1
|
Deprince A, Hennuyer N, Kooijman S, Pronk ACM, Baugé E, Lienard V, Verrijken A, Dirinck E, Vonghia L, Woitrain E, Kloosterhuis NJ, Marez E, Jacquemain P, Wolters JC, Lalloyer F, Eberlé D, Quemener S, Vallez E, Tailleux A, Kouach M, Goossens J, Raverdy V, Derudas B, Kuivenhoven JA, Croyal M, van de Sluis B, Francque S, Pattou F, Rensen PCN, Staels B, Haas JT. Apolipoprotein F is reduced in humans with steatosis and controls plasma triglyceride-rich lipoprotein metabolism. Hepatology 2023; 77:1287-1302. [PMID: 35735979 PMCID: PMC10026963 DOI: 10.1002/hep.32631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/19/2022] [Accepted: 06/07/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND NAFLD affects nearly 25% of the global population. Cardiovascular disease (CVD) is the most common cause of death among patients with NAFLD, in line with highly prevalent dyslipidemia in this population. Increased plasma triglyceride (TG)-rich lipoprotein (TRL) concentrations, an important risk factor for CVD, are closely linked with hepatic TG content. Therefore, it is of great interest to identify regulatory mechanisms of hepatic TRL production and remnant uptake in the setting of hepatic steatosis. APPROACH AND RESULTS To identify liver-regulated pathways linking intrahepatic and plasma TG metabolism, we performed transcriptomic analysis of liver biopsies from two independent cohorts of obese patients. Hepatic encoding apolipoprotein F ( APOF ) expression showed the fourth-strongest negatively correlation with hepatic steatosis and the strongest negative correlation with plasma TG levels. The effects of adenoviral-mediated human ApoF (hApoF) overexpression on plasma and hepatic TG were assessed in C57BL6/J mice. Surprisingly, hApoF overexpression increased both hepatic very low density lipoprotein (VLDL)-TG secretion and hepatic lipoprotein remnant clearance, associated a ~25% reduction in plasma TG levels. Conversely, reducing endogenous ApoF expression reduced VLDL secretion in vivo , and reduced hepatocyte VLDL uptake by ~15% in vitro . Transcriptomic analysis of APOF -overexpressing mouse livers revealed a gene signature related to enhanced ApoB-lipoprotein clearance, including increased expression of Ldlr and Lrp1 , among others. CONCLUSION These data reveal a previously undescribed role for ApoF in the control of plasma and hepatic lipoprotein metabolism by favoring VLDL-TG secretion and hepatic lipoprotein remnant particle clearance.
Collapse
Affiliation(s)
- Audrey Deprince
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Nathalie Hennuyer
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Sander Kooijman
- Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Amanda C. M. Pronk
- Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric Baugé
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Viktor Lienard
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - An Verrijken
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Paediatrics, University of Antwerp, Antwerp, Belgium
| | - Eveline Dirinck
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Paediatrics, University of Antwerp, Antwerp, Belgium
| | - Luisa Vonghia
- Department of Gastroenterology Hepatology, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Paediatrics, University of Antwerp, Antwerp, Belgium
| | - Eloïse Woitrain
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Niels J. Kloosterhuis
- Department of Paediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Eléonore Marez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Pauline Jacquemain
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Justina C. Wolters
- Department of Paediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Fanny Lalloyer
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Delphine Eberlé
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Sandrine Quemener
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Emmanuelle Vallez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Anne Tailleux
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Mostafa Kouach
- Univ. Lille, CHU Lille, ULR 7365‐GRITA‐Groupe de Recherche sur les formes Injectables et les Technologies Associées, Lille, France
| | - Jean‐Francois Goossens
- Univ. Lille, CHU Lille, ULR 7365‐GRITA‐Groupe de Recherche sur les formes Injectables et les Technologies Associées, Lille, France
| | - Violeta Raverdy
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1190 ‐ EGID, Lille, France
| | - Bruno Derudas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Jan Albert Kuivenhoven
- Department of Paediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mikaël Croyal
- Université de Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France
- CRNH‐Ouest Mass Spectrometry Core Facility, Nantes, France
| | - Bart van de Sluis
- Department of Paediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sven Francque
- Department of Gastroenterology Hepatology, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Paediatrics, University of Antwerp, Antwerp, Belgium
| | - François Pattou
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1190 ‐ EGID, Lille, France
| | - Patrick C. N. Rensen
- Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Joel T. Haas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| |
Collapse
|
2
|
Apolipoprotein B and Cardiovascular Disease: Biomarker and Potential Therapeutic Target. Metabolites 2021; 11:metabo11100690. [PMID: 34677405 PMCID: PMC8540246 DOI: 10.3390/metabo11100690] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/19/2022] Open
Abstract
Apolipoprotein (apo) B, the critical structural protein of the atherogenic lipoproteins, has two major isoforms: apoB48 and apoB100. ApoB48 is found in chylomicrons and chylomicron remnants with one apoB48 molecule per chylomicron particle. Similarly, a single apoB100 molecule is contained per particle of very-low-density lipoprotein (VLDL), intermediate density lipoprotein, LDL and lipoprotein(a). This unique one apoB per particle ratio makes plasma apoB concentration a direct measure of the number of circulating atherogenic lipoproteins. ApoB levels indicate the atherogenic particle concentration independent of the particle cholesterol content, which is variable. While LDL, the major cholesterol-carrying serum lipoprotein, is the primary therapeutic target for management and prevention of atherosclerotic cardiovascular disease, there is strong evidence that apoB is a more accurate indicator of cardiovascular risk than either total cholesterol or LDL cholesterol. This review examines multiple aspects of apoB structure and function, with a focus on the controversy over use of apoB as a therapeutic target in clinical practice. Ongoing coronary artery disease residual risk, despite lipid-lowering treatment, has left patients and clinicians with unsatisfactory options for monitoring cardiovascular health. At the present time, the substitution of apoB for LDL-C in cardiovascular disease prevention guidelines has been deemed unjustified, but discussions continue.
Collapse
|
3
|
Bittel AJ, Bittel DC, Mittendorfer B, Patterson BW, Okunade AL, Yoshino J, Porter LC, Abumrad NA, Reeds DN, Cade WT. A single bout of resistance exercise improves postprandial lipid metabolism in overweight/obese men with prediabetes. Diabetologia 2020; 63:611-623. [PMID: 31873788 PMCID: PMC7002271 DOI: 10.1007/s00125-019-05070-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 11/06/2019] [Indexed: 12/21/2022]
Abstract
AIMS/HYPOTHESIS Prediabetes is associated with postprandial hypertriacylglycerolaemia. Resistance exercise acutely lowers postprandial plasma triacylglycerol (TG); however, the changes in lipid metabolism that mediate this reduction are poorly understood. The aim of this study was to identify the constitutive metabolic mechanisms underlying the changes in postprandial lipid metabolism after resistance exercise in obese men with prediabetes. METHODS We evaluated the effect of a single bout of whole-body resistance exercise (seven exercises, three sets, 10-12 repetitions at 80% of one-repetition maximum) on postprandial lipid metabolism in ten middle-aged (50 ± 9 years), overweight/obese (BMI: 33 ± 3 kg/m2), sedentary men with prediabetes (HbA1c >38 but <48 mmol/mol [>5.7% but <6.5%]), or fasting plasma glucose >5.6 mmol/l but <7.0 mmol/l or 2 h OGTT glucose >7.8 mmol/l but <11.1 mmol/l). We used a randomised, crossover design with a triple-tracer mixed meal test (ingested [(13C4)3]tripalmitin, i.v. [U-13C16]palmitate and [2H5]glycerol) to evaluate chylomicron-TG and total triacylglycerol-rich lipoprotein (TRL)-TG kinetics. We used adipose tissue and skeletal muscle biopsies to evaluate the expression of genes regulating lipolysis and lipid oxidation, skeletal muscle respirometry to evaluate oxidative capacity, and indirect calorimetry to assess whole-body lipid oxidation. RESULTS The single bout of resistance exercise reduced the lipaemic response to a mixed meal in obese men with prediabetes without changing chylomicron-TG or TRL-TG fractional clearance rates. However, resistance exercise reduced endogenous and meal-derived fatty acid incorporation into chylomicron-TG and TRL-TG. Resistance exercise also increased whole-body lipid oxidation, skeletal muscle mitochondrial respiration, oxidative gene expression in skeletal muscle, and the expression of key lipolysis genes in adipose tissue. CONCLUSIONS/INTERPRETATION A single bout of resistance exercise improves postprandial lipid metabolism in obese men with prediabetes, which may mitigate the risk for cardiovascular disease and type 2 diabetes.
Collapse
Affiliation(s)
- Adam J Bittel
- Program in Physical Therapy, Washington University, St Louis, Campus Box 8502, 4444 Forest Park Ave., St Louis, MO, 63110, USA.
| | - Daniel C Bittel
- Program in Physical Therapy, Washington University, St Louis, Campus Box 8502, 4444 Forest Park Ave., St Louis, MO, 63110, USA
| | - Bettina Mittendorfer
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Bruce W Patterson
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Adewole L Okunade
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Jun Yoshino
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Lane C Porter
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Nada A Abumrad
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Dominic N Reeds
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - W Todd Cade
- Program in Physical Therapy, Washington University, St Louis, Campus Box 8502, 4444 Forest Park Ave., St Louis, MO, 63110, USA
| |
Collapse
|
4
|
The Potential Use of Metabolic Cofactors in Treatment of NAFLD. Nutrients 2019; 11:nu11071578. [PMID: 31336926 PMCID: PMC6682907 DOI: 10.3390/nu11071578] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is caused by the imbalance between lipid deposition and lipid removal from the liver, and its global prevalence continues to increase dramatically. NAFLD encompasses a spectrum of pathological conditions including simple steatosis and non-alcoholic steatohepatitis (NASH), which can progress to cirrhosis and liver cancer. Even though there is a multi-disciplinary effort for development of a treatment strategy for NAFLD, there is not an approved effective medication available. Single or combined metabolic cofactors can be supplemented to boost the metabolic processes altered in NAFLD. Here, we review the dosage and usage of metabolic cofactors including l-carnitine, Nicotinamide riboside (NR), l-serine, and N-acetyl-l-cysteine (NAC) in human clinical studies to improve the altered biological functions associated with different human diseases. We also discuss the potential use of these substances in treatment of NAFLD and other metabolic diseases including neurodegenerative and cardiovascular diseases of which pathogenesis is linked to mitochondrial dysfunction.
Collapse
|
5
|
Stock J. Triglycerides and cardiovascular risk: Apolipoprotein B holds the key. Atherosclerosis 2019; 284:221-222. [DOI: 10.1016/j.atherosclerosis.2019.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 02/08/2023]
|
6
|
Mardinoglu A, Boren J, Smith U, Uhlen M, Nielsen J. Systems biology in hepatology: approaches and applications. Nat Rev Gastroenterol Hepatol 2018; 15:365-377. [PMID: 29686404 DOI: 10.1038/s41575-018-0007-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Detailed insights into the biological functions of the liver and an understanding of its crosstalk with other human tissues and the gut microbiota can be used to develop novel strategies for the prevention and treatment of liver-associated diseases, including fatty liver disease, cirrhosis, hepatocellular carcinoma and type 2 diabetes mellitus. Biological network models, including metabolic, transcriptional regulatory, protein-protein interaction, signalling and co-expression networks, can provide a scaffold for studying the biological pathways operating in the liver in connection with disease development in a systematic manner. Here, we review studies in which biological network models were used to integrate multiomics data to advance our understanding of the pathophysiological responses of complex liver diseases. We also discuss how this mechanistic approach can contribute to the discovery of potential biomarkers and novel drug targets, which might lead to the design of targeted and improved treatment strategies. Finally, we present a roadmap for the successful integration of models of the liver and other human tissues with the gut microbiota to simulate whole-body metabolic functions in health and disease.
Collapse
Affiliation(s)
- Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden. .,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | - Jan Boren
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ulf Smith
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mathias Uhlen
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Jens Nielsen
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
7
|
Mahat B, Chassé É, Lindon C, Mauger JF, Imbeault P. No effect of acute normobaric hypoxia on plasma triglyceride levels in fasting healthy men. Appl Physiol Nutr Metab 2018; 43:727-732. [PMID: 29466682 DOI: 10.1139/apnm-2017-0505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Circulating fatty acids are a major systemic energy source in the fasting state as well as a determinant of hepatic triglycerides (TG)-rich very-low-density lipoprotein production. Upon acute hypoxia, sympathetic arousal induces adipose tissue lipolysis, resulting in an increase in circulating nonesterified fatty acids (NEFA). Animal studies suggest that TG clearance may also be strongly reduced under hypoxia, though this effect has been shown to be dependent on temperature. Whether the hypoxia-induced rise in blood fatty acid concentrations affects fasting TG levels in humans under thermoneutral conditions remains unknown. TG, NEFA, and glycerol levels were measured in fasted healthy young men (n = 10) exposed for 6 h to either normoxia (ambient air) or acute hypoxia (fraction of inspired oxygen = 0.12) in a randomized, crossover design. Participants were casually clothed and rested in front of a fan in an environmental chamber maintained at 28 °C during each trial. Under hypoxia, a significantly greater increase in NEFA occurred (condition × time interaction, p = 0.049) and glycerol levels tended to be higher (condition × time, p = 0.104), suggesting an increase in adipose tissue lipolysis. However, plasma TG levels did not change over time and did not differ between the normoxia and hypoxia conditions. In conclusion, acute exposure to normobaric hypoxia under thermoneutral condition in healthy men during fasting state increased lipolysis without affecting circulating TG.
Collapse
Affiliation(s)
- Bimit Mahat
- a Behavioral and Metabolic Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Étienne Chassé
- a Behavioral and Metabolic Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Clare Lindon
- a Behavioral and Metabolic Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Jean-François Mauger
- a Behavioral and Metabolic Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Pascal Imbeault
- a Behavioral and Metabolic Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.,b Institut du savoir Montfort, Hôpital Montfort, Ottawa, ON K1K 0T2, Canada
| |
Collapse
|
8
|
Improving the economics of NASH/NAFLD treatment through the use of systems biology. Drug Discov Today 2017; 22:1532-1538. [DOI: 10.1016/j.drudis.2017.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/27/2017] [Accepted: 07/12/2017] [Indexed: 12/13/2022]
|
9
|
Ashraf AP, Hurst AC, Garg A. Extreme hypertriglyceridemia, pseudohyponatremia, and pseudoacidosis in a neonate with lipoprotein lipase deficiency due to segmental uniparental disomy. J Clin Lipidol 2017; 11:757-762. [DOI: 10.1016/j.jacl.2017.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 03/23/2017] [Accepted: 03/26/2017] [Indexed: 12/23/2022]
|
10
|
Mardinoglu A, Bjornson E, Zhang C, Klevstig M, Söderlund S, Ståhlman M, Adiels M, Hakkarainen A, Lundbom N, Kilicarslan M, Hallström BM, Lundbom J, Vergès B, Barrett PHR, Watts GF, Serlie MJ, Nielsen J, Uhlén M, Smith U, Marschall HU, Taskinen MR, Boren J. Personal model-assisted identification of NAD + and glutathione metabolism as intervention target in NAFLD. Mol Syst Biol 2017; 13:916. [PMID: 28254760 PMCID: PMC5371732 DOI: 10.15252/msb.20167422] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To elucidate the molecular mechanisms underlying non‐alcoholic fatty liver disease (NAFLD), we recruited 86 subjects with varying degrees of hepatic steatosis (HS). We obtained experimental data on lipoprotein fluxes and used these individual measurements as personalized constraints of a hepatocyte genome‐scale metabolic model to investigate metabolic differences in liver, taking into account its interactions with other tissues. Our systems level analysis predicted an altered demand for NAD+ and glutathione (GSH) in subjects with high HS. Our analysis and metabolomic measurements showed that plasma levels of glycine, serine, and associated metabolites are negatively correlated with HS, suggesting that these GSH metabolism precursors might be limiting. Quantification of the hepatic expression levels of the associated enzymes further pointed to altered de novo GSH synthesis. To assess the effect of GSH and NAD+ repletion on the development of NAFLD, we added precursors for GSH and NAD+ biosynthesis to the Western diet and demonstrated that supplementation prevents HS in mice. In a proof‐of‐concept human study, we found improved liver function and decreased HS after supplementation with serine (a precursor to glycine) and hereby propose a strategy for NAFLD treatment.
Collapse
Affiliation(s)
- Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden .,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Elias Bjornson
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Department of Molecular and Clinical Medicine, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Cheng Zhang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Martina Klevstig
- Department of Molecular and Clinical Medicine, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sanni Söderlund
- Research programs Unit, Diabetes and Obesity, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Martin Adiels
- Department of Molecular and Clinical Medicine, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Antti Hakkarainen
- Department of Radiology, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Nina Lundbom
- Department of Radiology, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Murat Kilicarslan
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Björn M Hallström
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Jesper Lundbom
- Department of Radiology, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Bruno Vergès
- Department of Endocrinology-Diabetology, University Hospital and INSERM CRI 866, Dijon, France
| | - Peter Hugh R Barrett
- Faculty of Engineering, Computing and Mathematics, University of Western Australia, Perth, WA, Australia
| | - Gerald F Watts
- Metabolic Research Centre, Cardiovascular Medicine, Royal Perth Hospital, School of Medicine and Pharmacology, University of Western Australia, Perth, WA, Australia
| | - Mireille J Serlie
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jens Nielsen
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Ulf Smith
- Department of Molecular and Clinical Medicine, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marja-Riitta Taskinen
- Research programs Unit, Diabetes and Obesity, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Jan Boren
- Department of Molecular and Clinical Medicine, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW This article evaluates recent experimental and human evidence regarding the involvement of lipids, lipoproteins, and apolipoproteins in neurodegenerative diseases, and reviews the current literature of the effects of cholesterol-lowering treatment on cognition. RECENT FINDINGS Plasma levels of traditional lipids and lipoproteins are not consistently associated with risk of dementia even though low plasma levels of apolipoprotein E, through unknown mechanisms, robustly predict future dementia. Experimental evidence suggests neuroprotective roles of several brain and cerebrospinal fluid apolipoproteins. Whether plasma levels of apolipoprotein E, or any other apolipoprotein with possible central nervous system and/or blood-brain barrier functions (apolipoproteins J, A-I, A-II, A-IV, D, C-I, and C-III) may become accessible biomarker components that improve risk prediction for dementia together with genetic risk variants and cardiovascular risk factors remains to be determined. SUMMARY Apolipoproteins with well established functions in peripheral lipid metabolism may play important roles for brain vascular health and Alzheimer's disease pathophysiology. Experimental work on lipids, lipoproteins, and apolipoproteins in the central nervous system together with robust prospective human studies will help to substantiate the drug target potential of these lipid components.
Collapse
Affiliation(s)
- Cheryl L Wellington
- aDepartment of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada bDepartment of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospitals cFaculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|