1
|
Hassan Kalantar Neyestanaki M, Gholizadeh O, Hosseini Tabatabaie F, Akbarzadeh S, Yasamineh S, Afkhami H, Sedighi S. Immunomodulatory effects of cannabinoids against viral infections: a review of its potential use in SARS-CoV2 infection. Virusdisease 2024; 35:342-356. [PMID: 39071880 PMCID: PMC11269557 DOI: 10.1007/s13337-024-00871-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/11/2024] [Indexed: 07/30/2024] Open
Abstract
The COVID-19 pandemic is a global health crisis affecting millions of people worldwide. Along with vaccine development, there is also a priority to discover new drugs and treatments. One approach involves modulating the immune system to manage inflammation and cytokine storms. Patients with a high severity of complications exhibit a high level of inflammatory cytokines, particularly IL-6, in the airways and other infected tissues. Several studies have reported the function of the endocannabinoid system in regulating inflammation and different immune responses. Cannabinoids are a class of natural chemicals found in the Cannabis plant. Recently, the anti-inflammatory properties of cannabinoids and their mediatory immunosuppression mechanisms through the endocannabinoid system have engrossed scientists in the health field for infectious conditions. Research suggests that the immune system can regulate cytokine activation through cannabinoid receptors, particularly with Cannabidiol (CBD), the second most prevalent compound in cannabis. While CBD has been deemed safe by the World Health Organization and shows no signs of abuse potential, excessive CBD use may lead to respiratory depression. CBD shows promise in reducing immune cell recruitment and cytokine storms in organs affected by SARS-CoV2. However, before clinical use, it's crucial to evaluate cannabinoid-based medications' active ingredient concentrations and potential interactions with other drugs, along with associated side effects. Indication-based dosing, consistent formulations, and ensuring purity and potency are essential. This review highlights cannabinoids' effects on COVID-19 management and prognosis, drawing from preclinical and clinical studies.
Collapse
Affiliation(s)
| | | | - Fatemeh Hosseini Tabatabaie
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sama Akbarzadeh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Hamed Afkhami
- Department of Medical Microbiology, Faculty of Medicine, Shahed University of Medical Science, Tehran, Iran
| | - Somayeh Sedighi
- Department of Immunology, Faculty of Medicine, Medical Science of Mashhad, Mashhad, Iran
| |
Collapse
|
2
|
Alswailmi FK. A Cross Talk between the Endocannabinoid System and Different Systems Involved in the Pathogenesis of Hypertensive Retinopathy. Pharmaceuticals (Basel) 2023; 16:ph16030345. [PMID: 36986445 PMCID: PMC10058254 DOI: 10.3390/ph16030345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
The prognosis of hypertension leads to organ damage by causing nephropathy, stroke, retinopathy, and cardiomegaly. Retinopathy and blood pressure have been extensively discussed in relation to catecholamines of the autonomic nervous system (ANS) and angiotensin II of the renin–angiotensin aldosterone system (RAAS) but very little research has been conducted on the role of the ECS in the regulation of retinopathy and blood pressure. The endocannabinoid system (ECS) is a unique system in the body that can be considered as a master regulator of body functions. It encompasses the endogenous production of its cannabinoids, its degrading enzymes, and functional receptors which innervate and perform various functions in different organs of the body. Hypertensive retinopathy pathologies arise normally due to oxidative stress, ischemia, endothelium dysfunction, inflammation, and an activated renin–angiotensin system (RAS) and catecholamine which are vasoconstrictors in their biological nature. The question arises of which system or agent counterbalances the vasoconstrictors effect of noradrenaline and angiotensin II (Ang II) in normal individuals? In this review article, we discuss the role of the ECS and its contribution to the pathogenesis of hypertensive retinopathy. This review article will also examine the involvement of the RAS and the ANS in the pathogenesis of hypertensive retinopathy and the crosstalk between these three systems in hypertensive retinopathy. This review will also explain that the ECS, which is a vasodilator in its action, either independently counteracts the effect produced with the vasoconstriction of the ANS and Ang II or blocks some of the common pathways shared by the ECS, ANS, and Ang II in the regulation of eye functions and blood pressure. This article concludes that persistent control of blood pressure and normal functions of the eye are maintained either by decreasing systemic catecholamine, ang II, or by upregulation of the ECS which results in the regression of retinopathy induced by hypertension.
Collapse
Affiliation(s)
- Farhan Khashim Alswailmi
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia
| |
Collapse
|
3
|
Mińczuk K, Baranowska-Kuczko M, Krzyżewska A, Schlicker E, Malinowska B. Cross-Talk between the (Endo)Cannabinoid and Renin-Angiotensin Systems: Basic Evidence and Potential Therapeutic Significance. Int J Mol Sci 2022; 23:6350. [PMID: 35683028 PMCID: PMC9181166 DOI: 10.3390/ijms23116350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/27/2022] [Accepted: 06/04/2022] [Indexed: 01/27/2023] Open
Abstract
This review is dedicated to the cross-talk between the (endo)cannabinoid and renin angiotensin systems (RAS). Activation of AT1 receptors (AT1Rs) by angiotensin II (Ang II) can release endocannabinoids that, by acting at cannabinoid CB1 receptors (CB1Rs), modify the response to AT1R stimulation. CB1R blockade may enhance AT1R-mediated responses (mainly vasoconstrictor effects) or reduce them (mainly central nervous system-mediated effects). The final effects depend on whether stimulation of CB1Rs and AT1Rs induces opposite or the same effects. Second, CB1R blockade may diminish AT1R levels. Third, phytocannabinoids modulate angiotensin-converting enzyme-2. Additional studies are required to clarify (1) the existence of a cross-talk between the protective axis of the RAS (Ang II-AT2 receptor system or angiotensin 1-7-Mas receptor system) with components of the endocannabinoid system, (2) the influence of Ang II on constituents of the endocannabinoid system and (3) the (patho)physiological significance of AT1R-CB1R heteromerization. As a therapeutic consequence, CB1R antagonists may influence effects elicited by the activation or blockade of the RAS; phytocannabinoids may be useful as adjuvant therapy against COVID-19; single drugs acting on the (endo)cannabinoid system (cannabidiol) and the RAS (telmisartan) may show pharmacokinetic interactions since they are substrates of the same metabolizing enzyme of the transport mechanism.
Collapse
Affiliation(s)
- Krzysztof Mińczuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland; (K.M.); (M.B.-K.); (A.K.)
| | - Marta Baranowska-Kuczko
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland; (K.M.); (M.B.-K.); (A.K.)
| | - Anna Krzyżewska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland; (K.M.); (M.B.-K.); (A.K.)
| | - Eberhard Schlicker
- Department of Pharmacology and Toxicology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland; (K.M.); (M.B.-K.); (A.K.)
| |
Collapse
|
4
|
Haspula D, Clark MA. Cannabinoid Receptors: An Update on Cell Signaling, Pathophysiological Roles and Therapeutic Opportunities in Neurological, Cardiovascular, and Inflammatory Diseases. Int J Mol Sci 2020; 21:E7693. [PMID: 33080916 PMCID: PMC7590033 DOI: 10.3390/ijms21207693] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
The identification of the human cannabinoid receptors and their roles in health and disease, has been one of the most significant biochemical and pharmacological advancements to have occurred in the past few decades. In spite of the major strides made in furthering endocannabinoid research, therapeutic exploitation of the endocannabinoid system has often been a challenging task. An impaired endocannabinoid tone often manifests as changes in expression and/or functions of type 1 and/or type 2 cannabinoid receptors. It becomes important to understand how alterations in cannabinoid receptor cellular signaling can lead to disruptions in major physiological and biological functions, as they are often associated with the pathogenesis of several neurological, cardiovascular, metabolic, and inflammatory diseases. This review focusses mostly on the pathophysiological roles of type 1 and type 2 cannabinoid receptors, and it attempts to integrate both cellular and physiological functions of the cannabinoid receptors. Apart from an updated review of pre-clinical and clinical studies, the adequacy/inadequacy of cannabinoid-based therapeutics in various pathological conditions is also highlighted. Finally, alternative strategies to modulate endocannabinoid tone, and future directions are also emphasized.
Collapse
Affiliation(s)
- Dhanush Haspula
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| | - Michelle A. Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
5
|
Lyons EL, Leone-Kabler S, Kovach AL, Thomas BF, Howlett AC. Cannabinoid receptor subtype influence on neuritogenesis in human SH-SY5Y cells. Mol Cell Neurosci 2020; 109:103566. [PMID: 33049367 DOI: 10.1016/j.mcn.2020.103566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 10/23/2022] Open
Abstract
Human SH-SY5Y neuroblastoma cells stably expressing exogenous CB1 (CB1XS) or CB2 (CB2XS) receptors were developed to investigate endocannabinoid signaling in the extension of neuronal projections. Expression of cannabinoid receptors did not alter proliferation rate, viability, or apoptosis relative to parental SH-SY5Y. Transcripts for endogenous cannabinoid system enzymes (diacylglycerol lipase, monoacylglycerol lipase, α/β-hydrolase domain containing proteins 6 and 12, N-acyl phosphatidylethanolamine-phospholipase D, and fatty acid amide hydrolase) were not altered by CB1 or CB2 expression. Endocannabinoid ligands 2-arachidonoylglycerol (2-AG) and anandamide were quantitated in SH-SY5Y cells, and diacylglycerol lipase inhibitor tetrahydrolipstatin decreased 2-AG abundance by 90% but did not alter anandamide abundance. M3 muscarinic agonist oxotremorine M, and inhibitors of monoacylglycerol lipase and α/β hydrolase domain containing proteins 6 &12 increased 2-AG abundance. CB1 receptor expression increased lengths of short (<30 μm) and long (>30 μm) projections, and this effect was significantly reduced by tetrahydrolipstatin, indicative of stimulation by endogenously produced 2-AG. Pertussis toxin, Gβγ inhibitor gallein, and β-arrestin inhibitor barbadin did not significantly alter long projection length in CB1XS, but significantly reduced short projections, with gallein having the greatest inhibition. The rho kinase inhibitor Y27632 increased CB1 receptor-mediated long projection extension, indicative of actin cytoskeleton involvement. CB1 receptor expression increased GAP43 and ST8SIA2 mRNA and decreased ITGA1 mRNA, whereas CB2 receptor expression increased NCAM and SYT mRNA. We propose that basal endogenous production of 2-AG provides autocrine stimulation of CB1 receptor signaling through Gi/o, Gβγ, and β-arrestin mechanisms to promote neuritogenesis, and rho kinase influences process extension.
Collapse
Affiliation(s)
- Erica L Lyons
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, One Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | - Sandra Leone-Kabler
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, One Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | - Alexander L Kovach
- Discovery Sciences, RTI International, PO Box 12194, Research Triangle Park, NC 27709, USA.
| | - Brian F Thomas
- Discovery Sciences, RTI International, PO Box 12194, Research Triangle Park, NC 27709, USA.
| | - Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, One Medical Center Blvd., Winston-Salem, NC 27157, USA.
| |
Collapse
|
6
|
Sainz-Cort A, Heeroma JH. The interaction between the endocannabinoid system and the renin angiotensin system and its potential implication for COVID-19 infection. J Cannabis Res 2020; 2:23. [PMID: 32835160 PMCID: PMC7393810 DOI: 10.1186/s42238-020-00030-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/24/2020] [Indexed: 12/19/2022] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) is spreading fast all around the world with more than fourteen millions of detected infected cases and more than 600.000 deaths by 20th July 2020. While scientist are working to find a vaccine, current epidemiological data shows that the most common comorbidities for patients with the worst prognosis, hypertension and diabetes, are often treated with angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs). Body Both ACE inhibitors and ARBs induce overexpression of the angiotensin converting enzyme 2 (ACE-2) receptor, which has been identified as the main receptor used by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to enter into the alveolar cells of the lungs. While cannabinoids are known to reduce hypertension, the studies testing the hypotensive effects of cannabinoids never addressed their effects on ACE-2 receptors. However, some studies have linked the endocannabinoid system (ECS) with the renin angiotensin system (RAS), including a cross-modulation between the cannabinoid receptor 1 (CB1) and angiotensin II levels. Conclusion Since there are around 192 million people using cannabis worldwide, we believe that the mechanism underlying the hypotensive properties of cannabinoids should be urgently studied to understand if they can also lead to ACE-2 overexpression as other antihypertensive drugs do.
Collapse
|
7
|
Malinowska B, Toczek M, Pędzińska‐Betiuk A, Schlicker E. Cannabinoids in arterial, pulmonary and portal hypertension - mechanisms of action and potential therapeutic significance. Br J Pharmacol 2019; 176:1395-1411. [PMID: 29455452 PMCID: PMC6487561 DOI: 10.1111/bph.14168] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/24/2018] [Accepted: 02/05/2018] [Indexed: 12/11/2022] Open
Abstract
The endocannabinoid system is overactivated in arterial, pulmonary and portal hypertension. In this paper, we present limited clinical data concerning the role of cannabinoids in human hypertension including polymorphism of endocannabinoid system components. We underline differences between the acute cannabinoid administration and their potential hypotensive effect after chronic application in experimental hypertension. We discuss pleiotropic effects of cannabinoids on the cardiovascular system mediated via numerous neuronal and non‐neuronal mechanisms both in normotension and in hypertension. The final results are dependent on the model of hypertension, age, sex, the cannabinoid ligands used or the action via endocannabinoid metabolites. More experimental and clinical studies are needed to clarify the role of endocannabinoids in hypertension, not only in the search for new therapeutic strategies but also in the context of cardiovascular effects of cannabinoids and the steadily increasing legalization of cannabis use for recreational and medical purposes.Linked ArticlesThis article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc
Collapse
Affiliation(s)
- Barbara Malinowska
- Department of Experimental Physiology and PathophysiologyMedical University of BiałystokBiałystokPoland
| | - Marek Toczek
- Department of Experimental Physiology and PathophysiologyMedical University of BiałystokBiałystokPoland
| | - Anna Pędzińska‐Betiuk
- Department of Experimental Physiology and PathophysiologyMedical University of BiałystokBiałystokPoland
| | | |
Collapse
|
8
|
Sierra S, Luquin N, Navarro-Otano J. The endocannabinoid system in cardiovascular function: novel insights and clinical implications. Clin Auton Res 2017; 28:35-52. [PMID: 29222605 DOI: 10.1007/s10286-017-0488-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
RATIONALE Cardiovascular disease is now recognized as the number one cause of death in the world, and the size of the population at risk continues to increase rapidly. The dysregulation of the endocannabinoid (eCB) system plays a central role in a wide variety of conditions including cardiovascular disorders. Cannabinoid receptors, their endogenous ligands, as well as enzymes conferring their synthesis and degradation, exhibit overlapping distributions in the cardiovascular system. Furthermore, the pharmacological manipulation of the eCB system has effects on blood pressure, cardiac contractility, and endothelial vasomotor control. Growing evidence from animal studies supports the significance of the eCB system in cardiovascular disorders. OBJECTIVE To summarize the literature surrounding the eCB system in cardiovascular function and disease and the new compounds that may potentially extend the range of available interventions. RESULTS Drugs targeting CB1R, CB2R, TRPV1 and PPARs are proven effective in animal models mimicking cardiovascular disorders such as hypertension, atherosclerosis and myocardial infarction. Despite the setback of two clinical trials that exhibited unexpected harmful side-effects, preclinical studies are accelerating the development of more selective drugs with promising results devoid of adverse effects. CONCLUSION Over the last years, increasing evidence from basic and clinical research supports the role of the eCB system in cardiovascular function. Whereas new discoveries are paving the way for the identification of novel drugs and therapeutic targets, the close cooperation of researchers, clinicians and pharmaceutical companies is needed to achieve successful outcomes.
Collapse
Affiliation(s)
- Salvador Sierra
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Physiology and Biophysics, Molecular Medicine Research Building, Virginia Commonwealth University, 1220 East Broad Street, Richmond, VA, 23298, USA.
| | - Natasha Luquin
- Department of Medical Genomics, Royal Prince Alfred Hospital, Sydney, Australia
| | - Judith Navarro-Otano
- Neurology Service, Electromyography, Motor Control and Neuropathic Pain Unit, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Alterations in the Medullary Endocannabinoid System Contribute to Age-related Impairment of Baroreflex Sensitivity. J Cardiovasc Pharmacol 2016; 65:473-9. [PMID: 25636077 DOI: 10.1097/fjc.0000000000000216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
As they age, Sprague-Dawley (SD) rats develop elevated systolic blood pressure associated with impaired baroreflex sensitivity (BRS) for control of heart rate. We previously demonstrated in young hypertensive (mRen2)27 rats that impaired BRS is restored by CB1 cannabinoid receptor blockade in the solitary tract nucleus (NTS), consistent with elevated content of the endocannabinoid 2-arachidonoylglycerol (2-AG) in dorsal medulla relative to normotensive SD rats. There is no effect of CB1 receptor blockade in young SD rats. We now report in older SD rats that dorsal medullary 2-AG levels are 2-fold higher at 70 versus 15 weeks of age (4.22 ± 0.61 vs. 1.93 ± 0.22 ng/mg tissue; P < 0.05). Furthermore, relative expression of CB1 receptor messenger RNA is significantly lower in aged rats, whereas CB2 receptor messenger RNA is significantly higher. In contrast to young adult SD rats, microinjection of the CB1 receptor antagonist SR141716A (36 pmole) into the NTS of older SD rats normalized BRS in animals exhibiting impaired baseline BRS (0.56 ± 0.06 baseline vs. 1.06 ± 0.05 ms/mm Hg after 60 minutes; P < 0.05). Therefore, this study provides evidence for alterations in the endocannabinoid system within the NTS of older SD rats that contribute to age-related impairment of BRS.
Collapse
|