1
|
Zhao P, Higashijima Y, Sonoda H, Morinaga R, Uema K, Oguchi A, Matsuzaki T, Ikeda M. Glucocorticoid-induced acute diuresis in rats in relation to the reduced renal expression of sodium-dependent cotransporter genes. J Pharmacol Sci 2024; 156:115-124. [PMID: 39179330 DOI: 10.1016/j.jphs.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/26/2024] Open
Abstract
Although several studies have shown that glucocorticoids exert diuretic effects in animals and humans, the underlying mechanism responsible for the acute diuretic effect remains obscure. Here we examined the mechanism in terms of gene-expression. We observed that glucocorticoids, including dexamethasone (Dex) and prednisolone (PSL), acutely induced diuresis in rats in a dose-dependent manner. Free water clearance values were negative after Dex or PSL treatment, similar to those observed after treatment with osmotic diuretics (furosemide and acetazolamide). Dex significantly increased the urinary excretion of sodium, potassium, chloride, glucose, and inorganic phosphorus. Renal microarray analysis revealed that Dex significantly altered the renal expression of genes related to transmembrane transport activity. The mRNA levels of sodium/phosphate (NaPi-2a/Slc34a1, NaPi-2b/Slc34a2, and NaPi-2c/Slc34a3) and sodium/glucose cotransporters (Sglt2/Slc5a2) were significantly reduced in the Dex-treated kidney, being negatively correlated with the urinary excretion of their corresponding solutes. Dex did not affect renal expression of the natriuretic peptide receptor 1 (Npr1) gene, or the expression, localization, and phosphorylation of aquaporin-2 (AQP2), a water channel protein. These findings suggest that the acute diuretic effects of glucocorticoids might be mediated by reduced expression of sodium-dependent cotransporter genes.
Collapse
Affiliation(s)
- Peiyan Zhao
- Department of Veterinary Pharmacology, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Yoshiki Higashijima
- Institute for Promotion of Tenure Track, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Hiroko Sonoda
- Department of Veterinary Pharmacology, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Rio Morinaga
- Department of Veterinary Pharmacology, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Keito Uema
- Department of Veterinary Pharmacology, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Akane Oguchi
- Department of Veterinary Pharmacology, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Toshiyuki Matsuzaki
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, Gunma, 371-8511, Japan
| | - Masahiro Ikeda
- Department of Veterinary Pharmacology, University of Miyazaki, Miyazaki, 889-2192, Japan.
| |
Collapse
|
2
|
Diamanti T, Trobiani L, Mautone L, Serafini F, Gioia R, Ferrucci L, Lauro C, Bianchi S, Perfetto C, Guglielmo S, Sollazzo R, Giorda E, Setini A, Ragozzino D, Miranda E, Comoletti D, Di Angelantonio S, Cacci E, De Jaco A. Glucocorticoids rescue cell surface trafficking of R451C Neuroligin3 and enhance synapse formation. Traffic 2024; 25:e12930. [PMID: 38272450 DOI: 10.1111/tra.12930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024]
Abstract
Neuroligins are synaptic cell adhesion proteins with a role in synaptic function, implicated in neurodevelopmental disorders. The autism spectrum disorder-associated substitution Arg451Cys (R451C) in NLGN3 promotes a partial misfolding of the extracellular domain of the protein leading to retention in the endoplasmic reticulum (ER) and the induction of the unfolded protein response (UPR). The reduced trafficking of R451C NLGN3 to the cell surface leads to altered synaptic function and social behavior. A screening in HEK-293 cells overexpressing NLGN3 of 2662 compounds (FDA-approved small molecule drug library), led to the identification of several glucocorticoids such as alclometasone dipropionate, desonide, prednisolone sodium phosphate, and dexamethasone (DEX), with the ability to favor the exit of full-length R451C NLGN3 from the ER. DEX improved the stability of R451C NLGN3 and trafficking to the cell surface, reduced the activation of the UPR, and increased the formation of artificial synapses between HEK-293 and hippocampal primary neurons. The effect of DEX was validated on a novel model system represented by neural stem progenitor cells and differentiated neurons derived from the R451C NLGN3 knock-in mouse, expressing the endogenous protein. This work shows a potential rescue strategy for an autism-linked mutation affecting cell surface trafficking of a synaptic protein.
Collapse
Affiliation(s)
- Tamara Diamanti
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Laura Trobiani
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Lorenza Mautone
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Federica Serafini
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Roberta Gioia
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Laura Ferrucci
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Clotilde Lauro
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Sara Bianchi
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Camilla Perfetto
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Stefano Guglielmo
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Raimondo Sollazzo
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Ezio Giorda
- Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Andrea Setini
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Davide Ragozzino
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Elena Miranda
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Davide Comoletti
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Child Health Institute of New Jersey, Rutgers University, New Brunswick, New Jersey, USA
| | - Silvia Di Angelantonio
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
- D-tails s.r.l. Via di Torre Rossa, Rome, Italy
| | - Emanuele Cacci
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Antonella De Jaco
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
3
|
Yang HH, Su SH, Ho CH, Yeh AH, Lin YJ, Yu MJ. Glucocorticoid Receptor Maintains Vasopressin Responses in Kidney Collecting Duct Cells. Front Physiol 2022; 13:816959. [PMID: 35685285 PMCID: PMC9173664 DOI: 10.3389/fphys.2022.816959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/28/2022] [Indexed: 11/22/2022] Open
Abstract
Water permeability of the kidney collecting ducts is regulated in part by the amount of the molecular water channel protein aquaporin-2 (AQP2), whose expression, in turn, is regulated by the pituitary peptide hormone vasopressin. We previously showed that stable glucocorticoid receptor knockdown diminished the vasopressin-induced Aqp2 gene expression in the collecting duct cell model mpkCCD. Here, we investigated the pathways regulated by the glucocorticoid receptor by comparing transcriptomes of the mpkCCD cells with or without stable glucocorticoid receptor knockdown. Glucocorticoid receptor knockdown downregulated 5,394 transcripts associated with 55 KEGG pathways including "vasopressin-regulated water reabsorption," indicative of positive regulatory roles of these pathways in the vasopressin-induced Aqp2 gene expression. Quantitative RT-PCR confirmed the downregulation of the vasopressin V2 receptor transcript upon glucocorticoid receptor knockdown. Glucocorticoid receptor knockdown upregulated 3,785 transcripts associated with 42 KEGG pathways including the "TNF signaling pathway" and "TGFβ signaling pathway," suggesting the negative regulatory roles of these pathways in the vasopressin-induced Aqp2 gene expression. Quantitative RT-PCR confirmed the upregulation of TNF and TGFβ receptor transcripts upon glucocorticoid receptor knockdown. TNF or TGFβ inhibitor alone, in the absence of vasopressin, did not induce Aqp2 gene transcription. However, TNF or TGFβ blunted the vasopressin-induced Aqp2 gene expression. In particular, TGFβ reduced vasopressin-induced increases in Akt phosphorylation without inducing epithelial-to-mesenchymal transition or interfering with vasopressin-induced apical AQP2 trafficking. In summary, our RNA-seq transcriptomic comparison revealed positive and negative regulatory pathways maintained by the glucocorticoid receptor for the vasopressin-induced Aqp2 gene expression.
Collapse
Affiliation(s)
| | | | | | | | | | - Ming-Jiun Yu
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
4
|
Zhu X, Huang Y, Li S, Ge N, Li T, Wang Y, Liu K, Liu C. Glucocorticoids Reverse Diluted Hyponatremia Through Inhibiting Arginine Vasopressin Pathway in Heart Failure Rats. J Am Heart Assoc 2020; 9:e014950. [PMID: 32390535 PMCID: PMC7660850 DOI: 10.1161/jaha.119.014950] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Arginine vasopressin dependent antidiuresis plays a key role in water‐sodium retention in heart failure. In recent years, the role of glucocorticoids in the control of body fluid homeostasis has been extensively investigated. Glucocorticoid deficiency can activate V2R (vasopressin receptor 2), increase aquaporins expression, and result in hyponatremia, all of which can be reversed by glucocorticoid supplement. Methods and Results Heart failure was induced by coronary artery ligation for 8 weeks. A total of 32 rats were randomly assigned to 4 groups (n=8/group): sham surgery group, congestive heart failure group, dexamethasone group, and dexamethasone in combination with glucocorticoid receptor antagonist RU486 group. An acute water loading test was administered 6 hours after drug administration. Left ventricular function was measured by a pressure‐volume catheter. Protein expressions were determined by immunohistochemistry and immunoblotting. The pressure‐volume loop analysis showed that dexamethasone improves cardiac function in rats with heart failure. Western blotting confirmed that dexamethasone remarkably reduces the expressions of V2R, aquaporin 2, and aquaporin 3 in the renal‐collecting ducts. As a result of V2R downregulation, the expressions of glucocorticoid regulated kinase 1, apical epithelial sodium channels, and the furosemide‐sensitive Na‐K‐2Cl cotransporter were also downregulated. These favorable effects induced by dexamethasone were mostly abolished by the glucocorticoid receptor inhibitor RU486, indicating that the aforementioned effects are glucocorticoid receptor mediated. Conclusions Glucocorticoids can reverse diluted hyponatremia via inhibiting the vasopressin receptor pathway in rats with heart failure.
Collapse
Affiliation(s)
- Xiaoran Zhu
- The First Cardiology Division The First Hospital of Hebei Medical University Shijiazhuang China.,Department of Pharmacy Hebei General Hospital Shijiazhuang China
| | - Yaomeng Huang
- The First Cardiology Division The First Hospital of Hebei Medical University Shijiazhuang China
| | - Shuyu Li
- The First Cardiology Division The First Hospital of Hebei Medical University Shijiazhuang China.,Department of Cardiovascular Medicine Fengnan District Hospital Tangshan China
| | - Ning Ge
- Regenerative Medicine Institute School of Medicine National University of Ireland Galway Ireland
| | - Tongxin Li
- The First Cardiology Division The First Hospital of Hebei Medical University Shijiazhuang China
| | - Yu Wang
- The First Cardiology Division The First Hospital of Hebei Medical University Shijiazhuang China
| | - Kunshen Liu
- The First Cardiology Division The First Hospital of Hebei Medical University Shijiazhuang China
| | - Chao Liu
- The First Cardiology Division The First Hospital of Hebei Medical University Shijiazhuang China
| |
Collapse
|
5
|
Keppner A, Maric D, Sergi C, Ansermet C, De Bellis D, Kratschmar DV, Canonica J, Klusonova P, Fenton RA, Odermatt A, Crambert G, Hoogewijs D, Hummler E. Deletion of the serine protease CAP2/Tmprss4 leads to dysregulated renal water handling upon dietary potassium depletion. Sci Rep 2019; 9:19540. [PMID: 31863073 PMCID: PMC6925205 DOI: 10.1038/s41598-019-55995-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/04/2019] [Indexed: 01/09/2023] Open
Abstract
The kidney needs to adapt daily to variable dietary K+ contents via various mechanisms including diuretic, acid-base and hormonal changes that are still not fully understood. In this study, we demonstrate that following a K+-deficient diet in wildtype mice, the serine protease CAP2/Tmprss4 is upregulated in connecting tubule and cortical collecting duct and also localizes to the medulla and transitional epithelium of the papilla and minor calyx. Male CAP2/Tmprss4 knockout mice display altered water handling and urine osmolality, enhanced vasopressin response leading to upregulated adenylate cyclase 6 expression and cAMP overproduction, and subsequently greater aquaporin 2 (AQP2) and Na+-K+-2Cl− cotransporter 2 (NKCC2) expression following K+-deficient diet. Urinary acidification coincides with significantly increased H+,K+-ATPase type 2 (HKA2) mRNA and protein expression, and decreased calcium and phosphate excretion. This is accompanied by increased glucocorticoid receptor (GR) protein levels and reduced 11β-hydroxysteroid dehydrogenase 2 activity in knockout mice. Strikingly, genetic nephron-specific deletion of GR leads to the mirrored phenotype of CAP2/Tmprss4 knockouts, including increased water intake and urine output, urinary alkalinisation, downregulation of HKA2, AQP2 and NKCC2. Collectively, our data unveil a novel role of the serine protease CAP2/Tmprss4 and GR on renal water handling upon dietary K+ depletion.
Collapse
Affiliation(s)
- Anna Keppner
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.,Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland.,National Center of Competence in Research Kidney Control of Homeostasis (NCCR Kidney.CH), University of Lausanne, Lausanne, Switzerland
| | - Darko Maric
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.,Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland.,National Center of Competence in Research Kidney Control of Homeostasis (NCCR Kidney.CH), University of Lausanne, Lausanne, Switzerland
| | - Chloé Sergi
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Camille Ansermet
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Damien De Bellis
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.,Electron Microscopy Facility, University of Lausanne, Lausanne, Switzerland.,Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Denise V Kratschmar
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.,National Center of Competence in Research Kidney Control of Homeostasis (NCCR Kidney.CH), University of Lausanne, Lausanne, Switzerland
| | - Jérémie Canonica
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.,National Center of Competence in Research Kidney Control of Homeostasis (NCCR Kidney.CH), University of Lausanne, Lausanne, Switzerland.,Ophthalmic Hospital Jules Gonin, University of Lausanne, Lausanne, Switzerland
| | - Petra Klusonova
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.,National Center of Competence in Research Kidney Control of Homeostasis (NCCR Kidney.CH), University of Lausanne, Lausanne, Switzerland
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Alex Odermatt
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.,National Center of Competence in Research Kidney Control of Homeostasis (NCCR Kidney.CH), University of Lausanne, Lausanne, Switzerland
| | | | - David Hoogewijs
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland.,National Center of Competence in Research Kidney Control of Homeostasis (NCCR Kidney.CH), University of Lausanne, Lausanne, Switzerland
| | - Edith Hummler
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland. .,National Center of Competence in Research Kidney Control of Homeostasis (NCCR Kidney.CH), University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
6
|
Kim DG, Choi JW, Jo IJ, Kim MJ, Lee HS, Hong SH, Song HJ, Bae GS, Park SJ. Berberine ameliorates lipopolysaccharide‑induced inflammatory responses in mouse inner medullary collecting duct‑3 cells by downregulation of NF‑κB pathway. Mol Med Rep 2019; 21:258-266. [PMID: 31746359 PMCID: PMC6896374 DOI: 10.3892/mmr.2019.10823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Abstract
The major role of inner medullary collecting duct (IMCD) cells is to maintain water and sodium homeostasis. In addition to the major role, it also participates in the protection of renal and systemic inflammation. Although IMCD cells could take part in renal and systemic inflammation, investigations on renal inflammation in IMCD cells have rarely been reported. Although berberine (BBR) has been reported to show diverse pharmacological effects, its anti-inflammatory and protective effects on IMCD cells have not been studied. Therefore, in the present study, we examined the anti-inflammatory and protective effects of BBR in mouse IMCD-3 (mIMCD-3) cells against lipopolysaccharide (LPS). An MTT assay was carried out to investigate the toxicity of BBR on mIMCD-3 cells. Reverse transcription quantitative-PCR and western blotting were performed to analysis pro-inflammatory molecules and cytokines. Mechanisms of BBR were examined by western blotting and immunocytochemistry. According to previous studies, pro-inflammatory molecules, such as inducible nitric oxide synthase and cyclooxygenase-2, and pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6 and tumor necrosis factor-α are increased in LPS-exposed mIMCD-3 cells. However, the production of these pro-inflammatory molecules is significantly inhibited by treatment with BBR. In addition, BBR inhibited translocation of nuclear factor (NF)-κB p65 from the cytosol to the nucleus, and degradation of inhibitory κ-Bα in LPS-exposed mIMCD-3 cells. In conclusion, BBR could inhibit renal inflammatory responses via inhibition of NF-κB signaling and ultimately contribute to amelioration of renal injury during systemic inflammation.
Collapse
Affiliation(s)
- Dong-Gu Kim
- Hanbang Cardio‑Renal Syndrome Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Ji-Won Choi
- Hanbang Cardio‑Renal Syndrome Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Il-Joo Jo
- Division of Beauty Sciences, School of Natural Sciences, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Myoung-Jin Kim
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Ho-Sub Lee
- Hanbang Cardio‑Renal Syndrome Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Seung-Heon Hong
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Ho-Joon Song
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Gi-Sang Bae
- Hanbang Cardio‑Renal Syndrome Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Sung-Joo Park
- Hanbang Cardio‑Renal Syndrome Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| |
Collapse
|
7
|
Brovko M, Kozlovskaya L, Pulin A, Moiseev S, Sholomova V, Shchekochikhin D, Gognieva D, Milovanova L, Fomin V. Low aquaporin-2 excretion in the nephrotic syndrome: an escape from the vasopressin regulating effect. Int J Nephrol Renovasc Dis 2018; 11:271-277. [PMID: 30410384 PMCID: PMC6198888 DOI: 10.2147/ijnrd.s177469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose Experimental studies suggest that the nephrotic syndrome is associated with “vasopressin escape”, characterized by low aquaporin-2 (AQP2) expression in the collecting duct despite high vasopressin secretion. We investigated this phenomenon in patients with the nephrotic syndrome. Patients and methods We recruited 47 patients with proteinuric kidney disease who were distributed into the following four groups: 1) nephrotic syndrome with kidney dysfunction (n=10); 2) nephrotic syndrome with normal kidney function (n=16); 3) partial remission of nephrotic syndrome (n=10); and 4) minimal proteinuria (n=11). Nine healthy volunteers comprised a control group. Serum copeptin level (as a marker of vasopressin secretion) and urinary AQP2 were measured using ELISA. Results Nephrotic syndrome was associated with a significant increase in serum copeptin levels compared with those in the other groups (all P<0.05). In patients with nephrotic syndrome and a partial remission of nephrotic syndrome combined, there was more than a ten-fold decrease in the median urinary AQP2 excretion (0.03 ng/mL) compared with healthy volunteers (0.41 ng/mL; P<0.001) and more than a five-fold decrease compared with patients with minimal proteinuria (0.21 ng/mL; P<0.05). Unlike copeptin levels, the median urinary AQP2 excretion in patients with minimal proteinuria also decreased but less significantly than in those with nephrotic syndrome. There was a negative correlation between the urinary AQP2 excretion and daily proteinuria (R=−0.41; P=0.005). Conclusion Our clinical study was the first to demonstrate low AQP2 excretion in nephrotic syndrome that may indicate an escape from the vasopressin regulating effect.
Collapse
Affiliation(s)
- Mikhail Brovko
- Sechenov First Moscow State Medical University, Moscow, Russia,
| | | | - Andrey Pulin
- Sechenov First Moscow State Medical University, Moscow, Russia, .,Laboratory for Cell Technologies and Developmental Pathology, Federal State Budgetary Scientific Institution "Institute of General Pathology and Pathophysiology," Moscow, Russia
| | - Sergey Moiseev
- Sechenov First Moscow State Medical University, Moscow, Russia,
| | | | | | - Daria Gognieva
- Sechenov First Moscow State Medical University, Moscow, Russia,
| | | | - Victor Fomin
- Sechenov First Moscow State Medical University, Moscow, Russia,
| |
Collapse
|
8
|
Sánchez-Solís CN, Cuevas-Romero E, Munoz A, Cervantes-Rodríguez M, Rodríguez-Antolín J, Nicolás-Toledo L. Morphometric changes and AQP2 expression in kidneys of young male rats exposed to chronic stress and a high-sucrose diet. Biomed Pharmacother 2018; 105:1098-1105. [PMID: 30021346 DOI: 10.1016/j.biopha.2018.06.086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Consumption of a cafeteria-like diet and chronic stress have a negative impact on kidney function and morphology in adult rats. However, the interaction between chronic restraint stress and high-sucrose diet on renal morphology in young rats is unknown. A high-sucrose diet does not modify serum glucose levels but reduces serum corticosterone levels in stressed young rats, in this way it is confusing a possible potentiate or protector effect of this diet on kidney damage induced by stress. METHODS Wistar male rats at 4 weeks of age were randomly assigned into 4 groups: control (C), stressed (St), high-sucrose diet (S30), and chronic restraint stress plus a 30% sucrose diet (St + S30). Rats were fed with a standard chow and tap water (C group) or 30% sucrose diluted in water (S30 group). Chronic restraint stress consisted of 1-h daily placement into a plastic cylinder, 5 days per week, and for 4 weeks. RESULTS Stressed rats exhibited a low number of corpuscles, glomeruli, high number of mesangial cells, major deposition of mesangial matrix and aquaporin-2 protein (AQP-2) expression, and low creatinine levels. Meanwhile, high-sucrose diet ameliorated AQP-2 expression and avoided the reduction of creatinine levels induced by chronic stress. The combination of stress and high-sucrose diet maintained similar effects on the kidney as stress alone, although it induced a greater reduction in the area of proximal tubules. CONCLUSIONS Our results show that both chronic stress and a high-sucrose diet induce histological changes, but chronic stress may generate an accelerated glomerular hypertrophy associated with functional changes before puberty.
Collapse
Affiliation(s)
| | - Estela Cuevas-Romero
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Alvaro Munoz
- Centro Universitario del Norte, Universidad de Guadalajara, Jalisco, Mexico
| | | | - Jorge Rodríguez-Antolín
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Leticia Nicolás-Toledo
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico.
| |
Collapse
|
9
|
Kuo KT, Yang CW, Yu MJ. Dexamethasone enhances vasopressin-induced aquaporin-2 gene expression in the mpkCCD cells. Am J Physiol Renal Physiol 2017; 314:F219-F229. [PMID: 29070569 DOI: 10.1152/ajprenal.00218.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The mouse cortical collecting duct cell (mpkCCD) has been an instrumental cell model for studying vasopressin-mediated aquaporin-2 regulation. This cell line was first developed by Vandewalle's group from a transgenic mouse carrying the transforming SV40 antigens driven by the pyruvate kinase promoter. To immortalize the cells, four hormone supplements (dexamethasone, epidermal growth factor, insulin, and triiodothyronine) were used to enhance SV40 antigen expression; however, these hormones appear to have various effects on aquaporin-2 gene expression in the cells. Here, we evaluated the effects of each hormone supplement and found that dexamethasone enhanced vasopressin-induced aquaporin-2 gene expression at both mRNA and protein levels in a dose- and time-dependent manner, without affecting mRNA or protein stability. The effects of dexamethasone were attributed largely to enhanced aquaporin-2 mRNA transcription in association with an enhanced aquaporin-2 promoter activity. Dexamethasone did not affect vasopressin-regulated aquaporin-2 phosphorylation and trafficking. In summary, we optimized the conditions to enhance vasopressin-induced endogenous aquaporin-2 gene expression in the mpkCCD cells. By increasing the amount of aquaporin-2 protein in the cells, our method will facilitate the study of aquaporin-2 cell physiology regulated by vasopressin.
Collapse
Affiliation(s)
- Kuang-Ting Kuo
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine , Taipei , Taiwan
| | - Chan-Wei Yang
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine , Taipei , Taiwan
| | - Ming-Jiun Yu
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine , Taipei , Taiwan
| |
Collapse
|
10
|
Hou R, Alemozaffar M, Yang B, Sands JM, Kong X, Chen G. Identification of a Novel UT-B Urea Transporter in Human Urothelial Cancer. Front Physiol 2017; 8:245. [PMID: 28503151 PMCID: PMC5409228 DOI: 10.3389/fphys.2017.00245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/07/2017] [Indexed: 02/01/2023] Open
Abstract
The urea transporter UT-B is widely expressed and has been studied in erythrocyte, kidney, brain and intestines. Interestingly, UT-B gene has been found more abundant in bladder than any other tissue. Recently, gene analyses demonstrate that SLC14A1 (UT-B) gene mutations are associated with bladder cancer, suggesting that urea transporter UT-B may play an important role in bladder carcinogenesis. In this study, we examined UT-B expression in bladder cancer with human primary bladder cancer tissues and cancer derived cell lines. Human UT-B has two isoforms. We found that normal bladder expresses long form of UT-B2 but was lost in 8 of 24 (33%) or significantly downregulated in 16 of 24 (67%) of primary bladder cancer patients. In contrast, the short form of UT-B1 lacking exon 3 was detected in 20 bladder cancer samples. Surprisingly, a 24-nt in-frame deletion in exon 4 in UT-B1 (UT-B1Δ24) was identified in 11 of 20 (55%) bladder tumors. This deletion caused a functional defect of UT-B1. Immunohistochemistry revealed that UT-B protein levels were significantly decreased in bladder cancers. Western blot analysis showed a weak UT-B band of 40 kDa in some tumors, consistent with UT-B1 gene expression detected by RT-PCR. Interestingly, bladder cancer associate UT-B1Δ24 was barely sialylated, reflecting impaired glycosylation of UT-B1 in bladder tumors. In conclusion, SLC14A1 gene and UT-B protein expression are significantly changed in bladder cancers. The aberrant UT-B expression may promote bladder cancer development or facilitate carcinogenesis induced by other carcinogens.
Collapse
Affiliation(s)
- Ruida Hou
- Department of Urology, China-Japan Union Hospital, Jilin UniversityChangchun, China.,Department of Physiology, Emory University School of MedicineAtlanta, GA, USA
| | | | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking UniversityBeijing, China
| | - Jeff M Sands
- Department of Physiology, Emory University School of MedicineAtlanta, GA, USA.,Renal Division Department of Medicine, Emory University School of MedicineAtlanta, GA, USA
| | - Xiangbo Kong
- Department of Urology, China-Japan Union Hospital, Jilin UniversityChangchun, China
| | - Guangping Chen
- Department of Physiology, Emory University School of MedicineAtlanta, GA, USA.,Renal Division Department of Medicine, Emory University School of MedicineAtlanta, GA, USA
| |
Collapse
|
11
|
Loh SY, Giribabu N, Salleh N. Effects of gonadectomy and testosterone treatment on aquaporin expression in the kidney of normotensive and hypertensive rats. Exp Biol Med (Maywood) 2017; 242:1376-1386. [PMID: 28399644 DOI: 10.1177/1535370217703360] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We tested the hypothesis that testosterone-induced increase in blood pressure was due to changes in aquaporin (AQP) expression in kidneys. In this study, expression level of kidney AQPs was investigated under testosterone influence. Adult normotensive Wistar Kyoto (WKY) and hypertensive SHR male and female rats underwent gonadectomy. For female rats, testosterone was given for six weeks duration, two weeks following ovariectomy via subcutaneous silastic implant. Mean arterial pressure (MAP) was measured in all the rats after eight weeks via carotid artery cannulation and the rats were then sacrificed and kidneys were harvested for analyses of AQP-1, 2, 3, 4, 6, and 7 mRNA and protein expressions by quantitative real-time PCR and Western blotting, respectively. Distribution of AQP subunits' protein in kidneys was observed by immunofluorescence. In male WKY rats, MAP, AQP-1, 2, 4, and 7 protein; and mRNA expression decreased however AQP-3 protein and mRNA expression increased following orchidectomy. The vice versa effects were observed in testosterone-treated ovariectomized female WKY rats. However, no changes in AQP-6 expression were observed. Meanwhile, in adult male SHR rats, MAP and expression level of all AQP subunits decreased following orchidectomy. The opposite effects were seen in ovariectomized female SHR rats following testosterone treatment. Immunofluorescence study showed AQP-1 and AQP-7 were distributed in the proximal convoluted tubules (PCT) while AQP-2, AQP-4, and AQP-6 were distributed in the collecting ducts (CDs). AQP-3 was distributed in the PCT and CD. In conclusion, changes in AQP subunit expression in kidneys could explain changes in blood pressure under testosterone influence. Impact statement This study provides fundamental understanding on the mechanisms underlying testosterone-induced increase in blood pressure which involve regulation of aquaporin channel subunits in the kidneys. A better understanding of this issue can help to explain the reason for higher blood pressure in males as compared to females and may explain the reason for higher blood pressure in females after menopause than females before menopause, the former most probably related to the changes in female androgen.
Collapse
Affiliation(s)
- Su Yi Loh
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Nelli Giribabu
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
12
|
Tanaka A, Nakamura T, Sato E, Ueda Y, Node K. Different Effects of Tolvaptan in Patients with Idiopathic Membranous Nephropathy with Nephrotic Syndrome. Intern Med 2017; 56:191-196. [PMID: 28090051 PMCID: PMC5337466 DOI: 10.2169/internalmedicine.56.7539] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This case report discusses the clinical indication for immunosuppressants in patients with idiopathic membranous nephropathy (IMN). Because this disease occasionally shows spontaneous remission, it is necessary to determine the predictive values for a therapeutic effect in order to provide appropriate treatment. Two distinct cases described herein illustrate the different effects of tolvaptan in responders and non-responders, according to the pre-treatment levels of AQP-2 immunostaining in the samples from renal biopsy and urinary levels of AQP-2 and osmolality, suggesting that these values may be useful predictors of response to tolvaptan in patients with nephrotic IMN.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Deaprtment of Cardiovascular Medicine, Saga University, Japan
| | | | | | | | | |
Collapse
|
13
|
Nuclear Receptor Regulation of Aquaporin-2 in the Kidney. Int J Mol Sci 2016; 17:ijms17071105. [PMID: 27409611 PMCID: PMC4964481 DOI: 10.3390/ijms17071105] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/04/2016] [Accepted: 07/04/2016] [Indexed: 01/07/2023] Open
Abstract
Aquaporin-2 (AQP2) is a vasopressin-regulated water channel responsible for regulating water reabsorption through the apical plasma membrane of the principal cells of renal collecting ducts. It has been found that dysregulation and dysfunction of AQP2 cause many disorders related to water balance in people and animals, including polyuria and dilutional hyponatremia. Classically, AQP2 mRNA and protein expression and its membrane translocation are regulated by systemic vasopressin involving short-term regulation of AQP2 trafficking to and from the apical plasma membrane and long-term regulation of the total amount of the AQP2 protein in the cell. Recently, increasing evidence has demonstrated that collecting duct AQP2 expression and membrane translocation are also under the control of many other local factors, especially nuclear receptors. Here, we briefly review the progress of studies in this area and discuss the role of nuclear receptors in the regulation of water reabsorption via affecting AQP2 expression and function.
Collapse
|
14
|
Quesada-López T, González-Dávalos L, Piña E, Mora O. HSD1 and AQP7 short-term gene regulation by cortisone in 3T3-L1 adipocytes. Adipocyte 2016; 5:298-305. [PMID: 27617175 DOI: 10.1080/21623945.2016.1187341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 04/21/2016] [Accepted: 04/27/2016] [Indexed: 10/21/2022] Open
Abstract
Adipose Tissue (AT) is a complex organ with a crucial regulatory role in energy metabolism and in the development of obesity and the Metabolic Syndrome (MS). Modified responses and the metabolism of hormones have been observed in visceral adiposity during obesity, specifically as related with cortisone. The objective of this study was to assess, in the 3T3-L1 adipocyte cell line, the short-term effect of cortisone on the expression of 11β-Hydroxysteroid dehydrogenase 1 (Hsd1), which is responsible for activation of cortisone into cortisol, and for Aquaporin 7 (Aqp7), involved in glycerol transport through the cell membrane. Total RNA (tRNA) and complementary DNA (cDNA) were obtained from cell samples treated with cortisone (0.1, 1, and 10 μM) during different times (0, 5, 10, 15, and 20 min, and 48 h) to quantify the expression of the aforementioned genes by real time PCR employing MnSOD and Ppia as housekeeping genes. There was a time-dependent response of Aqp7, a dose-dependent response of Hsd1, and an increase observed in the expression of both genes during min 1 of treatment (5- and 6-fold, respectively), followed by a decrease during the following 5-10 min (P < 0.05). With the 1-μM cortisone treatment, both genes showed cubic tendencies in their expression; the Hsd1 tendency is described by the equation y = 0.18×(3)-1.65×(2)+3.59x+1.31, while the Aqp7 tendency is described by y = 0.33×(3)-2.67×(2)+4.93x+1.84. There are immediate and quantitatively important actions of cortisone on the expression of Aqp7 and Hsd1 in 3T3-L1 adipocytes.
Collapse
|
15
|
Qian X, Sands JM, Song X, Chen G. Modulation of kidney urea transporter UT-A3 activity by alpha2,6-sialylation. Pflugers Arch 2016; 468:1161-1170. [PMID: 26972907 PMCID: PMC4945389 DOI: 10.1007/s00424-016-1802-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/16/2016] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
Abstract
Two urea transporters, UT-A1 and UT-A3, are expressed in the kidney terminal inner medullary collecting duct (IMCD) and are important for the production of concentrated urine. UT-A1, as the largest isoform of all UT-A urea transporters, has gained much attention and been extensively studied; however, the role and the regulation of UT-A3 are less explored. In this study, we investigated UT-A3 regulation by glycosylation modification. A site-directed mutagenesis verified a single glycosylation site in UT-A3 at Asn279. Loss of the glycosylation reduced forskolin-stimulated UT-A3 cell membrane expression and urea transport activity. UT-A3 has two glycosylation forms, 45 and 65 kDa. Using sugar-specific binding lectins, the UT-A3 glycosylation profile was examined. The 45-kDa form was pulled down by lectin concanavalin A (Con A) and Galant husnivalis lectin (GNL), indicating an immature glycan with a high amount of mannose (Man), whereas the 65-kDa form is a mature glycan composed of acetylglucosamine (GlcNAc) and poly-N-acetyllactosame (poly-LacNAc) that was pulled down by wheat germ agglutinin (WGA) and tomato lectin, respectively. Interestingly, the mature form of UT-A3 glycan contains significant amounts of sialic acid. We explored the enzymes responsible for directing UT-A3 sialylation. Sialyltransferase ST6GalI, but not ST3GalIV, catabolizes UT-A3 α2,6-sialylation. Activation of protein kinase C (PKC) by PDB treatment promoted UT-A3 glycan sialylation and membrane surface expression. The PKC inhibitor chelerythrine blocks ST6GalI-induced UT-A3 sialylation. Increased sialylation by ST6GalI increased UT-A3 protein stability and urea transport activity. Collectively, our study reveals a novel mechanism of UT-A3 regulation by ST6GalI-mediated sialylation modification that may play an important role in kidney urea reabsorption and the urinary concentrating mechanism.
Collapse
Affiliation(s)
- Xiaoqian Qian
- Department of Physiology, Emory University, Atlanta, GA 30322, USA
- Cardiovascular Center, the 4 affiliated hospital, Harbin Medical University, Heilongjiang 150001, China
| | - Jeff M. Sands
- Department of Physiology, Emory University, Atlanta, GA 30322, USA
- Renal Division, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Xiang Song
- Cardiovascular Center, the 4 affiliated hospital, Harbin Medical University, Heilongjiang 150001, China
| | - Guangping Chen
- Department of Physiology, Emory University, Atlanta, GA 30322, USA
- Renal Division, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|