1
|
Davies AJV, Humphries K, Lewis SJ, Ho K, Sandy JR, Wren Y. The Cleft Collective: protocol for a longitudinal prospective cohort study. BMJ Open 2024; 14:e084737. [PMID: 38969383 PMCID: PMC11227803 DOI: 10.1136/bmjopen-2024-084737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/07/2024] [Indexed: 07/07/2024] Open
Abstract
INTRODUCTION Cleft lip and/or palate (CL/P) affects 1 in 700 live births globally. Children born with CL/P and their families face various challenges throughout the child's development. Extant research is often limited by small numbers and single-centre data. The Cleft Collective, a national cohort study in the UK, aims to build a resource, available to collaborators across the globe, to understand causes, best treatments and long-term outcomes for those born with CL/P, ultimately seeking to enhance their quality of life through improved understanding and care. METHODS AND ANALYSIS A longitudinal prospective cohort study of children born with CL/P and their families. Recruitment occurs across the UK and started in November 2013. Recruitment will continue until September 2027 with an estimated final sample of 4822 children born with CL/P (1157 cleft lip including/excluding the alveolus; 2112 cleft palate only; 1042 unilateral cleft lip and palate and 511 bilateral cleft lip and palate). Biological samples are collected from all recruited members of the family. Parental and child questionnaires are collected at key time points throughout the child's development. Surgical data are collected at the time of surgical repair of the child's cleft. Consent is obtained to link to external data sources. Nested substudies can be hosted within the cohort. Regular engagement with participants takes place through birthday cards for the children, social media posts and newsletters. Patient and Public Involvement is conducted through the Cleft Lip And Palate Association and Cleft Collective Patient Consultation Group who provide insightful and essential guidance to the Cleft Collective throughout planning and conducting research. ETHICS AND DISSEMINATION The Cleft Collective was ethically approved by the National Research Ethics Service committee South West-Central Bristol (REC13/SW/0064). Parental informed consent is required for participation. Findings from the Cleft Collective are disseminated through peer-reviewed publications, conference presentations, newsletters and social media.
Collapse
Affiliation(s)
- Amy J V Davies
- Bristol Dental School, The Cleft Collective, University of Bristol Faculty of Health Sciences, Bristol, UK
| | - Kerry Humphries
- Bristol Dental School, The Cleft Collective, University of Bristol Faculty of Health Sciences, Bristol, UK
| | - Sarah J Lewis
- Bristol Medical School, University of Bristol Faculty of Health Sciences, Bristol, UK
| | - Karen Ho
- Bristol Bioresource Laboratories, University of Bristol Faculty of Health Sciences, Bristol, UK
| | - Jonathan R Sandy
- Bristol Dental School, The Cleft Collective, University of Bristol Faculty of Health Sciences, Bristol, UK
| | - Yvonne Wren
- Bristol Dental School, The Cleft Collective, University of Bristol Faculty of Health Sciences, Bristol, UK
- Bristol Speech and Language Therapy Research Unit, North Bristol NHS Trust, Westbury on Trym, Bristol, UK
| |
Collapse
|
2
|
Burggren W, Fahlman A, Milsom W. Breathing patterns and associated cardiovascular changes in intermittently breathing animals: (Partially) correcting a semantic quagmire. Exp Physiol 2024; 109:1051-1065. [PMID: 38502538 PMCID: PMC11215480 DOI: 10.1113/ep091784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/29/2024] [Indexed: 03/21/2024]
Abstract
Many animal species do not breathe in a continuous, rhythmic fashion, but rather display a variety of breathing patterns characterized by prolonged periods between breaths (inter-breath intervals), during which the heart continues to beat. Examples of intermittent breathing abound across the animal kingdom, from crustaceans to cetaceans. With respect to human physiology, intermittent breathing-also termed 'periodic' or 'episodic' breathing-is associated with a variety of pathologies. Cardiovascular phenomena associated with intermittent breathing in diving species have been termed 'diving bradycardia', 'submersion bradycardia', 'immersion bradycardia', 'ventilation tachycardia', 'respiratory sinus arrhythmia' and so forth. An examination across the literature of terminology applied to these physiological phenomena indicates, unfortunately, no attempt at standardization. This might be viewed as an esoteric semantic problem except for the fact that many of the terms variously used by different authors carry with them implicit or explicit suggestions of underlying physiological mechanisms and even human-associated pathologies. In this article, we review several phenomena associated with diving and intermittent breathing, indicate the semantic issues arising from the use of each term, and make recommendations for best practice when applying specific terms to particular cardiorespiratory patterns. Ultimately, we emphasize that the biology-not the semantics-is what is important, but also stress that confusion surrounding underlying mechanisms can be avoided by more careful attention to terms describing physiological changes during intermittent breathing and diving.
Collapse
Affiliation(s)
- Warren Burggren
- Developmental Integrative Biology Group, Department of Biological SciencesUniversity of North TexasDentonTexasUSA
| | - Andreas Fahlman
- Fundación OceanogràficValenciaSpain
- Kolmården Wildlife ParkKolmårdenSweden
- IFMLinkoping UniversityLinkopingSweden
| | - William Milsom
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
3
|
Jimenez IA, Stempinski PR, Dragotakes Q, Greengo SD, Ramirez LS, Casadevall A. The buoyancy of cryptococcal cells and its implications for transport and persistence of Cryptococcus in aqueous environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595024. [PMID: 38826196 PMCID: PMC11142132 DOI: 10.1101/2024.05.20.595024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Cryptococcus is a genus of saprophytic fungi with global distribution. Two species complexes, C. neoformans and C. gattii, pose health risks to humans and animals. Cryptococcal infections result from inhalation of aerosolized spores and/or desiccated yeasts from terrestrial reservoirs such as soil, trees, and avian guano. More recently, C. gattii has been implicated in infections in marine mammals, suggesting that inhalation of liquid droplets or aerosols from the air-water interface is also an important, yet understudied, mode of respiratory exposure. Water transport has also been suggested to play a role in the spread of C. gattii from tropical to temperate environments. However, the dynamics of fungal survival, persistence, and transport via water have not been fully studied. The size of the cryptococcal capsule was previously shown to reduce cell density and increase buoyancy. Here, we demonstrate that cell buoyancy is also impacted by the salinity of the media in which cells are suspended, with formation of a halocline interface significantly slowing the rate of settling of cryptococcal cells through water, resulting in persistence of C. neoformans within 1 cm of the air-water interface for over 60 min and C. gattii for 4-6 h. Our data also showed that during culture in yeast peptone dextrose media (YPD), polysaccharide accumulating in the supernatant formed a raft that augmented buoyancy and further slowed settling of cryptococcal cells. These findings illustrate new mechanisms by which cryptococcal cells may persist in aquatic environments, with important implications for aqueous transport and pathogen exposure.
Collapse
Affiliation(s)
- Isabel A. Jimenez
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Piotr R. Stempinski
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Quigly Dragotakes
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Seth D. Greengo
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Lia Sanchez Ramirez
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
4
|
De León MC, Rodríguez DH, Dassis M. Cardiorespiratory patterns of male South American sea lions (Otaria flavescens) resting on land. J Comp Physiol B 2024; 194:7-19. [PMID: 38345639 DOI: 10.1007/s00360-024-01533-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 12/04/2023] [Accepted: 01/04/2024] [Indexed: 03/16/2024]
Abstract
The goal of this study was to characterize the cardiorespiratory patterns of male South American sea lions (SASLs, Otaria flavescens) resting on land. We recorded respiratory and heart rate (n = 360 individuals studied) by observing the nostrils, chest movements and the impact of the heart on the thoracic wall. The sea lions breathe apneustically with a pause on inspiration, representing 74% of the respiratory cycle. The mean breathing frequency was 3.2 ± 1.0 breaths min-1, with a breathing cycle presenting periods of bradypneas, tachypneas, and long-term post-inspiratory pauses. The normal heart rate (nHR) was 73.4 ± 14.5 beats min-1 and no significant differences were observed between age classes. All animals showed variability in HR in relation to respiratory phases (Inspiration: 101.2 ± 18.4 beats min-1; post-inspiratory pause: 73.4 ± 14.5 beats min-1; expiration: 64.6 ± 17.7 beats min-1), consistent with respiratory sinus arrhythmia (RSA). The mean HR (measured during all respiratory phases) was 79.9 ± 22.7 beats min-1, and was significantly different between age classes. The total duration of respiratory cycle, and duration of both inspiration and expiration, decreased with an increment in ambient temperature, with no variation in the pause duration. Heart rate during pause and expiration was significantly higher during high temperatures. Similar changes in cardiorespiratory patterns have been reported in other pinnipeds. Our results showed ontogenetic differences in development and typical variations with environmental and behavioral variables.
Collapse
Affiliation(s)
- Marta Carolina De León
- Facultad de Ciencias Exactas y Naturales, Instituto de Investigaciones Marinas y Costeras, Universidad Nacional de Mar del Plata (UNMdP)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rodríguez Peña 4046, Nivel 1 (7600), Mar del Plata, Argentina.
| | - Diego H Rodríguez
- Facultad de Ciencias Exactas y Naturales, Instituto de Investigaciones Marinas y Costeras, Universidad Nacional de Mar del Plata (UNMdP)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rodríguez Peña 4046, Nivel 1 (7600), Mar del Plata, Argentina
| | - Mariela Dassis
- Facultad de Ciencias Exactas y Naturales, Instituto de Investigaciones Marinas y Costeras, Universidad Nacional de Mar del Plata (UNMdP)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rodríguez Peña 4046, Nivel 1 (7600), Mar del Plata, Argentina
| |
Collapse
|
5
|
Videsen SKA, Simon M, Christiansen F, Friedlaender A, Goldbogen J, Malte H, Segre P, Wang T, Johnson M, Madsen PT. Cheap gulp foraging of a giga-predator enables efficient exploitation of sparse prey. SCIENCE ADVANCES 2023; 9:eade3889. [PMID: 37352356 PMCID: PMC10289661 DOI: 10.1126/sciadv.ade3889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/22/2023] [Indexed: 06/25/2023]
Abstract
The giant rorqual whales are believed to have a massive food turnover driven by a high-intake lunge feeding style aptly described as the world's largest biomechanical action. This high-drag feeding behavior is thought to limit dive times and constrain rorquals to target only the densest prey patches, making them vulnerable to disturbance and habitat change. Using biologging tags to estimate energy expenditure as a function of feeding rates on 23 humpback whales, we show that lunge feeding is energetically cheap. Such inexpensive foraging means that rorquals are flexible in the quality of prey patches they exploit and therefore more resilient to environmental fluctuations and disturbance. As a consequence, the food turnover and hence the ecological role of these marine giants have likely been overestimated.
Collapse
Affiliation(s)
- Simone K. A. Videsen
- Zoophysiology, Department of Biology, Aarhus University, Denmark
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Nuuk, Greenland
| | - Malene Simon
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Nuuk, Greenland
| | - Fredrik Christiansen
- Aarhus Institute of Advanced Studies, Aarhus University, DK-8000 Aarhus C, Denmark
- Marine Mammal Research, Department of Ecoscience, Aarhus University, 4000 Roskilde, Denmark
| | - Ari Friedlaender
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Jeremy Goldbogen
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA
| | - Hans Malte
- Zoophysiology, Department of Biology, Aarhus University, Denmark
| | - Paolo Segre
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA
| | - Tobias Wang
- Zoophysiology, Department of Biology, Aarhus University, Denmark
| | - Mark Johnson
- Zoophysiology, Department of Biology, Aarhus University, Denmark
- Aarhus Institute of Advanced Studies, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Peter T. Madsen
- Zoophysiology, Department of Biology, Aarhus University, Denmark
| |
Collapse
|
6
|
Doppler echocardiography in a healthy, non-sedated Southern Sea Lion (Otaria flavescens) - a preliminary approach about the feasibility and clinical utility. Vet Res Commun 2022; 47:953-961. [DOI: 10.1007/s11259-022-10019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022]
|
7
|
Demartsev V, Manser MB, Tattersall GJ. Vocalization associated respiration patterns: thermography-based monitoring and detection of preparation for calling. J Exp Biol 2022; 225:274334. [PMID: 35142353 PMCID: PMC8976942 DOI: 10.1242/jeb.243474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/03/2022] [Indexed: 11/28/2022]
Abstract
Vocal emission requires coordination with the respiratory system. Monitoring the increase in laryngeal pressure, which is needed for vocal production, allows detection of transitions from quiet respiration to vocalization-supporting respiration. Characterization of these transitions could be used to identify preparation for vocal emission and to examine the probability of it manifesting into an actual vocal production event. Specifically, overlaying the subject's respiration with conspecific calls can highlight events of call initiation and suppression, as a means of signalling coordination and avoiding jamming. Here, we present a thermal imaging-based methodology for synchronized respiration and vocalization monitoring of free-ranging meerkats. The sensitivity of this methodology is sufficient for detecting transient changes in the subject's respiration associated with the exertion of vocal production. The differences in respiration are apparent not only during the vocal output, but also prior to it, marking the potential time frame of the respiratory preparation for calling. A correlation between conspecific calls with elongation of the focal subject's respiration cycles could be related to fluctuations in attention levels or in the motivation to reply. This framework can be used for examining the capability for enhanced respiration control in animals during modulated and complex vocal sequences, detecting ‘failed’ vocalization attempts and investigating the role of respiration cues in the regulation of vocal interactions. Summary: A thermography-based methodology for estimating breathing traces in free-ranging meerkats detects changes in respiration associated with the preparation and with the production of vocal signals by combining respiration monitoring with audio recordings.
Collapse
Affiliation(s)
- Vlad Demartsev
- Department of Biology, University of Konstanz, Konstanz, Germany.,Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany.,Kalahari Research Centre, Van Zylsrus, Northern Cape, South Africa
| | - Marta B Manser
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Kalahari Research Centre, Van Zylsrus, Northern Cape, South Africa.,Interdisciplinary Center for the Evolution of Language, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
8
|
Borque-Espinosa A, Rode KD, Ferrero-Fernández D, Forte A, Capaccioni-Azzati R, Fahlman A. Subsurface swimming and stationary diving are metabolically cheap in adult Pacific walruses (Odobenus rosmarus divergens). J Exp Biol 2021; 224:273381. [PMID: 34746957 DOI: 10.1242/jeb.242993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/02/2021] [Indexed: 11/20/2022]
Abstract
Walruses rely on sea-ice to efficiently forage and rest between diving bouts while maintaining proximity to prime foraging habitat. Recent declines in summer sea ice have resulted in walruses hauling out on land where they have to travel farther to access productive benthic habitat while potentially increasing energetic costs. Despite the need to better understand the impact of sea ice loss on energy expenditure, knowledge about metabolic demands of specific behaviours in walruses is scarce. In the present study, 3 adult female Pacific walruses (Odobenus rosmarus divergens) participated in flow-through respirometry trials to measure metabolic rates while floating inactive at the water surface during a minimum of 5 min, during a 180-second stationary dive, and while swimming horizontally underwater for ∼90 m. Metabolic rates during stationary dives (3.82±0.56 l O2 min-1) were lower than those measured at the water surface (4.64±1.04 l O2 min-1), which did not differ from rates measured during subsurface swimming (4.91±0.77 l O2 min-1). Thus, neither stationary diving nor subsurface swimming resulted in metabolic rates above those exhibited by walruses at the water surface. These results suggest that walruses minimize their energetic investment during underwater behaviours as reported for other marine mammals. Although environmental factors experienced by free-ranging walruses (e.g., winds or currents) likely affect metabolic rates, our results provide important information for understanding how behavioural changes affect energetic costs and can be used to improve bioenergetics models aimed at predicting the metabolic consequences of climate change on walruses.
Collapse
Affiliation(s)
- Alicia Borque-Espinosa
- Universitat de València, Av. de Blasco Ibáñez 13, 46010 Valencia, Spain.,Fundación Oceanogràfic de la Comunitat Valenciana, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain
| | - Karyn D Rode
- U.S. Geological Survey Alaska Science Center, , 4210 University Dr, Anchorage, 99508 AK, USA
| | | | - Anabel Forte
- Universitat de València, Av. de Blasco Ibáñez 13, 46010 Valencia, Spain
| | | | - Andreas Fahlman
- Fundación Oceanogràfic de la Comunitat Valenciana, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain.,Global Diving Research, Inc. Ottawa, K2J 5E8 ON, Canada
| |
Collapse
|
9
|
Borque-Espinosa A, Ferrero-Fernández D, Capaccioni-Azzati R, Fahlman A. Lung function assessment in the Pacific walrus ( Odobenus rosmarus divergens) while resting on land and submerged in water. J Exp Biol 2021; 224:jeb227389. [PMID: 33188062 DOI: 10.1242/jeb.227389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/09/2020] [Indexed: 11/20/2022]
Abstract
In the present study, we examined lung function in healthy resting adult (born in 2003) Pacific walruses (Odobenus rosmarus divergens) by measuring respiratory flow ([Formula: see text]) using a custom-made pneumotachometer. Three female walruses (670-1025 kg) voluntarily participated in spirometry trials while spontaneously breathing on land (sitting and lying down in sternal recumbency) and floating in water. While sitting, two walruses performed active respiratory efforts, and one animal participated in lung compliance measurements. For spontaneous breaths, [Formula: see text] was lower when walruses were lying down (e.g. expiration: 7.1±1.2 l s-1) as compared with in water (9.9±1.4 l s-1), while tidal volume (VT, 11.5±4.6 l), breath duration (4.6±1.4 s) and respiratory frequency (7.6±2.2 breaths min-1) remained the same. The measured VT and specific dynamic lung compliance (0.32±0.07 cmH2O-1) for spontaneous breaths were higher than those estimated for similarly sized terrestrial mammals. VT increased with body mass (allometric mass-exponent=1.29) and ranged from 3% to 43% of the estimated total lung capacity (TLCest) for spontaneous breaths. When normalized for TLCest, the maximal expiratory [Formula: see text] ([Formula: see text]exp) was higher than that estimated in phocids, but lower than that reported in cetaceans and the California sea lion. [Formula: see text]exp was maintained over all lung volumes during spontaneous and active respiratory manoeuvres. We conclude that location (water or land) affects lung function in the walrus and should be considered when studying respiratory physiology in semi-aquatic marine mammals.
Collapse
Affiliation(s)
- Alicia Borque-Espinosa
- Fundación Oceanogràfic de la Comunitat Valenciana, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain
- Universitat de València, Av. de Blasco Ibáñez 13, 46010 Valencia, Spain
| | | | | | - Andreas Fahlman
- Fundación Oceanogràfic de la Comunitat Valenciana, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain
- Global Diving Research, Inc., Ottawa, ON, Canada, K2J 5E8
| |
Collapse
|
10
|
Borque-Espinosa A, Burgos F, Dennison S, Laughlin R, Manley M, Capaccioni Azzati R, Fahlman A. Pulmonary function testing as a diagnostic tool to assess respiratory health in bottlenose dolphins Tursiops truncatus. DISEASES OF AQUATIC ORGANISMS 2020; 138:17-27. [PMID: 32052791 DOI: 10.3354/dao03447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pulmonary function testing was performed in 3 bottlenose dolphins Tursiops truncatus (1 female and 2 males) under managed care during a 2 yr period to assess whether these data provide diagnostic information about respiratory health. Pulmonary radiographs and standard clinical testing were used to evaluate the pulmonary health of each dolphin. The female dolphin (F1) had evidence of chronic pulmonary fibrosis, and 1 male (M2) developed pneumonia during the study. Pulmonary function data were collected from maximal respiratory efforts in water and from spontaneous breaths while beached. From these data, the flow-volume relationship, the flow measured between 25 and 75% of the expired vital capacity (mid forced expiratory flow, FEF25%-75%), and the percent of the vital capacity (VC) at the peak expiratory flow (%VCPEF), were evaluated and compared with the diagnostic assessment. For maximal respiratory manoeuvres in water, there were no differences in FEF25%-75% or %VCPEF, and the flow-volume relationship showed a consistent pattern for F1. Additionally, FEF25%-75% and %VCPEF decreased by 27 and 52%, respectively, and the flow-volume relationship showed clear flow limitations with emerging disease in M2. While spontaneously breathing on land, M2 also showed a 49% decrease in %VCPEF and changes in the flow-volume relationship, indicating flow limitations following the development of pneumonia. Based on these preliminary results, we suggest that pulmonary function testing should be given more attention as a non-invasive and possibly adjunctive diagnostic tool to evaluate lung health of dolphins under managed care and in the wild.
Collapse
Affiliation(s)
- A Borque-Espinosa
- Research Department, Fundación Oceanogràfic de la Comunitat Valenciana, Valencia 46005, Spain
| | | | | | | | | | | | | |
Collapse
|
11
|
Cauture F, Sterba-Boatwright B, Rocho-Levine J, Harms C, Miedler S, Fahlman A. Using Respiratory Sinus Arrhythmia to Estimate Inspired Tidal Volume in the Bottlenose Dolphin ( Tursiops truncatus). Front Physiol 2019; 10:128. [PMID: 30837895 PMCID: PMC6390636 DOI: 10.3389/fphys.2019.00128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/01/2019] [Indexed: 11/21/2022] Open
Abstract
Man-made environmental change may have significant impact on apex predators, like marine mammals. Thus, it is important to assess the physiological boundaries for survival in these species, and assess how climate change may affect foraging efficiency and the limits for survival. In the current study, we investigated whether the respiratory sinus arrhythmia (RSA) could estimate tidal volume (V T) in resting bottlenose dolphins (Tursiops truncatus). For this purpose, we measured respiratory flow and electrocardiogram (ECG) in five adult bottlenose dolphins at rest while breathing voluntarily. Initially, an exponential decay function, using three parameters (baseline heart rate, the change in heart rate following a breath, and an exponential decay constant) was used to describe the temporal change in instantaneous heart rate following a breath. The three descriptors, in addition to body mass, were used to develop a Generalized Additive Model (GAM) to predict the inspired tidal volume (V Tinsp). The GAM allowed us to predict V Tinsp with an average ( ± SD) overestimate of 3 ± 2%. A jackknife sensitivity analysis, where 4 of the five dolphins were used to fit the GAM and the 5th dolphin used to make predictions resulted in an average overestimate of 2 ± 10%. Future studies should be used to assess whether similar relationships exist in active animals, allowing V T to be studied in free-ranging animals provided that heart rate can be measured.
Collapse
Affiliation(s)
- Fabien Cauture
- Departamento de Investigación, Fundación Oceanogràfic de la Comunidad Valenciana, Valencia, Spain
| | - Blair Sterba-Boatwright
- Department of Mathematics and Statistics, Texas A&M University–Corpus Christi, Corpus Christi, TX, United States
| | | | - Craig Harms
- Center for Marine Sciences and Technology, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Morehead City, NC, United States
| | | | - Andreas Fahlman
- Departamento de Investigación, Fundación Oceanogràfic de la Comunidad Valenciana, Valencia, Spain
- Research Group on Biomedical Imaging (GIBI2), Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| |
Collapse
|
12
|
Fahlman A, Epple A, García-Párraga D, Robeck T, Haulena M, Piscitelli-Doshkov M, Brodsky M. Characterizing respiratory capacity in belugas (Delphinapterus leucas). Respir Physiol Neurobiol 2019; 260:63-69. [DOI: 10.1016/j.resp.2018.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 11/24/2022]
|
13
|
Fahlman A, Moore MJ, Garcia-Parraga D. Respiratory function and mechanics in pinnipeds and cetaceans. J Exp Biol 2017; 220:1761-1773. [DOI: 10.1242/jeb.126870] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
In this Review, we focus on the functional properties of the respiratory system of pinnipeds and cetaceans, and briefly summarize the underlying anatomy; in doing so, we provide an overview of what is currently known about their respiratory physiology and mechanics. While exposure to high pressure is a common challenge among breath-hold divers, there is a large variation in respiratory anatomy, function and capacity between species – how are these traits adapted to allow the animals to withstand the physiological challenges faced during dives? The ultra-deep diving feats of some marine mammals defy our current understanding of respiratory physiology and lung mechanics. These animals cope daily with lung compression, alveolar collapse, transient hyperoxia and extreme hypoxia. By improving our understanding of respiratory physiology under these conditions, we will be better able to define the physiological constraints imposed on these animals, and how these limitations may affect the survival of marine mammals in a changing environment. Many of the respiratory traits to survive exposure to an extreme environment may inspire novel treatments for a variety of respiratory problems in humans.
Collapse
Affiliation(s)
- Andreas Fahlman
- Fundación Oceanográfic de la Comunidad Valenciana, Gran Vía Marques del Turia 19, Valencia 46005, Spain
- Department of Life Sciences, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Michael J. Moore
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Daniel Garcia-Parraga
- Fundación Oceanográfic de la Comunidad Valenciana, Gran Vía Marques del Turia 19, Valencia 46005, Spain
- Oceanográfic-Avanqua, Ciudad de las Artes y las Ciencias, Valencia 46013, Spain
| |
Collapse
|