1
|
Bottenheft C, Groen EL, Mol D, Valk PJL, Houben MMJ, Kingma BRM, van Erp JBF. Effects of heat load and hypobaric hypoxia on cognitive performance: a combined stressor approach. ERGONOMICS 2023; 66:2148-2164. [PMID: 36916391 DOI: 10.1080/00140139.2023.2190062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
This study investigates how cognitive performance is affected by the combination of two stressors that are operationally relevant for helicopter pilots: heat load and hypobaric hypoxia. Fifteen participants were exposed to (1) no stressors, (2) heat load, (3) hypobaric hypoxia, and (4) combined heat load and hypobaric hypoxia. Hypobaric hypoxia (13,000 ft) was achieved in a hypobaric chamber. Heat load was induced by increasing ambient temperature to ∼28 °C. Cognitive performance was measured using two multitasks, and a vigilance task. Subjective and physiological data (oxygen saturation, heart rate, core- and skin temperature) were also collected. Mainly heat load caused cognitive performance decline. This can be explained by high subjective heat load and increased skin temperature, which takes away cognitive resources from the tasks. Only the arithmetic subtask was sensitive to hypobaric hypoxia, whereby hypobaric hypoxia caused a further performance decline in addition to the decline caused by heat load.Practitioner summary: Little is known about how multiple environmental stressors interact. This study investigates the combined effects of heat load and hypobaric hypoxia on cognitive performance. An additive effect of heat load and hypobaric hypoxia was found on a arithmetic task, which may be attributed to independent underlying mechanisms.
Collapse
Affiliation(s)
- Charelle Bottenheft
- Department of Human Performance, Unit Defence, Safety and Security, Netherlands Organisation for Applied Scientific Research (TNO), Soesterberg, Netherlands
- Human Media Interaction, Computer Science, University of Twente, Enschede, Netherlands
| | - Eric L Groen
- Department of Human Performance, Unit Defence, Safety and Security, Netherlands Organisation for Applied Scientific Research (TNO), Soesterberg, Netherlands
| | - Douwe Mol
- Department of Human Performance, Unit Defence, Safety and Security, Netherlands Organisation for Applied Scientific Research (TNO), Soesterberg, Netherlands
| | - Pierre J L Valk
- Department of Human Performance, Unit Defence, Safety and Security, Netherlands Organisation for Applied Scientific Research (TNO), Soesterberg, Netherlands
| | - Mark M J Houben
- Department of Human Performance, Unit Defence, Safety and Security, Netherlands Organisation for Applied Scientific Research (TNO), Soesterberg, Netherlands
| | - Boris R M Kingma
- Department of Human Performance, Unit Defence, Safety and Security, Netherlands Organisation for Applied Scientific Research (TNO), Soesterberg, Netherlands
| | - Jan B F van Erp
- Human Media Interaction, Computer Science, University of Twente, Enschede, Netherlands
- Department of Human Machine Teaming, Unit Defence, Safety and Security, Netherlands Organisation for Applied Scientific Research (TNO), Soesterberg, Netherlands
| |
Collapse
|
2
|
Wait SO, Charkoudian N, Skinner JW, Smith CJ. Combining hypoxia with thermal stimuli in humans: physiological responses and potential sex differences. Am J Physiol Regul Integr Comp Physiol 2023; 324:R677-R690. [PMID: 36971421 PMCID: PMC10202487 DOI: 10.1152/ajpregu.00244.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Increasing prevalence of native lowlanders sojourning to high altitudes (>2,500 m) for recreational, occupational, military, and competitive reasons has generated increased interest in physiological responses to multistressor environments. Exposure to hypoxia poses recognized physiological challenges that are amplified during exercise and further complicated by environments that might include combinations of heat, cold, and high altitude. There is a sparsity of data examining integrated responses in varied combinations of environmental conditions, with even less known about potential sex differences. How this translates into performance, occupational, and health outcomes requires further investigation. Acute hypoxic exposure decreases arterial oxygen saturation, resulting in a reflex hypoxic ventilatory response and sympathoexcitation causing an increase in heart rate, myocardial contractility, and arterial blood pressure, to compensate for the decreased arterial oxygen saturation. Acute altitude exposure impairs exercise performance, for example, reduced time to exhaustion and slower time trials, largely owing to impairments in pulmonary gas exchange and peripheral delivery resulting in reduced V̇o2max. This exacerbates with increasing altitude, as does the risk of developing acute mountain sickness and more serious altitude-related illnesses, but modulation of those risks with additional stressors is unclear. This review aims to summarize and evaluate current literature regarding cardiovascular, autonomic, and thermoregulatory responses to acute hypoxia, and how these may be affected by simultaneous thermal environmental challenges. There is minimal available information regarding sex as a biological variable in integrative responses to hypoxia or multistressor environments; we highlight these areas as current knowledge gaps and the need for future research.
Collapse
Affiliation(s)
- Seaver O Wait
- Department of Public Health and Exercise Science, Appalachian State University, Boone, North Carolina, United States
| | - Nisha Charkoudian
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Jared W Skinner
- Department of Public Health and Exercise Science, Appalachian State University, Boone, North Carolina, United States
| | - Caroline J Smith
- Department of Public Health and Exercise Science, Appalachian State University, Boone, North Carolina, United States
| |
Collapse
|
3
|
Donnan KJ, Williams EL, Stanger N. The effect of exercise-induced fatigue and heat exposure on soccer-specific decision-making during high-intensity intermittent exercise. PLoS One 2022; 17:e0279109. [PMID: 36520792 PMCID: PMC9754236 DOI: 10.1371/journal.pone.0279109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Global warming and the globalisation of sport has increased the prevalence of sports competitions being held in hot environments. However, there is currently limited research investigating the impact of the heat on soccer-specific decision-making skills during exercise reflective of the physical demands of match-play. Therefore, the effects of heat exposure on physical and soccer-specific decision-making performance, biological markers (i.e., metanephrines), appraisal (i.e., challenge vs. threat) and affective states, during prolonged high-intensity intermittent exercise were investigated. Nine well-trained male soccer players completed a 92-min cycling intermittent sprint protocol (CISP), whilst simultaneously responding to a series of soccer-specific decision-making trials at various time points, in two temperature conditions: hot (32°C, 50%rh) and temperate (18°C, 50%rh). Results showed that decision-making score (p = .030) was impaired in the hot compared to the temperate condition. There was a reduced workload in the second half during the hot condition (p = .016), which coincided with a heightened threat state (p = .007) and more unpleasant feelings (p = .008) experienced in the hot, compared to temperate, condition. Furthermore, plasma normetanephrine (NMET) was higher at half-time (p = .012) and post-CISP (p ≤ .001). Also, plasma metanephrine (MET) was higher post-CISP (p = .009) in the hot compared to temperate condition, reflecting a heightened stress response. Our findings highlight the need for practitioners to consider the detrimental effects heat exposure can have on both physical and decision-making performance when looking to facilitate performance in hot conditions.
Collapse
Affiliation(s)
- Kate J. Donnan
- Department of Sport, Health and Exercise Science, University of Hull, Hull, United Kingdom
- * E-mail:
| | - Emily L. Williams
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, United Kingdom
| | - Nicholas Stanger
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, United Kingdom
| |
Collapse
|
4
|
Chmura P, Liu H, Andrzejewski M, Tessitore A, Sadowski J, Chmura J, Rokita A, Tański W, Cicirko L, Konefał M. Responses of soccer players performing repeated maximal efforts in simulated conditions of the FIFA World Cup Qatar 2022: A holistic approach. PLoS One 2022; 17:e0276314. [PMID: 36490259 PMCID: PMC9733889 DOI: 10.1371/journal.pone.0276314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/05/2022] [Indexed: 12/13/2022] Open
Abstract
This study aimed to assess the capacity for repeated maximal effort (RME) of soccer players in the thermo-natural conditions (NC) and in simulated conditions for the 2022 FIFA World Cup in Qatar (QSC). Twenty-four semi-professional soccer players participated in the study. The exercise test consisted of ten 6-second maximal efforts on a cycloergometer. A 90-second passive rest interval was used. The test was performed in a Weiss Technik WK-26 climate test chamber in two different conditions: 1) thermo-neutral conditions (NC-20.5°C; 58.7% humidity); and 2) simulated conditions for the 2022 World Cup in Qatar (QSC-28.5 ± 1.92°C; 58.7 ± 8.64% humidity). Power-related, physiological, psychomotor, blood, and electrolyte variables were recorded. Results showed that (1) players achieved higher peak power (max 1607,46 ± 192,70 [W] - 3rd rep), needed less time to peak power (min 0,95 ± 0,27 [s] - 3rd rep), and had a higher fatigue slope (max 218,67 ± 59,64 [W/sek] - 7th rep) in QSC than in NC (in each repetition of study protocol); (2) between the 1st repetition and subsequent repetitions a number of significants in among physiological, blood-related, and electrolyte variables were noted, but their direction was similar in both simulated conditions (e.g. V'O2/kg 37,59 ± 3,96 vs 37,95 ± 3,17 [ml/min/kg] - 3rd rep, LAC 13,16 ± 2,61 vs 14,18 ± 3,13 [mg/dl] - 10th rep or K 4,54 ± 0,29 vs 4,79 ± 0,36 [mmol/l] - 2nd rep when compare QCS and NC respectively); (3) an 8°C of temperature difference between the climatic conditions did not significantly affect the soccer players' physical and physiological responses in RME. The study results can be used in the design of training programs aimed to increase players' physiological adaptations by simulating soccer-specific conditions of play in terms of anaerobic capacity, in particular, repetitive maximal efforts. These findings will be useful during the upcoming 2022 World Cup in Qatar and in locations where high ambient temperatures are customary.
Collapse
Affiliation(s)
- Paweł Chmura
- Department of Team Games, Wrocław University of Health and Sport Sciences, Wrocław, Poland
| | - Hongyou Liu
- School of Physical Education & Sports Science, Guangzhou Higher Education Mega Centre, South China Normal University, Guangzhou, China
| | - Marcin Andrzejewski
- Department of Methodology of Recreation, Poznań University of Physical Education, Poznań, Poland
- * E-mail:
| | - Antonio Tessitore
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Jerzy Sadowski
- Department of Sport Science, Faculty of Physical Education and Health, Józef Piłsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Jan Chmura
- Department of Human Motor Skills, Wrocław University of Health and Sport Sciences, Wrocław, Poland
| | - Andrzej Rokita
- Department of Team Games, Wrocław University of Health and Sport Sciences, Wrocław, Poland
| | - Wojciech Tański
- 4th Military Teaching Hospital with Clinic, Independent Public Health Care Centre in Wrocław, Wrocław, Poland
| | - Leszek Cicirko
- Department of Physical Education and Sport, Faculty of Physical Education and Health in Biała Podlaska, Józef Piłsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Marek Konefał
- Department of Human Motor Skills, Wrocław University of Health and Sport Sciences, Wrocław, Poland
| |
Collapse
|
5
|
Muscella A, My G, Okba S, Zangla D, Bianco A, Marsigliante S. Effects of training on plasmatic cortisol and testosterone in football female referees. Physiol Rep 2022; 10:e15291. [PMID: 35510312 PMCID: PMC9069163 DOI: 10.14814/phy2.15291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/01/2022] [Accepted: 04/17/2022] [Indexed: 04/29/2023] Open
Abstract
There is very little about the impact that sports training has on female football referees. Therefore, we determined the effects of a 40-week physical preparation, including a full football season, on plasma testosterone and cortisol concentrations and physical performance in female football referees. Plasma cortisol and testosterone concentrations were assayed together with fitness tests at the beginning of the training period (T0, in September), after 8 weeks from T0 (T1), at the mid of the season (T2, 24 weeks after T0), and at the end of the season (T3, in June, 40 weeks after T0). Plasma cortisol increased during the first period and up to T2 (from 15.4 ± 4.7 to 28.5 ± 3.9 µg/dl; p < 0.001), and then decreased at the end of the season (T3: 16.0 ± 2.4 µg/dl). Plasma testosterone concentration in T0 was 14.2±0.37 µg/dl and increased in T1 (57.1 ± 3.7 µg/dl) and T2 (47 ± 3.7 µg/dl) and then decreased in T3 (33.5 ± 2.8 µg/dl). Resting testosterone levels in women were very low (14,2 ± 0.37 µg/dl) (Figure 3c). Testosterone increased in T1 (57.1 ± 3.7 µg/dl) and T2 (47 ± 3.7 µg/dl) whilst, at the end of the season, its concentration decreased (33.5 ± 2.8 µg/dl) (Figure 3c). Significant improvements were observed in all physical performances during the observed period (ANOVA, p < 0.05). Finally, testosterone and cortisol concentrations significantly (p < 0.0001 for both) correlated with maximal oxygen consumption. In T1, testosterone concentration was also significantly correlated with running speed test (p < 0.001). In conclusion, training induces endocrine changes in order to maintain body homeostasis in women referees. It is important that coaches and sports scientists regularly observe changes in endocrine function induced by training and matches in female referees, because they can help maximize referees' performance and limit cases of overtraining.
Collapse
Affiliation(s)
- Antonella Muscella
- Department of Biological and Environmental Science and Technologies (Di.S.Te.B.A.)University of SalentoLecceItaly
| | - Giulia My
- Department of Biological and Environmental Science and Technologies (Di.S.Te.B.A.)University of SalentoLecceItaly
| | - Selmi Okba
- Higher Institute of Sports and Physical Education of KefUniversity of JendoubaJendoubaTunisia
| | - Daniele Zangla
- Sport and Exercise Sciences Research UnitDepartment of Psychology, Educational Science and Human MovementUniversity of PalermoPalermoItaly
| | - Antonino Bianco
- Sport and Exercise Sciences Research UnitDepartment of Psychology, Educational Science and Human MovementUniversity of PalermoPalermoItaly
| | - Santo Marsigliante
- Department of Biological and Environmental Science and Technologies (Di.S.Te.B.A.)University of SalentoLecceItaly
| |
Collapse
|
6
|
Field AC, Harper LD, William Frederick Aldous J, Page RM. A commentary on soccer match-play simulations for applied research and practice. SCI MED FOOTBALL 2022; 7:93-105. [PMID: 35465842 DOI: 10.1080/24733938.2022.2070268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Soccer is a fast-growing area of research, demonstrated by a 10-fold increase in the number of PubMed articles derived from the search term 'soccer' between 2001 and 2021. The scope of contemporary soccer-related articles ranges from match-play observations to laboratory evaluations of performance. The activity profile of soccer match-play is variable and techniques to collect data within matches are limited. Soccer-specific simulations have been developed to simulate the evolving demands of match-play. The evolutionary designs of novel simulations provide a reproducible exercise stimulus for varying researcher and practitioner objectives. The applied researcher can utilise simulations to investigate the efficacy of nutritional interventions and environmental stress on performance, while assessing the physiological and biomechanical responses to representations of match-play. Practitioners can adopt simulations for rehabilitation to progressively facilitate return-to-play processes, while implementing extra top-up conditioning sessions for unused and partial-match players. However, there are complexities involved with the selection of varying simulations which are dependent on the research question or practical application. There also remains a paucity of published information to support researchers and practitioners in selecting from differing simulation models. To assist with researcher and practitioner interpretations, we present a commentary of the current simulations to inform decision-making processes for research and training purposes and enhance the application of future research. An objective scoring system was adopted for rating the research and practical applications of each simulation design. Overall scores of 22, 16 and 18 out of 36 were revealed for free-running (n=7), non-motorised- (n=4) and motorised-treadmill-based simulations (n=4), respectively.
Collapse
Affiliation(s)
- Adam C Field
- School of Human and Health Sciences, University of Huddersfield, Huddersfield, United Kingdom.,Nuffield Health, The Manchester Institute of Health and Performance, Manchester
| | - Liam D Harper
- School of Human and Health Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Jeffrey William Frederick Aldous
- Department of Sport Science and Physical Activity, Institute of Sport and Physical Activity Research, University of Bedfordshire, Bedford, United Kingdom
| | - Richard M Page
- Department of Sport & Physical Activity, Edge Hill University, Ormskirk, United Kingdom
| |
Collapse
|
7
|
A High-Intensity Warm-Up Increases Thermal Strain But Does Not Affect Repeated Sprint Performance in Athletes With a Cervical Spinal Cord Injury. Int J Sports Physiol Perform 2022; 17:440-449. [PMID: 34991077 DOI: 10.1123/ijspp.2021-0073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/01/2021] [Accepted: 07/15/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE To compare the effects of typical competition versus high-intensity intermittent warm-up (WU) on thermoregulatory responses and repeated sprint performance during wheelchair rugby game play. METHODS An intermittent sprint protocol (ISP) simulating the demands of wheelchair rugby was performed by male wheelchair rugby players (7 with cervical spinal cord injury [SCI] and 8 without SCI) following 2 WU protocols. These included a typical competition WU (control) and a WU consisting of high-intensity efforts (INT). Core temperature (Tcore), thermal sensation, and thermal comfort were recorded. Wheelchair performance variables associated to power, speed, and fatigue were also calculated. RESULTS During the WU, Tcore was similar between conditions for both groups. During the ISP, a higher Tcore was found for SCI compared to NON-SCI (38.1 [0.3] vs 37.7 [0.3] °C: P = .036, d = 0.75), and the SCI group experienced a higher peak Tcore for INT compared with control (39.0 [0.4] vs 38.6 [0.6] °C; P = .004). Peak Tcore occurred later in the ISP for players with SCI (96 [5.8] vs 48 [2.7] min; P < .001). All players reported a higher thermal sensation and thermal comfort following INT (P < .001), with no differences between conditions throughout the ISP. No significant differences were found in wheelchair performance variables during the ISP between conditions (P ≥ .143). CONCLUSIONS The high-INT WU increased thermal strain in the SCI group during the ISP, potentially due to increased metabolic heat production and impaired thermoregulation, while not impacting on repeated sprint performance. It may be advisable to limit high-INT bouts during a WU in players with SCI to mitigate issues related to hyperthermia in subsequent performance.
Collapse
|
8
|
Yamaguchi K, Imai T, Yatsutani H, Goto K. A Combined Hot and Hypoxic Environment during Maximal Cycling Sprints Reduced Muscle Oxygen Saturation: A Pilot Study. J Sports Sci Med 2021; 20:684-689. [PMID: 35321130 PMCID: PMC8488822 DOI: 10.52082/jssm.2021.684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/05/2021] [Indexed: 06/14/2023]
Abstract
The present study investigated the effects of a combined hot and hypoxic environment on muscle oxygenation during repeated 15-s maximal cycling sprints. In a single-blind, cross-over study, nine trained sprinters performed three 15-s maximal cycling sprints interspersed with 7-min passive recovery in normoxic (NOR; 23℃, 50%, FiO2 20.9%), normobaric hypoxic (HYP; 23℃, FiO2 14.5%), and hot normobaric hypoxic (HH; 35℃, FiO2 14.5%) environments. Relative humidity was set to 50% in all trials. The vastus lateralis muscle oxygenation was evaluated during exercise using near-infrared spectroscopy. The oxygen uptake (VO2) and arterial oxygen saturation (SpO2) were also monitored. There was no significant difference in peak or mean power output among the three conditions. The reduction in tissue saturation index was significantly greater in the HH (-17.0 ± 2.7%) than in the HYP (-10.4 ± 2.8%) condition during the second sprint (p < 0.05). The average VO2 and SpO2 were significantly lower in the HYP (VO2 = 980 ± 52 mL/min, SpO2 = 82.9 ± 0.8%) and HH (VO2 = 965 ± 42 mL/min, SpO2 = 83.2 ± 1.2%) than in the NOR (VO2 = 1149 ± 40 mL/min, SpO2 = 90.6 ± 1.4%; p < 0.05) condition. In conclusion, muscle oxygen saturation was reduced to a greater extent in the HH than in the HYP condition during the second bout of three 15-s maximal cycling sprints, despite the equivalent hypoxic stress between HH and HYP.
Collapse
Affiliation(s)
- Keiichi Yamaguchi
- Graduate School of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Tomohiro Imai
- Graduate School of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Haruka Yatsutani
- Graduate School of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Kazushige Goto
- Graduate School of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| |
Collapse
|
9
|
Konefał M, Chmura P, Zacharko M, Baranowski J, Andrzejewski M, Błażejczyk K, Chmura J. The influence of thermal stress on the physical and technical activities of soccer players: lessons from the 2018 FIFA World Cup in Russia. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:1291-1298. [PMID: 32676736 PMCID: PMC8346430 DOI: 10.1007/s00484-020-01964-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 06/04/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
The present study attempts to assess changes in soccer players' physical and technical activity profiles due to thermal stress, measured with the Universal Thermal Climate Index (UTCI), in training centres and during matches of the 2018 FIFA World Cup in Russia. The study also verifies the theoretical models of soccer players' physiological parameters. The study sample consisted of 945 observations of 340 players of national teams taking part in the World Cup in Russia. The measured variables included physical activities: total distance covered, distances covered with an intensity of 20-25 km/h, number of sprints; technical activities: number of shots, number of passes, pass accuracy and physiological indicators: evaporative water loss and heart rate. In addition, the final ranking places of each national team were also used in the study. The UTCI was calculated based on meteorological data recorded at training centres and during matches. The UTCI records were then classified into two ranges: NTS-no thermal stress (UTCI 9-26 °C) and TS-thermal stress (UTCI > 26 °C). Climatic conditions at soccer training centres assessed as involving "no thermal stress" are found to be more beneficial for increasing the total distance covered and the number of sprints performed by players during a match. The theoretical models for determining soccer players' physiological parameters used in the study reduce the players' heart rate effort and evaporative water loss, which is in line with findings in studies by other authors. The climatic conditions at soccer training centres and during tournament matches should be taken into account in planning preparations for future World Cup tournaments, especially those in hotter countries.
Collapse
Affiliation(s)
- Marek Konefał
- Department of Biological and Motor Sport Bases, University School of Physical Education, I.J. Paderewskiego 35, Wrocław, Poland
| | - Paweł Chmura
- Department of Team Games, University School of Physical Education, I.J. Paderewskiego 35, Wrocław, Poland.
| | - Michał Zacharko
- Department of Biological and Motor Sport Bases, University School of Physical Education, I.J. Paderewskiego 35, Wrocław, Poland
| | - Jarosław Baranowski
- Institute of Geography and Spatial Organization, Polish Academy of Sciences, Twarda 51/55, Warszawa, Poland
| | - Marcin Andrzejewski
- Department Methodology of Recreation, Poznan University of Physical Education, Królowej Jadwigi 27/39, Poznań, Poland
| | - Krzysztof Błażejczyk
- Institute of Geography and Spatial Organization, Polish Academy of Sciences, Twarda 51/55, Warszawa, Poland
| | - Jan Chmura
- Department of Biological and Motor Sport Bases, University School of Physical Education, I.J. Paderewskiego 35, Wrocław, Poland
| |
Collapse
|
10
|
Yamaguchi K, Kasai N, Hayashi N, Yatsutani H, Girard O, Goto K. Acute performance and physiological responses to repeated-sprint exercise in a combined hot and hypoxic environment. Physiol Rep 2021; 8:e14466. [PMID: 32592261 PMCID: PMC7319945 DOI: 10.14814/phy2.14466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We investigated performance, energy metabolism, acid-base balance, and endocrine responses to repeated-sprint exercise in hot and/or hypoxic environment. In a single-blind, cross-over study, 10 male highly trained athletes completed a repeated cycle sprint exercise (3 sets of 3 × 10-s maximal sprints with 40-s passive recovery) under four conditions (control [CON; 20℃, 50% rH, FiO2 : 20.9%; sea level], hypoxia [HYP; 20℃, 50% rH, FiO2 : 14.5%; a simulated altitude of 3,000 m], hot [HOT; 35℃, 50% rH, FiO2 : 20.9%; sea level], and hot + hypoxia [HH; 35℃, 50% rH, FiO2 : 14.5%; a simulated altitude of 3,000 m]). Changes in power output, muscle and skin temperatures, and respiratory oxygen uptake were measured. Peak (CON: 912 ± 26 W, 95% confidence interval [CI]: 862-962 W, HYP: 915 ± 28 W [CI: 860-970 W], HOT: 937 ± 26 W [CI: 887-987 W], HH: 937 ± 26 W [CI: 886-987 W]) and mean (CON: 808 ± 22 W [CI: 765-851 W], HYP: 810 ± 23 W [CI: 765-855 W], HOT: 825 ± 22 W [CI: 781-868 W], HH: 824 ± 25 W [CI: 776-873 W]) power outputs were significantly greater when exercising in heat conditions (HOT and HH) during the first sprint (p < .05). Heat exposure (HOT and HH) elevated muscle and skin temperatures compared to other conditions (p < .05). Oxygen uptake and arterial oxygen saturation were significantly lower in hypoxic conditions (HYP and HH) versus the other conditions (p < .05). In summary, additional heat stress when sprinting repeatedly in hypoxia improved performance (early during exercise), while maintaining low arterial oxygen saturation.
Collapse
Affiliation(s)
- Keiichi Yamaguchi
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Nobukazu Kasai
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan.,Department of Sports Science, Japan Institute of Sports Sciences, Kitaku, Tokyo, Japan
| | - Nanako Hayashi
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Haruka Yatsutani
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Olivier Girard
- School of Human Science (Exercise and Sport Science), The University of Western Australia, Crawley, Australia
| | - Kazushige Goto
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
11
|
Muscella A, Stefàno E, Marsigliante S. The effects of training on hormonal concentrations and physical performance of football referees. Physiol Rep 2021; 9:e14740. [PMID: 33932110 PMCID: PMC8087984 DOI: 10.14814/phy2.14740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 11/27/2022] Open
Abstract
As no study has explored the impact of physical stress on hypothalamic‐pituitary‐gonadal axis hormones over a long period, the purpose of this study was to determine the effects of the football season period on plasma cortisol and testosterone concentrations and referee's physical performances. Physical tests and plasma cortisol and testosterone concentrations were assayed before the beginning of the training period, just after the training period, at the middle of the season, and at the end of the season, in 29 male football referees and 30 healthy control subjects. Results showed significant differences in hormone concentrations at the four‐time points evaluated. Plasma cortisol increased during the first training period from 15.8 ± 3.8 to 21.7 ± 5.1 µg/dl (p < 0.001), then decreased during the season and at the end of it was 18.7 ± 2.4 µg/dl. Before the beginning of the training period, plasma testosterone concentration was 386.1 ± 58.8 ng/dl; after the training period, it increased to 572.2 ± 88.1 ng/dl (p < 0.001) and then returned to baseline levels at the end of the season. Between the start of the training period and the end of the season, significant differences were observed in physical performances of referees. Plasma cortisol and testosterone levels significantly (p < 0.0001 for both) correlated with Yo‐Yo intermittent recovery test level 1 (YYIRT1) and maximal oxygen consumption (VO2max) at the end of the training period. In the middle season, plasma testosterone concentration only significantly (p < 0.0001) correlated with YYIRT1 and VO2max. These data underline the importance of set up training protocols that present the prospective to favor positive physiological adaptations.
Collapse
Affiliation(s)
- Antonella Muscella
- Department of Biological and Environmental Science and Technologies (Di.S.Te.B.A, University of Salento, Lecce, Italy
| | - Erika Stefàno
- Department of Biological and Environmental Science and Technologies (Di.S.Te.B.A, University of Salento, Lecce, Italy
| | - Santo Marsigliante
- Department of Biological and Environmental Science and Technologies (Di.S.Te.B.A, University of Salento, Lecce, Italy
| |
Collapse
|
12
|
Donnan K, Williams EL, Stanger N. The Effects of Heat Exposure During Intermittent Exercise on Physical and Cognitive Performance Among Team Sport Athletes. Percept Mot Skills 2020; 128:439-466. [PMID: 33076764 PMCID: PMC7859587 DOI: 10.1177/0031512520966522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigated the effects of heat exposure on physical and
cognitive performance during an intermittent exercise protocol so as
to reflect the incremental fatigue experienced during team sports.
Twelve well-trained male team sport players completed an 80-minute
cycling intermittent sprint protocol (CISP), alongside computerized
vigilance and congruent (i.e., simple) and incongruent (i.e., complex)
Stroop tasks of cognitive functioning, in two counterbalanced
temperature conditions; hot (32°C[50%rh]) and control (18°C[50%rh]).
Incongruent Stroop accuracy declined over time
(p = .002), specifically in the second
(Mdiff = –3.75,
SD = 0.90%, p = .009) and
third (Mdiff = –4.58,
SD = 1.22%, p = .019) quarters
compared to the first quarter of the CISP; but there were no
differences between temperature conditions. Congruent Stroop reaction
time (RT) was quicker in the second quarter of exercise in the hot
condition (M = 561.99,
SD = 112.93 ms) compared to the control condition
(M=617.80, SD = 139.71 ms;
p = .022), but no differences were found for
congruent Stroop accuracy nor vigilance measures. Additionally, peak
power output was lower during the third quarter of the CISP in the hot
condition (M = 861.31,
SD = 105.20 W) compared to the control condition
(M = 900.68, SD = 114.84 W;
p < .001). Plasma normetanephrine and
metanephrine concentrations increased from pre- to post-CISP
(Mdiff = +616.90,
SD = 306.99, p < .001; and
Mdiff = +151.23,
SD = 130.32, p = .002,
respectively), with a marginal interaction suggesting a higher
normetanephrine increase from pre- to post-CISP in the hot versus the
control condition (p = .070). Our findings suggest
that accuracy for more complex decisions suffered during prolonged
high-intensity intermittent exercise, perhaps due to exercise-induced
catecholamine increases. Athletes may have also reduced physical
effort under increased heat exposure, indicating how cognitive
performance may be sustained in physically demanding environments.
Collapse
Affiliation(s)
- Kate Donnan
- Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
| | - Emily L Williams
- Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
| | - Nicholas Stanger
- Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
| |
Collapse
|
13
|
Hayashi N, Yatsutani H, Mori H, Ito H, Badenhorst CE, Goto K. No effect of supplemented heat stress during an acute endurance exercise session in hypoxia on hepcidin regulation. Eur J Appl Physiol 2020; 120:1331-1340. [PMID: 32303828 DOI: 10.1007/s00421-020-04365-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/04/2020] [Indexed: 12/21/2022]
Abstract
Hepcidin is a novel factor for iron deficiency in athletes, which is suggested to be regulated by interleukin-6 (IL-6) or erythropoietin (EPO). PURPOSE The purpose of the present study was to compare endurance exercise-induced hepcidin elevation among "normoxia", "hypoxia" and "combined heat and hypoxia". METHODS Twelve males (21.5 ± 0.3 years, 168.1 ± 1.2 cm, 63.6 ± 2.0 kg) participated in the present study. They performed 60 min of cycling at 60% of [Formula: see text] in either "heat and hypoxia" (HHYP; FiO2 14.5%, 32 °C), "hypoxia" (HYP; FiO2 14.5%, 23 °C) or "normoxia" (NOR; FiO2 20.9%, 23 °C). After completing the exercise, participants remained in the prescribed conditions for 3 h post-exercise. Blood samples were collected before, immediately and 3 h after exercise. RESULTS Plasma IL-6 level significantly increased immediately after exercise (P < 0.05), with no significant difference among the trials. A significant elevation in serum EPO was observed 3 h after exercise in hypoxic trials (HHYP and HYP, P < 0.05), with no significant difference between HHYP and HYP. Serum hepcidin level increased 3 h after exercise in all trials (NOR, before 18.3 ± 3.9 and post180 31.2 ± 6.3 ng/mL; HYP, before 13.5 ± 2.5 and post180 23.3 ± 3.6 ng/mL, HHYP; before 15.8 ± 3.3 and post180 31.4 ± 5.3 ng/mL, P < 0.05). However, there was no significant difference among the trials during post-exercise. CONCLUSION Endurance exercise in "combined heat and hypoxia" did not exacerbate exercise-induced hepcidin elevation compared with the same exercise in "hypoxia" or "normoxia".
Collapse
Affiliation(s)
- Nanako Hayashi
- Graduate School of Sport and Health Science, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Haruka Yatsutani
- Graduate School of Sport and Health Science, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Hisashi Mori
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, Japan
| | - Hiroto Ito
- Graduate School of Sport and Health Science, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Claire E Badenhorst
- School of Sport, Exercise and Nutrition, Massey University, Auckland, New Zealand
| | - Kazushige Goto
- Graduate School of Sport and Health Science, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
14
|
Gibbons TD, Tymko MM, Thomas KN, Wilson LC, Stembridge M, Caldwell HG, Howe CA, Hoiland RL, Akerman AP, Dawkins TG, Patrician A, Coombs GB, Gasho C, Stacey BS, Ainslie PN, Cotter JD. Global REACH 2018: The influence of acute and chronic hypoxia on cerebral haemodynamics and related functional outcomes during cold and heat stress. J Physiol 2020; 598:265-284. [PMID: 31696936 DOI: 10.1113/jp278917] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/28/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Thermal and hypoxic stress commonly coexist in environmental, occupational and clinical settings, yet how the brain tolerates these multi-stressor environments is unknown Core cooling by 1.0°C reduced cerebral blood flow (CBF) by 20-30% and cerebral oxygen delivery (CDO2 ) by 12-19% at sea level and high altitude, whereas core heating by 1.5°C did not reliably reduce CBF or CDO2 Oxygen content in arterial blood was fully restored with acclimatisation to 4330 m, but concurrent cold stress reduced CBF and CDO2 Gross indices of cognition were not impaired by any combination of thermal and hypoxic stress despite large reductions in CDO2 Chronic hypoxia renders the brain susceptible to large reductions in oxygen delivery with concurrent cold stress, which might make monitoring core temperature more important in this context ABSTRACT: Real-world settings are composed of multiple environmental stressors, yet the majority of research in environmental physiology investigates these stressors in isolation. The brain is central in both behavioural and physiological responses to threatening stimuli and, given its tight metabolic and haemodynamic requirements, is particularly susceptible to environmental stress. We measured cerebral blood flow (CBF, duplex ultrasound), cerebral oxygen delivery (CDO2 ), oesophageal temperature, and arterial blood gases during exposure to three commonly experienced environmental stressors - heat, cold and hypoxia - in isolation, and in combination. Twelve healthy male subjects (27 ± 11 years) underwent core cooling by 1.0°C and core heating by 1.5°C in randomised order at sea level; acute hypoxia ( P ET , O 2 = 50 mm Hg) was imposed at baseline and at each thermal extreme. Core cooling and heating protocols were repeated after 16 ± 4 days residing at 4330 m to investigate any interactions with high altitude acclimatisation. Cold stress decreased CBF by 20-30% and CDO2 by 12-19% (both P < 0.01) irrespective of altitude, whereas heating did not reliably change either CBF or CDO2 (both P > 0.08). The increases in CBF with acute hypoxia during thermal stress were appropriate to maintain CDO2 at normothermic, normoxic values. Reaction time was faster and slower by 6-9% with heating and cooling, respectively (both P < 0.01), but central (brain) processes were not impaired by any combination of environmental stressors. These findings highlight the powerful influence of core cooling in reducing CDO2 . Despite these large reductions in CDO2 with cold stress, gross indices of cognition remained stable.
Collapse
Affiliation(s)
- T D Gibbons
- School of Physical Education, Sport & Exercise Science, University of Otago, 55/47 Union St W, Dunedin, 9016, New Zealand
| | - M M Tymko
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan Campus, School of Health and Exercise Sciences, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - K N Thomas
- Department of Surgical Sciences, University of Otago, 201 Great King St, Dunedin, 9016, New Zealand
| | - L C Wilson
- Department of Medicine, University of Otago, 201 Great King St, Dunedin, 9016, New Zealand
| | - M Stembridge
- Cardiff Centre for Exercise and Health, Cardiff Metropolitan University, Cyncoed Road, Cardiff, CF23 6XD, UK
| | - H G Caldwell
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan Campus, School of Health and Exercise Sciences, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - C A Howe
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan Campus, School of Health and Exercise Sciences, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - R L Hoiland
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan Campus, School of Health and Exercise Sciences, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - A P Akerman
- Faculty of Health Sciences, University of Ottawa, 125 University St, Ottawa, Ontario, Canada, K1N 6N5
| | - T G Dawkins
- Cardiff Centre for Exercise and Health, Cardiff Metropolitan University, Cyncoed Road, Cardiff, CF23 6XD, UK
| | - A Patrician
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan Campus, School of Health and Exercise Sciences, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - G B Coombs
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan Campus, School of Health and Exercise Sciences, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - C Gasho
- Division of Pulmonary, Critical Care, Hyperbaric and Sleep Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - B S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, UK
| | - P N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan Campus, School of Health and Exercise Sciences, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - J D Cotter
- School of Physical Education, Sport & Exercise Science, University of Otago, 55/47 Union St W, Dunedin, 9016, New Zealand
| |
Collapse
|
15
|
Taylor L, Stevens CJ, Thornton HR, Poulos N, Chrismas BCR. Limiting the Rise in Core Temperature During a Rugby Sevens Warm-Up With an Ice Vest. Int J Sports Physiol Perform 2019; 14:1212-1218. [PMID: 30840530 DOI: 10.1123/ijspp.2018-0821] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/17/2019] [Accepted: 02/05/2019] [Indexed: 10/27/2023]
Abstract
PURPOSE To determine how a cooling vest worn during a warm-up could influence selected performance (countermovement jump [CMJ]), physical (global positioning system [GPS] metrics), and psychophysiological (body temperature and perceptual) variables. METHODS In a randomized, crossover design, 12 elite male World Rugby Sevens Series athletes completed an outdoor (wet bulb globe temperature 23-27°C) match-specific externally valid 30-min warm-up wearing a phase-change cooling vest (VEST) and without (CONTROL), on separate occasions 7 d apart. CMJ was assessed before and after the warm-up, with GPS indices and heart rate monitored during the warm-ups, while core temperature (Tc; ingestible telemetric pill; n = 6) was recorded throughout the experimental period. Measures of thermal sensation (TS) and thermal comfort (TC) was obtained pre-warm-up and post-warm-up, with rating of perceived exertion (RPE) taken post-warm-ups. RESULTS Athletes in VEST had a lower ΔTc (mean [SD]: VEST = 1.3°C [0.1°C]; CONTROL = 2.0°C [0.2°C]) from pre-warm-up to post-warm-up (effect size; ±90% confidence limit: -1.54; ±0.62) and Tc peak (mean [SD]: VEST = 37.8°C [0.3°C]; CONTROL = 38.5°C [0.3°C]) at the end of the warm-up (-1.59; ±0.64) compared with CONTROL. Athletes in VEST demonstrated a decrease in ΔTS (-1.59; ±0.72) and ΔTC (-1.63; ±0.73) pre-warm-up to post-warm-up, with a lower RPE post-warm-up (-1.01; ±0.46) than CONTROL. Changes in CMJ and GPS indices were trivial between conditions (effect size < 0.2). CONCLUSIONS Wearing the vest prior to and during a warm-up can elicit favorable alterations in physiological (Tc) and perceptual (TS, TC, and RPE) warm-up responses, without compromising the utilized warm-up characteristics or physical-performance measures.
Collapse
|
16
|
Muscella A, Vetrugno C, Spedicato M, Stefàno E, Marsigliante S. The effects of training on hormonal concentrations in young soccer players. J Cell Physiol 2019; 234:20685-20693. [PMID: 30993700 DOI: 10.1002/jcp.28673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/26/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022]
Abstract
To test the hypothesis that football training would be accompanied by physiological adaptations and hormonal changes, we analyzed the effects of a whole football season on physical fitness and hormonal concentrations in youth football players. Male football players (n = 29, age 16.51 ± 0.7 years) in a regional professional league and male healthy control subjects (n = 30, age 17.1 ± 1 years) participated to the study. Blood cortisol, testosterone, and growth hormone (hGH) concentrations were assayed before the beginning of the training period (T0), just after the training period (T1), at the middle of the season (T2), and at the end of the season (T3). In each period physical tests and anthropometric measurements were also performed. Results showed significant differences in basal values of cortisol, testosterone, and growth hormone (hGH) in the four time points evaluated (P < 0.01). In addition, the concentrations of hGH were higher in the soccer players group than in control subjects (P < 0.001). Between the start of the training period and the end of the football season significant differences were observed in the anthropometric characteristics and in the physical form of the football players. Furthermore, the hormonal status was significantly correlated with the indicators of the lower limb power (squat-jump [SqJ], and counter-movement-jump [CMJ]) and those of aerobic performance (Yo-Yo intermittent recovery test level 1 (YYIRT1) and maximal oxygen consumption (VO2max )).These data underscore the importance of establishing training protocols that present the potential to promote positive adaptations without, at the same time, provoking overtraining of young players.
Collapse
Affiliation(s)
- Antonella Muscella
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, Lecce, Italy
| | - Carla Vetrugno
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, Lecce, Italy
| | - Mirko Spedicato
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, Lecce, Italy
| | - Erika Stefàno
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, Lecce, Italy
| | - Santo Marsigliante
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, Lecce, Italy
| |
Collapse
|
17
|
Abstract
CONTEXT Precooling and midevent cooling of the torso using cooling vests can improve exercise performance in the heat with or without physiological changes; however, the effects of such cooling during intermittent exercise in the heat are unknown. OBJECTIVE To investigate the effects of torso cooling during intermittent exercise in the heat (35°C, 50% relative humdity) on sprint performance and the physiological and perceptual responses to the exercise. DESIGN Crossover study. SETTING Walk-in environmental chamber. PATIENTS OR OTHER PARTICIPANTS Ten non-heat-acclimated, male soccer players (age = 25 ± 2 years, height = 1.77 ± 0.06 m, mass = 72.9 ± 7.6 kg). INTERVENTION(S) Two 90-minute bouts of soccer-specific intermittent running in the heat: 1 trial with a cooling vest worn during the exercise and 1 trial without a cooling vest. Each trial comprised two 45-minute periods separated by approximately 15 minutes of seated rest in cool conditions (approximately 23°C, 50% relative humdity). MAIN OUTCOME MEASURE(S) Peak sprint speed, rectal temperature (Tr), mean-weighted skin temperature (Tsk), heart rate (HR), rating of perceived exertion (RPE), and thermal sensation (TS) were measured every 5 minutes. RESULTS Peak sprint performance was largely unaffected by the cooling vest. The Tr, Tsk, HR, RPE, and TS were unaffected in the cooling-vest trial during the first 45 minutes, but Tr rose at a slower rate in the cooling-vest trial (0.026°C.min-1 ± 0.008°C.min-1) than in the no-vest trial (0.032°C.min-1 ± 0.009°C.min-1). During the second 45-minute period, Tr, Tr rate of rise, Tsk, RPE, and TS were lower in the cooling-vest trial (Hedges g range, 0.55-0.84), but mean HR was unaffected. CONCLUSIONS Wearing a cooling vest during soccer-specific intermittent running in the heat reduced physiological and perceptual strain but did not increase peak sprint speed.
Collapse
Affiliation(s)
- Kirstie Parris
- Department of Life Sciences, University of Roehampton, Whitelands College, London, United Kingdom
| | - Christopher J Tyler
- Department of Life Sciences, University of Roehampton, Whitelands College, London, United Kingdom
| |
Collapse
|
18
|
Gibson OR, Taylor L, Watt PW, Maxwell NS. Cross-Adaptation: Heat and Cold Adaptation to Improve Physiological and Cellular Responses to Hypoxia. Sports Med 2018; 47:1751-1768. [PMID: 28389828 PMCID: PMC5554481 DOI: 10.1007/s40279-017-0717-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To prepare for extremes of heat, cold or low partial pressures of oxygen (O2), humans can undertake a period of acclimation or acclimatization to induce environment-specific adaptations, e.g. heat acclimation (HA), cold acclimation (CA), or altitude training. While these strategies are effective, they are not always feasible due to logistical impracticalities. Cross-adaptation is a term used to describe the phenomenon whereby alternative environmental interventions, e.g. HA or CA, may be a beneficial alternative to altitude interventions, providing physiological stress and inducing adaptations observable at altitude. HA can attenuate physiological strain at rest and during moderate-intensity exercise at altitude via adaptations allied to improved O2 delivery to metabolically active tissue, likely following increases in plasma volume and reductions in body temperature. CA appears to improve physiological responses to altitude by attenuating the autonomic response to altitude. While no cross-acclimation-derived exercise performance/capacity data have been measured following CA, post-HA improvements in performance underpinned by aerobic metabolism, and therefore dependent on O2 delivery at altitude, are likely. At a cellular level, heat shock protein responses to altitude are attenuated by prior HA, suggesting that an attenuation of the cellular stress response and therefore a reduced disruption to homeostasis at altitude has occurred. This process is known as cross-tolerance. The effects of CA on markers of cross-tolerance is an area requiring further investigation. Because much of the evidence relating to cross-adaptation to altitude has examined the benefits at moderate to high altitudes, future research examining responses at lower altitudes should be conducted, given that these environments are more frequently visited by athletes and workers. Mechanistic work to identify the specific physiological and cellular pathways responsible for cross-adaptation between heat and altitude, and between cold and altitude, is warranted, as is exploration of benefits across different populations and physical activity profiles.
Collapse
Affiliation(s)
- Oliver R Gibson
- Centre for Human Performance, Exercise and Rehabilitation (CHPER), Brunel University London, Uxbridge, UK. .,Welkin Human Performance Laboratories, Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Denton Road, Eastbourne, UK.
| | - Lee Taylor
- Athlete Health and Performance Research Centre, ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Peter W Watt
- Welkin Human Performance Laboratories, Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Denton Road, Eastbourne, UK
| | - Neil S Maxwell
- Welkin Human Performance Laboratories, Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Denton Road, Eastbourne, UK
| |
Collapse
|
19
|
Girard O, Brocherie F, Millet GP. Effects of Altitude/Hypoxia on Single- and Multiple-Sprint Performance: A Comprehensive Review. Sports Med 2018; 47:1931-1949. [PMID: 28451905 DOI: 10.1007/s40279-017-0733-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Many sport competitions, typically involving the completion of single- (e.g. track-and-field or track cycling events) and multiple-sprint exercises (e.g. team and racquet sports, cycling races), are staged at terrestrial altitudes ranging from 1000 to 2500 m. Our aim was to comprehensively review the current knowledge on the responses to either acute or chronic altitude exposure relevant to single and multiple sprints. Performance of a single sprint is generally not negatively affected by acute exposure to simulated altitude (i.e. normobaric hypoxia) because an enhanced anaerobic energy release compensates for the reduced aerobic adenosine triphosphate production. Conversely, the reduction in air density in terrestrial altitude (i.e. hypobaric hypoxia) leads to an improved sprinting performance when aerodynamic drag is a limiting factor. With the repetition of maximal efforts, however, repeated-sprint ability is more altered (i.e. with earlier and larger performance decrements) at high altitudes (>3000-3600 m or inspired fraction of oxygen <14.4-13.3%) compared with either normoxia or low-to-moderate altitudes (<3000 m or inspired fraction of oxygen >14.4%). Traditionally, altitude training camps involve chronic exposure to low-to-moderate terrestrial altitudes (<3000 m or inspired fraction of oxygen >14.4%) for inducing haematological adaptations. However, beneficial effects on sprint performance after such altitude interventions are still debated. Recently, innovative 'live low-train high' methods, in isolation or in combination with hypoxic residence, have emerged with the belief that up-regulated non-haematological peripheral adaptations may further improve performance of multiple sprints compared with similar normoxic interventions.
Collapse
Affiliation(s)
- Olivier Girard
- Aspetar Orthopaedic and Sports Medicine Hospital, Athlete Health and Performance Research Centre, Doha, Qatar.
- ISSUL, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), Research Department, French Institute of Sport (INSEP), Paris, France
- ISSUL, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Grégoire P Millet
- ISSUL, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
20
|
Taylor L, Thornton HR, Lumley N, Stevens CJ. Alterations in core temperature during World Rugby Sevens Series tournaments in temperate and warm environments †. Eur J Sport Sci 2018; 19:432-441. [PMID: 30305001 DOI: 10.1080/17461391.2018.1527949] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PURPOSE To characterize player core temperature (Tc) across two separate World Rugby Sevens Series (WRSS) tournaments in temperate and warm environments. METHODS Tc was collected in seventeen playing members of one men's team competing at the Singapore (n = 12) and London (n = 11) WRSS tournaments. Exertional heat illness (EHI) symptoms, cooling strategy use, playing minutes and wet blub globe temperature (WBGT) were also collected. Linear mixed models and magnitude-based inferences assessed differences in Tc between all periods within-and between tournaments and were also used to assess the effect of WBGT and playing minutes on Tc. RESULTS Several players experienced Tc in excess of 38°C during warm-ups and 39°C during games. The highest mean Tc values were observed in the final game on all days and in Singapore Day Two, there were substantial game-on-game increases in mean Tc. These Tc responses were associated with playing minutes (effect size; ±90% CL = 0.38; ±0.20), although the effect of WBGT was trivial and unclear. Further, there were no differences in Tc between the two tournaments in the different environments. Despite high individual peak Tc values (Singapore 39.9°C; London 39.6°C); no signs/symptoms of EHI were reported, voluntary post-game cooling usage was minimal, and pre- and mid-cooling strategies were not implemented. CONCLUSIONS During WRSS matches, peak Tc values approached thresholds associated with EHI (>40°C) and exceeded those demonstrated to reduce repeated sprint performance (>39°C). Practitioners may consider the use of compatible cooling and heat acclimation strategies to minimize Tc increase and maximize player preparedness and recovery.
Collapse
Affiliation(s)
- Lee Taylor
- a Athlete Health and Performance Research Centre , ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital , Doha , Qatar.,b School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK
| | - Heidi R Thornton
- c Newcastle Knights Rugby League Club , Newcastle , Australia.,d La Trobe Sport and Exercise Medicine Research Centre , La Trobe University , Melbourne , Australia
| | | | - Christopher J Stevens
- f School of Health and Human Sciences , Southern Cross University , Coffs Harbour , Australia
| |
Collapse
|
21
|
Aldous JWF, Chrismas BCR, Akubat I, Stringer CA, Abt G, Taylor L. Mixed-methods pre-match cooling improves simulated soccer performance in the heat. Eur J Sport Sci 2018; 19:156-165. [PMID: 30041568 DOI: 10.1080/17461391.2018.1498542] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This investigation examined the effects of three pre-match and half-time cooling manoeuvres on physical performance and associated physiological and perceptual responses in eight University soccer players during a non-motorised treadmill based individualised soccer-specific simulation [intermittent soccer performance test (iSPT)] at 30°C. Four randomised experimental trials were completed; following 30-min (pre-match) and 15-min (half-time) cooling manoeuvres via (1) ice slurry ingestion (SLURRY); (2) ice-packs placed on the quadriceps and hamstrings (PACKS); (3) mixed-methods (MM; PACKS and SLURRY concurrently); or no-cooling (CON). In iSPT first half, a moderate increase in total (Mean ± Standard Deviation: 108 ± 57 m, qualitative inference: most likely, Cohen's d: 0.87, 90%CL: ±0.31), high-speed (56 ± 46 m, very likely, 0.68 ± 0.38) and variable run (15 ± 5 m, very likely, 0.81 ± 0.47) distance covered was reported in MM compared with CON. Additionally, pre-match reductions in thermal sensation (-1.0 ± 0.5, most likely, -0.91 ± 0.36), rectal (-0.6 ± 0.1°C, very likely, -0.86 ± 0.35) and skin temperature (-1.1 ± 0.3°C, very likely, -0.88 ± 0.42) continued throughout iSPT first half. Physical performance during iSPT first half was unaltered in SLURRY and PACKS compared to CON. Rectal temperature was moderately increased in SLURRY at 45-min (0.2 ± 0.1°C, very likely, 0.67 ± 0.36). Condition did not influence any measure in iSPT second half compared to CON. Only MM pre-match cooling augmented physical performance during iSPT first half, likely due to peripheral and central thermoregulatory factors favourably influencing first half iSPT performance. Further practical half-time cooling manoeuvres which enhance second half performance are still required.
Collapse
Affiliation(s)
- Jeffrey William Frederick Aldous
- a School of Sport Science and Physical Activity Research, University of Bedfordshire , Institute of Sport and Physical Activity Research (ISPAR) , Bedford , UK
| | | | - Ibrahim Akubat
- c Department of Physical Education and Sports Studies , Newman University , Birmingham , UK
| | - Charlotte Anne Stringer
- a School of Sport Science and Physical Activity Research, University of Bedfordshire , Institute of Sport and Physical Activity Research (ISPAR) , Bedford , UK
| | - Grant Abt
- d Department of Sport, Health and Exercise Science , The University of Hull , Hull , UK
| | - Lee Taylor
- a School of Sport Science and Physical Activity Research, University of Bedfordshire , Institute of Sport and Physical Activity Research (ISPAR) , Bedford , UK.,e ASPETAR - Qatar Orthopaedic and Sports Medicine Hospital , Athlete Health and Performance Research Centre, Aspire Zone , Doha , Qatar.,f School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK
| |
Collapse
|
22
|
Sodium bicarbonate supplementation improves severe-intensity intermittent exercise under moderate acute hypoxic conditions. Eur J Appl Physiol 2018; 118:607-615. [PMID: 29344729 PMCID: PMC5805802 DOI: 10.1007/s00421-018-3801-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/02/2018] [Indexed: 12/20/2022]
Abstract
Acute moderate hypoxic exposure can substantially impair exercise performance, which occurs with a concurrent exacerbated rise in hydrogen cation (H+) production. The purpose of this study was therefore, to alleviate this acidic stress through sodium bicarbonate (NaHCO3) supplementation and determine the corresponding effects on severe-intensity intermittent exercise performance. Eleven recreationally active individuals participated in this randomised, double-blind, crossover study performed under acute normobaric hypoxic conditions (FiO2% = 14.5%). Pre-experimental trials involved the determination of time to attain peak bicarbonate anion concentrations ([HCO3−]) following NaHCO3 ingestion. The intermittent exercise tests involved repeated 60-s work in their severe-intensity domain and 30-s recovery at 20 W to exhaustion. Participants ingested either 0.3 g kg bm−1 of NaHCO3 or a matched placebo of 0.21 g kg bm−1 of sodium chloride prior to exercise. Exercise tolerance (+ 110.9 ± 100.6 s; 95% CI 43.3–178 s; g = 1.0) and work performed in the severe-intensity domain (+ 5.8 ± 6.6 kJ; 95% CI 1.3–9.9 kJ; g = 0.8) were enhanced with NaHCO3 supplementation. Furthermore, a larger post-exercise blood lactate concentration was reported in the experimental group (+ 4 ± 2.4 mmol l−1; 95% CI 2.2–5.9; g = 1.8), while blood [HCO3−] and pH remained elevated in the NaHCO3 condition throughout experimentation. In conclusion, this study reported a positive effect of NaHCO3 under acute moderate hypoxic conditions during intermittent exercise and therefore, may offer an ergogenic strategy to mitigate hypoxic induced declines in exercise performance.
Collapse
|
23
|
Deb SK, Brown DR, Gough LA, Mclellan CP, Swinton PA, Andy Sparks S, Mcnaughton LR. Quantifying the effects of acute hypoxic exposure on exercise performance and capacity: A systematic review and meta-regression. Eur J Sport Sci 2017; 18:243-256. [PMID: 29220311 DOI: 10.1080/17461391.2017.1410233] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To quantify the effects of acute hypoxic exposure on exercise capacity and performance, which includes continuous and intermittent forms of exercise. DESIGN A systematic review was conducted with a three-level mixed effects meta-regression. The ratio of means method was used to evaluate main effects and moderators providing practical interpretations with percentage change. DATA SOURCES A systemic search was performed using three databases (Google scholar, PubMed and SPORTDiscus). Eligibility criteria for selecting studies: Inclusion was restricted to investigations that assessed exercise performance (time trials (TTs), sprint and intermittent exercise tests) and capacity (time to exhaustion test, TTE) with acute hypoxic (<24 h) exposure and a normoxic comparator. RESULTS Eighty-two outcomes from 53 studies (N = 798) were included in this review. The results show an overall reduction in exercise performance/capacity -17.8 ± 3.9% (95% CI -22.8% to -11.0%), which was significantly moderated by -6.5 ± 0.9% per 1000 m altitude elevation (95% CI -8.2% to -4.8%) and oxygen saturation (-2.0 ± 0.4%; 95% CI -2.9% to -1.2%). TT (-16.2 ± 4.3%; 95% CI -22.9% to -9%) and TTE (-44.5 ± 6.9%; 95% CI -51.3% to -36.7%) elicited a negative effect, whilst indicating a quadratic relationship between hypoxic magnitude and both TTE and TT performance. Furthermore, exercise less than 2 min exhibited no ergolytic effect from acute hypoxia. Summary/Conclusion: This review highlights the ergolytic effect of acute hypoxic exposure, which is curvilinear for TTE and TT performance with increasing hypoxic levels, but short duration intermittent and sprint exercise seem to be unaffected.
Collapse
Affiliation(s)
- Sanjoy K Deb
- a Sports Nutriton and Performance Research Group, Department of Sport and Physical Activity , Edge Hill University , Ormskirk , UK
| | - Daniel R Brown
- a Sports Nutriton and Performance Research Group, Department of Sport and Physical Activity , Edge Hill University , Ormskirk , UK
| | - Lewis A Gough
- a Sports Nutriton and Performance Research Group, Department of Sport and Physical Activity , Edge Hill University , Ormskirk , UK
| | | | - Paul A Swinton
- c School of Health Sciences , Robert Gordon University , Aberdeen , UK
| | - S Andy Sparks
- a Sports Nutriton and Performance Research Group, Department of Sport and Physical Activity , Edge Hill University , Ormskirk , UK
| | - Lars R Mcnaughton
- a Sports Nutriton and Performance Research Group, Department of Sport and Physical Activity , Edge Hill University , Ormskirk , UK.,d Department of Sport and Movement Studies, Faculty of Health Science , University of Johannesburg , Johannesburg , South Africa
| |
Collapse
|
24
|
Edwards RB, Tofari PJ, Cormack SJ, Whyte DG. Non-motorized Treadmill Running Is Associated with Higher Cardiometabolic Demands Compared with Overground and Motorized Treadmill Running. Front Physiol 2017; 8:914. [PMID: 29184508 PMCID: PMC5694659 DOI: 10.3389/fphys.2017.00914] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/30/2017] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to compare the cardiometabolic demands of running on a curved non-motorized treadmill (cNMT) with overground (OVR) and motorized treadmill (MOT) running. Fourteen trained male (n = 7) and female (n = 7) runners (V·O2peak 56.6 ± 4.0 mL.kg−1.min−1) participated in the study. Each experimental session consisted of 5 × 6-min bouts of running at progressively higher speeds, separated by 6-min rest (females 9–15 km.h−1; males 10.5–16.5 km.h−1). Oxygen consumption (V·O2) and heart rate (HR) during the last 2 min of each bout were measured using a portable metabolic cart. Running at a set speed on the cNMT required a higher percentage of V·O2peak than OVR (mean ± 90% CI, 22 ± 6%; ES ± 90% CI, 1.87 ± 0.15) and MOT (16 ± 6%; ES 1.50 ± 0.15) running. Similarly, HR during the cNMT was higher compared to OVR (25 ± 9 beats.min−1, ES 1.23 ± 0.14) and MOT (22 ± 9 beats.min−1, ES 1.35 ± 0.13) trials. The decline in running economy observed during the cNMT trial was negatively related to body mass (R2 0.493, P = 0.01), indicating lighter runners were required to work at a higher relative intensity to overcome treadmill belt resistance. These data demonstrate the higher cardiometabolic demand associated with running at a given speed on the cNMT. It is critical these differences are taken into account when prescribing training intensities on the cNMT or translating data from the laboratory to an athletic setting.
Collapse
Affiliation(s)
- Robert B Edwards
- School of Exercise Science, Australian Catholic University, Melbourne, VIC, Australia
| | - Paul J Tofari
- School of Exercise Science, Australian Catholic University, Melbourne, VIC, Australia
| | - Stuart J Cormack
- School of Exercise Science, Australian Catholic University, Melbourne, VIC, Australia
| | - Douglas G Whyte
- School of Exercise Science, Australian Catholic University, Melbourne, VIC, Australia
| |
Collapse
|
25
|
Slimani M, Baker JS, Cheour F, Taylor L, Bragazzi NL. Steroid hormones and psychological responses to soccer matches: Insights from a systematic review and meta-analysis. PLoS One 2017; 12:e0186100. [PMID: 29023546 PMCID: PMC5638322 DOI: 10.1371/journal.pone.0186100] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The present systematic review and meta-analysis aimed to assess the perturbations in hormonal and psychological homeostasis in response to soccer match-play. These perturbations were explored according to match outcome (i.e., win versus loss), gender, type of contest (i.e., competitive versus non-competitive fixtures) and competitive level (i.e., novice versus high-level). The review was conducted according to the Population/Intervention or Exposure/Comparison/Outcome(s) (PICO) criteria and the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. Match outcome, type of contest and competitive levels were moderator variables in the examined steroid hormones responses to a soccer match-play. Different testosterone responses were seen between match winners (increase) and losers (decrease) when compared to pre-game or baseline values (p <0.05), whilst no changes could be detected for cortisol relative to match outcome in female soccer players. Males (Δ% = 6.26; ES = 0.28) demonstrated a marginally lower increase in testosterone levels when compared to females (Δ% = 49.16; ES = 1.00), though not statistically significant. Females (Δ% = 162.7; ES = 0.98) did not demonstrate elevated cortisol match response compared to males (Δ% = 34.60; ES = 1.20). Male novice soccer match-play increased cortisol levels compared to high-level soccer match-play (Q = 18.08, p<0.001). Competitive soccer matches increased cortisol levels compared to non-competitive fixtures (i.e., collegiate tournament). Additionally, competitive levels moderate the relationship between a soccer match and testosterone levels (p <0.001), regardless of gender differences. From the presented systematic review and meta-analysis it appears (1) cortisol changes are associated with cognitive anxiety in starter female soccer players, while (2) testosterone changes are associated with changes in mood state in females and social connectedness in male soccer players. This apparent psycho-physiological relationship may proffer the opportunity for targeted intervention(s) by practitioners to favorably influence performance and/or recovery agendas. Further mechanistic and/or applied evidence is required in this regard in addition to further data sets from females.
Collapse
Affiliation(s)
- Maamer Slimani
- Research Laboratory ‘‘Sport Performance Optimization”, National Centre of Medicine and Science in Sport (CNMSS), El Menzah, Tunisia
- * E-mail:
| | - Julien S. Baker
- University of the West of Scotland, Institute of Clinical Exercise and Health Science, Hamilton Campus, Hamilton, United Kingdom
| | - Foued Cheour
- High Institute of Applied Biology of Médenine, Medenine, Tunisia
| | - Lee Taylor
- Athlete Health and Performance Research Centre, ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
- Loughborough University, School of Sport, Exercise and Health Sciences, Loughborough, United Kingdom
| | - Nicola Luigi Bragazzi
- School of Public Health, Department of Health Sciences (DISSAL), Genoa University, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, Genoa University, Genoa, Italy
| |
Collapse
|
26
|
Sweeting AJ, Billaut F, Varley MC, Rodriguez RF, Hopkins WG, Aughey RJ. Variations in Hypoxia Impairs Muscle Oxygenation and Performance during Simulated Team-Sport Running. Front Physiol 2017; 8:80. [PMID: 28239359 PMCID: PMC5301029 DOI: 10.3389/fphys.2017.00080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/27/2017] [Indexed: 11/13/2022] Open
Abstract
Purpose: To quantify the effect of acute hypoxia on muscle oxygenation and power during simulated team-sport running. Methods: Seven individuals performed repeated and single sprint efforts, embedded in a simulated team-sport running protocol, on a non-motorized treadmill in normoxia (sea-level), and acute normobaric hypoxia (simulated altitudes of 2,000 and 3,000 m). Mean and peak power was quantified during all sprints and repeated sprints. Mean total work, heart rate, blood oxygen saturation, and quadriceps muscle deoxyhaemoglobin concentration (assessed via near-infrared spectroscopy) were measured over the entire protocol. A linear mixed model was used to estimate performance and physiological effects across each half of the protocol. Changes were expressed in standardized units for assessment of magnitude. Uncertainty in the changes was expressed as a 90% confidence interval and interpreted via non-clinical magnitude-based inference. Results: Mean total work was reduced at 2,000 m (-10%, 90% confidence limits ±6%) and 3,000 m (-15%, ±5%) compared with sea-level. Mean heart rate was reduced at 3,000 m compared with 2,000 m (-3, ±3 min-1) and sea-level (-3, ±3 min-1). Blood oxygen saturation was lower at 2,000 m (-8, ±3%) and 3,000 m (-15, ±2%) compared with sea-level. Sprint mean power across the entire protocol was reduced at 3,000 m compared with 2,000 m (-12%, ±3%) and sea-level (-14%, ±4%). In the second half of the protocol, sprint mean power was reduced at 3,000 m compared to 2,000 m (-6%, ±4%). Sprint mean peak power across the entire protocol was lowered at 2,000 m (-10%, ±6%) and 3,000 m (-16%, ±6%) compared with sea-level. During repeated sprints, mean peak power was lower at 2,000 m (-8%, ±7%) and 3,000 m (-8%, ±7%) compared with sea-level. In the second half of the protocol, repeated sprint mean power was reduced at 3,000 m compared to 2,000 m (-7%, ±5%) and sea-level (-9%, ±5%). Quadriceps muscle deoxyhaemoglobin concentration was lowered at 3,000 m compared to 2,000 m (-10, ±12%) and sea-level (-11, ±12%). Conclusions: Simulated team-sport running is impaired at 3,000 m compared to 2,000 m and sea-level, likely due to a higher muscle deoxygenation.
Collapse
Affiliation(s)
- Alice J Sweeting
- Institute of Sport, Exercise and Active Living, Victoria University Melbourne, VIC, Australia
| | - François Billaut
- Institute of Sport, Exercise and Active Living, Victoria UniversityMelbourne, VIC, Australia; Département de Kinesiology, Université LavalQuébec, QC, Canada
| | - Matthew C Varley
- Institute of Sport, Exercise and Active Living, Victoria University Melbourne, VIC, Australia
| | - Ramón F Rodriguez
- Institute of Sport, Exercise and Active Living, Victoria University Melbourne, VIC, Australia
| | - William G Hopkins
- Institute of Sport, Exercise and Active Living, Victoria University Melbourne, VIC, Australia
| | - Robert J Aughey
- Institute of Sport, Exercise and Active Living, Victoria University Melbourne, VIC, Australia
| |
Collapse
|
27
|
Lloyd A, Raccuglia M, Hodder S, Havenith G. Interaction between environmental temperature and hypoxia on central and peripheral fatigue during high-intensity dynamic knee extension. J Appl Physiol (1985) 2016; 120:567-79. [PMID: 26769955 DOI: 10.1152/japplphysiol.00876.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/06/2016] [Indexed: 11/22/2022] Open
Abstract
This study investigated causative factors behind the expression of different interaction types during exposure to multistressor environments. Neuromuscular fatigue rates and time to exhaustion (TTE) were investigated in active men (n = 9) exposed to three climates [5 °C, 50% relative humidity (rh); 23 °C, 50% rh; and 42 °C, 70% rh] at two inspired oxygen fractions (0.209 and 0.125 FiO2; equivalent attitude = 4,100 m). After a 40-min rest in the three climatic conditions, participants performed constant-workload (high intensity) knee extension exercise until exhaustion, with brief assessments of neuromuscular function every 110 s. Independent exposure to cold, heat, and hypoxia significantly (P < 0.01) reduced TTE from thermoneutral normoxia (reductions of 190, 405, and 505 s from 915 s, respectively). The TTE decrease was consistent with a faster rate of peripheral fatigue development (P < 0.01) compared with thermoneutral normoxia (increase of 1.6, 3.1, and 4.9%/min from 4.1%/min, respectively). Combined exposure to hypoxic-cold resulted in an even greater TTE reduction (-589 s), likely due to an increase in the rate of peripheral fatigue development (increased by 7.6%/min), but this was without significant interaction between stressors (P > 0.198). In contrast, combined exposure to hypoxic heat reduced TTE by 609 s, showing a significant antagonistic interaction (P = 0.003) similarly supported by an increased rate of peripheral fatigue development (which increased by 8.3%/min). A small decline (<0.4%/min) in voluntary muscle activation was observed only in thermoneutral normoxia. In conclusion, interaction type is influenced by the impact magnitude of the effect of the individual stressors' effect on exercise capacity, whereby the greater the effect of stressors, the greater the probability that one stressor will be abolished by the other. This indicates that humans respond to severe and simultaneous physiological strains on the basis of a worst-strain-takes-precedence principle.
Collapse
Affiliation(s)
- Alex Lloyd
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - Margherita Raccuglia
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - Simon Hodder
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - George Havenith
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|