscle mass, fiber cross-sectional area (CSA), OXPHEN (abundance of sub-units of oxidative phosphorylation (OXPHOS) complexes and fiber-type composition), as well as expression levels of their main regulators (respectively protein synthesis/degradation, myogenesis and peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α) signaling) were monitored. RESULTS Subtle but consistent differences suggesting suppression of protein turnover signaling and decreased expression of several OXPHOS sub-units and PGC-1α signaling constituents were observed at baseline in C.A. GSK-3 versus WT mice. Although soleus mass recovery during reloading occurred more rapidly in C.A. GSK-3 mice, this was not accompanied by a parallel increased CSA. The OXPHEN response to reloading was not distinct between C.A. GSK-3 and WT mice. No consistent or significant differences in reloading-induced changes in the regulatory steps of protein turnover, myogenesis or muscle OXPHEN were observed in C.A. GSK-3 compared to WT muscle. CONCLUSION This study indicates that GSK-3 inactivation is dispensable for reloading-induced recovery of muscle mass and OXPHEN.
Collapse
|
10
|
Ulanova A, Gritsyna Y, Salmov N, Lomonosova Y, Belova S, Nemirovskaya T, Shenkman B, Vikhlyantsev I. Effect of L-Arginine on Titin Expression in Rat Soleus Muscle After Hindlimb Unloading. Front Physiol 2019; 10:1221. [PMID: 31616317 PMCID: PMC6764413 DOI: 10.3389/fphys.2019.01221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 09/06/2019] [Indexed: 01/18/2023] Open
Abstract
Nitric oxide (NO), produced by NO-synthases via L-arginine oxidation, is an essential trigger for signaling processes involved in structural and metabolic changes in muscle fibers. Recently, it was shown that L-arginine administration prevented the decrease in levels of the muscle cytoskeletal proteins, desmin and dystrophin, in rat soleus muscle after 14 days of hindlimb unloading. Therefore, in this study, we investigated the effect of L-arginine administration on the degree of atrophy changes in the rat soleus muscles under unloading conditions, and on the content, gene expression, and phosphorylation level of titin, the giant protein of striated muscles, able to form a third type of myofilaments—elastic filaments. A 7-day gravitational unloading [hindlimb suspension (HS) group] resulted in a decrease in the soleus weight:body weight ratio (by 31.8%, p < 0.05), indicating muscle atrophy development. The content of intact titin (T1) decreased (by 22.4%, p < 0.05) and the content of proteolytic fragments of titin (T2) increased (by 66.7%, p < 0.05) in the soleus muscle of HS rats, compared to control rats. The titin gene expression and phosphorylation level of titin between these two groups were not significantly different. L-Arginine administration under 7-day gravitational unloading decreased the degree of atrophy changes and also prevented the decrease in levels of T1 in the soleus muscle as compared to HS group. Furthermore, L-arginine administration under unloading resulted in increased titin mRNA level (by 76%, p < 0.05) and decreased phosphorylation level of T2 (by 28%, p < 0.05), compared to those in the HS group. These results suggest that administration of L-arginine, the NO precursor, under unloading decreased the degree of atrophy changes, increased gene expression of titin and prevented the decrease in levels of T1 in the rat soleus muscle. The results can be used to search for approaches to reduce the development of negative changes caused by gravitational unloading in the muscle.
Collapse
Affiliation(s)
- Anna Ulanova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia.,Pushchino State Institute of Natural Sciences, Pushchino, Russia
| | - Yuliya Gritsyna
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Nikolai Salmov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Yuliya Lomonosova
- State Scientific Center RF, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Svetlana Belova
- State Scientific Center RF, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Tatyana Nemirovskaya
- State Scientific Center RF, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Boris Shenkman
- State Scientific Center RF, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Ivan Vikhlyantsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
11
|
Bignon E, Rizza S, Filomeni G, Papaleo E. Use of Computational Biochemistry for Elucidating Molecular Mechanisms of Nitric Oxide Synthase. Comput Struct Biotechnol J 2019; 17:415-429. [PMID: 30996821 PMCID: PMC6451115 DOI: 10.1016/j.csbj.2019.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/17/2019] [Accepted: 03/21/2019] [Indexed: 12/25/2022] Open
Abstract
Nitric oxide (NO) is an essential signaling molecule in the regulation of multiple cellular processes. It is endogenously synthesized by NO synthase (NOS) as the product of L-arginine oxidation to L-citrulline, requiring NADPH, molecular oxygen, and a pterin cofactor. Two NOS isoforms are constitutively present in cells, nNOS and eNOS, and a third is inducible (iNOS). Despite their biological relevance, the details of their complex structural features and reactivity mechanisms are still unclear. In this review, we summarized the contribution of computational biochemistry to research on NOS molecular mechanisms. We described in detail its use in studying aspects of structure, dynamics and reactivity. We also focus on the numerous outstanding questions in the field that could benefit from more extensive computational investigations.
Collapse
Affiliation(s)
- Emmanuelle Bignon
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Salvatore Rizza
- Redox Signaling and Oxidative Stress Group, Cell Stress and Survival Unit, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Giuseppe Filomeni
- Redox Signaling and Oxidative Stress Group, Cell Stress and Survival Unit, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark.,Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark.,Translational Disease Systems Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Shenkman BS, Kozlovskaya IB. Cellular Responses of Human Postural Muscle to Dry Immersion. Front Physiol 2019; 10:187. [PMID: 30914964 PMCID: PMC6421338 DOI: 10.3389/fphys.2019.00187] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 02/14/2019] [Indexed: 12/16/2022] Open
Abstract
Support withdrawal has been currently considered as one of the main factors involved in regulation of the human locomotor system. For last decades, several authors, including the authors of the present paper, have revealed afferent mechanisms of support perception and introduced the concept of the support afferentation system. The so-called "dry immersion" model which was developed in Russia allows for suspension of subjects in water providing the simulation of the mechanical support withdrawal. The present review is a summary of data allowing to appreciate the value of the "dry" immersion model for the purposes of studying cellular responses of human postural muscle to gravitational unloading. These studies corroborated our hypothesis that the removal of support afferentation inactivates the slow motor unit pool which leads to selective inactivation, and subsequent atony and atrophy, of muscle fibers expressing the slow isoform of myosin heavy chain (which constitutes the majority of soleus muscle fibers). Fibers that have lost a significant part of cytoskeletal molecules are incapable of effective actomyosin motor mobilization which leads to lower calcium sensitivity and lower range of maximal tension in permeabilized fibers. Support withdrawal also leads to lower efficiency of protective mechanisms (nitric oxide synthase) and decreased activity of AMP-activated protein kinase. Thus, "dry" immersion studies have already contributed considerably to the gravitational physiology of skeletal muscle.
Collapse
Affiliation(s)
- Boris S. Shenkman
- Myology Laboratory, State Scientific Center of Russian Federation – Institute of Biomedical Problems, Moscow, Russia
| | - Inessa B. Kozlovskaya
- Department of Sensory-Motor Physiology and Countermeasures, State Scientific Center of Russian Federation – Institute of Biomedical Problems, Moscow, Russia
| |
Collapse
|
13
|
Mirzoev TM, Shenkman BS. Regulation of Protein Synthesis in Inactivated Skeletal Muscle: Signal Inputs, Protein Kinase Cascades, and Ribosome Biogenesis. BIOCHEMISTRY (MOSCOW) 2018; 83:1299-1317. [PMID: 30482143 DOI: 10.1134/s0006297918110020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Disuse atrophy of skeletal muscles is characterized by a significant decrease in the mass and size of muscle fibers. Disuse atrophy develops as a result of prolonged reduction in the muscle functional activity caused by bed rest, limb immobilization, and real or simulated microgravity. Disuse atrophy is associated with the downregulation of protein biosynthesis and simultaneous activation of protein degradation. This review is focused on the key molecular mechanisms regulating the rate of protein synthesis in mammalian skeletal muscles during functional unloading.
Collapse
Affiliation(s)
- T M Mirzoev
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia.
| | - B S Shenkman
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia
| |
Collapse
|
14
|
Balke JE, Zhang L, Percival JM. Neuronal nitric oxide synthase (nNOS) splice variant function: Insights into nitric oxide signaling from skeletal muscle. Nitric Oxide 2018; 82:35-47. [PMID: 30503614 DOI: 10.1016/j.niox.2018.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 02/07/2023]
Abstract
Defects in neuronal nitric oxide synthase (nNOS) splice variant localization and signaling in skeletal muscle are a firmly established pathogenic characteristic of many neuromuscular diseases, including Duchenne and Becker muscular dystrophy (DMD and BMD, respectively). Therefore, substantial efforts have been made to understand and therapeutically target skeletal muscle nNOS isoform signaling. The purpose of this review is to summarize recent salient advances in understanding of the regulation, targeting, and function of nNOSμ and nNOSβ splice variants in normal and dystrophic skeletal muscle, primarily using findings from mouse models. The first focus of this review is how the differential targeting of nNOS splice variants creates spatially and functionally distinct nitric oxide (NO) signaling compartments at the sarcolemma, Golgi complex, and cytoplasm. Particular attention is given to the functions of sarcolemmal nNOSμ and limitations of current nNOS knockout models. The second major focus is to review current understanding of cGMP-mediated nNOS signaling in skeletal muscle and its emergence as a therapeutic target in DMD and BMD. Accordingly, we address the preclinical and clinical successes and setbacks with the testing of phosphodiesterase 5 inhibitors to redress nNOS signaling defects in DMD and BMD. In summary, this review of nNOS function in normal and dystrophic muscle aims to advance understanding how the messenger NO is harnessed for cellular signaling from a skeletal muscle perspective.
Collapse
Affiliation(s)
- Jordan E Balke
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine Miami, Florida, 33101, USA
| | - Ling Zhang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine Miami, Florida, 33101, USA
| | - Justin M Percival
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine Miami, Florida, 33101, USA.
| |
Collapse
|
15
|
|
16
|
Powers SK, Morton AB, Ahn B, Smuder AJ. Redox control of skeletal muscle atrophy. Free Radic Biol Med 2016; 98:208-217. [PMID: 26912035 PMCID: PMC5006677 DOI: 10.1016/j.freeradbiomed.2016.02.021] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/11/2016] [Accepted: 02/17/2016] [Indexed: 12/24/2022]
Abstract
Skeletal muscles comprise the largest organ system in the body and play an essential role in body movement, breathing, and glucose homeostasis. Skeletal muscle is also an important endocrine organ that contributes to the health of numerous body organs. Therefore, maintaining healthy skeletal muscles is important to support overall health of the body. Prolonged periods of muscle inactivity (e.g., bed rest or limb immobilization) or chronic inflammatory diseases (i.e., cancer, kidney failure, etc.) result in skeletal muscle atrophy. An excessive loss of muscle mass is associated with a poor prognosis in several diseases and significant muscle weakness impairs the quality of life. The skeletal muscle atrophy that occurs in response to inflammatory diseases or prolonged inactivity is often associated with both oxidative and nitrosative stress. In this report, we critically review the experimental evidence that provides support for a causative link between oxidants and muscle atrophy. More specifically, this review will debate the sources of oxidant production in skeletal muscle undergoing atrophy as well as provide a detailed discussion on how reactive oxygen species and reactive nitrogen species modulate the signaling pathways that regulate both protein synthesis and protein breakdown.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, United States.
| | - Aaron B Morton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, United States
| | - Bumsoo Ahn
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, United States
| | - Ashley J Smuder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|