1
|
Abbassi Y, Cappelli S, Spagnolo E, Gennari A, Visani G, Barattucci S, Paron F, Stuani C, Droppelmann CA, Strong MJ, Buratti E. Axon guidance genes are regulated by TDP-43 and RGNEF through long-intron removal. FASEB J 2024; 38:e70081. [PMID: 39360635 DOI: 10.1096/fj.202400743rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Rho guanine nucleotide exchange factor (RGNEF) is a guanine nucleotide exchange factor (GEF) mainly involved in regulating the activity of Rho-family GTPases. It is a bi-functional protein, acting both as a guanine exchange factor and as an RNA-binding protein. RGNEF is known to act as a destabilizing factor of neurofilament light chain RNA (NEFL) and it could potentially contribute to their sequestration in nuclear cytoplasmic inclusions. Most importantly, RGNEF inclusions in the spinal motor neurons of ALS patients have been shown to co-localize with inclusions of TDP-43, the major well-known RNA-binding protein aggregating in the brain and spinal cord of human patients. Therefore, it can be hypothesized that loss-of-function of both proteins following aggregation may contribute to motor neuron death/survival in ALS patients. To further characterize their relationship, we have compared the transcriptomic profiles of neuronal cells depleted of TDP-43 and RGNEF and show that these two factors predominantly act in an antagonistic manner when regulating the expression of axon guidance genes. From a mechanistic point of view, our experiments show that the effect of these genes on the processivity of long introns can explain their mode of action. Taken together, our results show that loss-of-function of factors co-aggregating with TDP-43 can potentially affect the expression of commonly regulated neuronal genes in a very significant manner, potentially acting as disease modifiers. This finding further highlights that neurodegenerative processes at the RNA level are the result of combinatorial interactions between different RNA-binding factors that can be co-aggregated in neuronal cells. A deeper understanding of these complex scenarios may lead to a better understanding of pathogenic mechanisms occurring in patients, where more than one specific protein may be aggregating in their neurons.
Collapse
Affiliation(s)
- Yasmine Abbassi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Sara Cappelli
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Eugenio Spagnolo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Alice Gennari
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Giulia Visani
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Simone Barattucci
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Francesca Paron
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Cristiana Stuani
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Cristian A Droppelmann
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| |
Collapse
|
2
|
Ziff OJ, Harley J, Wang Y, Neeves J, Tyzack G, Ibrahim F, Skehel M, Chakrabarti AM, Kelly G, Patani R. Nucleocytoplasmic mRNA redistribution accompanies RNA binding protein mislocalization in ALS motor neurons and is restored by VCP ATPase inhibition. Neuron 2023; 111:3011-3027.e7. [PMID: 37480846 DOI: 10.1016/j.neuron.2023.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/09/2023] [Accepted: 06/22/2023] [Indexed: 07/24/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by nucleocytoplasmic mislocalization of the RNA-binding protein (RBP) TDP-43. However, emerging evidence suggests more widespread mRNA and protein mislocalization. Here, we employed nucleocytoplasmic fractionation, RNA sequencing, and mass spectrometry to investigate the localization of mRNA and protein in induced pluripotent stem cell-derived motor neurons (iPSMNs) from ALS patients with TARDBP and VCP mutations. ALS mutant iPSMNs exhibited extensive nucleocytoplasmic mRNA redistribution, RBP mislocalization, and splicing alterations. Mislocalized proteins exhibited a greater affinity for redistributed transcripts, suggesting a link between RBP mislocalization and mRNA redistribution. Notably, treatment with ML240, a VCP ATPase inhibitor, partially restored mRNA and protein localization in ALS mutant iPSMNs. ML240 induced changes in the VCP interactome and lysosomal localization and reduced oxidative stress and DNA damage. These findings emphasize the link between RBP mislocalization and mRNA redistribution in ALS motor neurons and highlight the therapeutic potential of VCP inhibition.
Collapse
Affiliation(s)
- Oliver J Ziff
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK; National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, WC1N 3BG London, UK.
| | - Jasmine Harley
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK; Institute of Molecular and Cell Biology, A(∗)STAR Research Entities, Singapore 138673, Singapore
| | - Yiran Wang
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Jacob Neeves
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Giulia Tyzack
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Fairouz Ibrahim
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Mark Skehel
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | | | - Gavin Kelly
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Rickie Patani
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK; National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, WC1N 3BG London, UK.
| |
Collapse
|
3
|
Girardini KN, Olthof AM, Kanadia RN. Introns: the "dark matter" of the eukaryotic genome. Front Genet 2023; 14:1150212. [PMID: 37260773 PMCID: PMC10228655 DOI: 10.3389/fgene.2023.1150212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/28/2023] [Indexed: 06/02/2023] Open
Abstract
The emergence of introns was a significant evolutionary leap that is a major distinguishing feature between prokaryotic and eukaryotic genomes. While historically introns were regarded merely as the sequences that are removed to produce spliced transcripts encoding functional products, increasingly data suggests that introns play important roles in the regulation of gene expression. Here, we use an intron-centric lens to review the role of introns in eukaryotic gene expression. First, we focus on intron architecture and how it may influence mechanisms of splicing. Second, we focus on the implications of spliceosomal snRNAs and their variants on intron splicing. Finally, we discuss how the presence of introns and the need to splice them influences transcription regulation. Despite the abundance of introns in the eukaryotic genome and their emerging role regulating gene expression, a lot remains unexplored. Therefore, here we refer to introns as the "dark matter" of the eukaryotic genome and discuss some of the outstanding questions in the field.
Collapse
Affiliation(s)
- Kaitlin N. Girardini
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
| | - Anouk M. Olthof
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rahul N. Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
4
|
Butto T, Mungikar K, Baumann P, Winter J, Lutz B, Gerber S. Nuclei on the Rise: When Nuclei-Based Methods Meet Next-Generation Sequencing. Cells 2023; 12:cells12071051. [PMID: 37048124 PMCID: PMC10093037 DOI: 10.3390/cells12071051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
In the last decade, we have witnessed an upsurge in nuclei-based studies, particularly coupled with next-generation sequencing. Such studies aim at understanding the molecular states that exist in heterogeneous cell populations by applying increasingly more affordable sequencing approaches, in addition to optimized methodologies developed to isolate and select nuclei. Although these powerful new methods promise unprecedented insights, it is important to understand and critically consider the associated challenges. Here, we provide a comprehensive overview of the rise of nuclei-based studies and elaborate on their advantages and disadvantages, with a specific focus on their utility for transcriptomic sequencing analyses. Improved designs and appropriate use of the various experimental strategies will result in acquiring biologically accurate and meaningful information.
Collapse
Affiliation(s)
- Tamer Butto
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, 55128 Mainz, Germany
- Correspondence: (T.B.); (S.G.); Tel.: +49-(0)6131-39-27331 (S.G.)
| | - Kanak Mungikar
- Institute of Human Genetics, University Medical Center Mainz, 55131 Mainz, Germany
| | - Peter Baumann
- Faculty of Biology, Johannes Gutenberg-University, 55128 Mainz, Germany
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Jennifer Winter
- Institute of Human Genetics, University Medical Center Mainz, 55131 Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
| | - Beat Lutz
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
- Institute of Physiological Chemistry, University Medical Center Mainz, 55128 Mainz, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center Mainz, 55131 Mainz, Germany
- Correspondence: (T.B.); (S.G.); Tel.: +49-(0)6131-39-27331 (S.G.)
| |
Collapse
|
5
|
Qing X, Zhang G, Wang Z. DNA
damage response in neurodevelopment and neuromaintenance. FEBS J 2022. [DOI: 10.1111/febs.16535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/24/2022] [Indexed: 01/01/2023]
Affiliation(s)
- Xiaobing Qing
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) Jena Germany
| | - Guangyu Zhang
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) Jena Germany
| | - Zhao‐Qi Wang
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) Jena Germany
- Faculty of Biological Sciences Friedrich‐Schiller‐University of Jena Germany
| |
Collapse
|
6
|
Unique and Repeated Stwintrons (Spliceosomal Twin Introns) in the Hypoxylaceae. J Fungi (Basel) 2022; 8:jof8040397. [PMID: 35448628 PMCID: PMC9024468 DOI: 10.3390/jof8040397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 12/04/2022] Open
Abstract
Introns are usually non-coding sequences interrupting open reading frames in pre-mRNAs [D1,2]. Stwintrons are nested spliceosomal introns, where an internal intron splits a second donor sequence into two consecutive splicing reactions leading to mature mRNA. In Hypoxylon sp. CO27-5, 36 highly sequence-similar [D1,2] stwintrons are extant (sister stwintrons). An additional 81 [D1,2] sequence-unrelated stwintrons are described here. Most of them are located at conserved gene positions rooted deep in the Hypoxylaceae. Absence of exonic sequence bias at the exon–stwintron junctions and a very similar phase distribution were noted for both groups. The presence of an underlying sequence symmetry in all 117 stwintrons was striking. This symmetry, more pronounced near the termini of most of the full-length sister stwintrons, may lead to a secondary structure that brings into close proximity the most distal splice sites, the donor of the internal and the acceptor of the external intron. The Hypoxylon stwintrons were overwhelmingly excised by consecutive splicing reactions precisely removing the whole intervening sequence, whereas one excision involving the distal splice sites led to a frameshift. Alternative (mis)splicing took place for both sister and uniquely occurring stwintrons. The extraordinary symmetry of the sister stwintrons thus seems dispensable for the infrequent, direct utilisation of the distal splice sites.
Collapse
|
7
|
Internally Symmetrical Stwintrons and Related Canonical Introns in Hypoxylaceae Species. J Fungi (Basel) 2021; 7:jof7090710. [PMID: 34575748 PMCID: PMC8469720 DOI: 10.3390/jof7090710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 01/01/2023] Open
Abstract
Spliceosomal introns are pervasive in eukaryotes. Intron gains and losses have occurred throughout evolution, but the origin of new introns is unclear. Stwintrons are complex intervening sequences where one of the sequence elements (5′-donor, lariat branch point element or 3′-acceptor) necessary for excision of a U2 intron (external intron) is itself interrupted by a second (internal) U2 intron. In Hypoxylaceae, a family of endophytic fungi, we uncovered scores of donor-disrupted stwintrons with striking sequence similarity among themselves and also with canonical introns. Intron–exon structure comparisons suggest that these stwintrons have proliferated within diverging taxa but also give rise to proliferating canonical introns in some genomes. The proliferated (stw)introns have integrated seamlessly at novel gene positions. The recently proliferated (stw)introns appear to originate from a conserved ancestral stwintron characterised by terminal inverted repeats (45–55 nucleotides), a highly symmetrical structure that may allow the formation of a double-stranded intron RNA molecule. No short tandem duplications flank the putatively inserted intervening sequences, which excludes a DNA transposition-based mechanism of proliferation. It is tempting to suggest that this highly symmetrical structure may have a role in intron proliferation by (an)other mechanism(s).
Collapse
|
8
|
Top O, Milferstaedt SWL, van Gessel N, Hoernstein SNW, Özdemir B, Decker EL, Reski R. Expression of a human cDNA in moss results in spliced mRNAs and fragmentary protein isoforms. Commun Biol 2021; 4:964. [PMID: 34385580 PMCID: PMC8361020 DOI: 10.1038/s42003-021-02486-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 07/26/2021] [Indexed: 12/18/2022] Open
Abstract
Production of biopharmaceuticals relies on the expression of mammalian cDNAs in host organisms. Here we show that the expression of a human cDNA in the moss Physcomitrium patens generates the expected full-length and four additional transcripts due to unexpected splicing. This mRNA splicing results in non-functional protein isoforms, cellular misallocation of the proteins and low product yields. We integrated these results together with the results of our analysis of all 32,926 protein-encoding Physcomitrella genes and their 87,533 annotated transcripts in a web application, physCO, for automatized optimization. A thus optimized cDNA results in about twelve times more protein, which correctly localizes to the ER. An analysis of codon preferences of different production hosts suggests that similar effects occur also in non-plant hosts. We anticipate that the use of our methodology will prevent so far undetected mRNA heterosplicing resulting in maximized functional protein amounts for basic biology and biotechnology.
Collapse
Affiliation(s)
- Oguz Top
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- Plant Molecular Cell Biology, Department Biology I, LMU Biocenter, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Stella W L Milferstaedt
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Nico van Gessel
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Bugra Özdemir
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, Freiburg, Germany.
| |
Collapse
|
9
|
Xue W, Ma XK, Yang L. Fast and furious: insights of back splicing regulation during nascent RNA synthesis. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1050-1061. [PMID: 33580425 DOI: 10.1007/s11427-020-1881-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
Alternative splicing of eukaryotic precursor (messenger) RNAs in the nucleus not only increases transcriptomic complexity, but also expands proteomic and functional diversity. In addition to basic types of alternative splicing, recent transcriptome-wide analyses have also suggested other new types of non-canonical splicing, such as back splicing and recursive splicing, and their widespread expression across species Increasing lines of evidence have suggested mechanisms for back splicing, including insights from analyses of nascent RNA sequencing. In this review, we discuss our current understanding of back splicing regulation, and highlight its distinct characteristics in processing during nascent RNA synthesis by taking advantage of metabolic tagging nascent RNA sequencing. Features of recursive splicing are also discussed in the perspective of nascent RNA sequencing.
Collapse
Affiliation(s)
- Wei Xue
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xu-Kai Ma
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Li Yang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
10
|
Abstract
The DMD gene is the largest in the human genome, with a total intron content exceeding 2.2Mb. In the decades since DMD was discovered there have been numerous reported cases of pseudoexons (PEs) arising in the mature DMD transcripts of some individuals, either as the result of mutations or as low-frequency errors of the spliceosome. In this review, I collate from the literature 58 examples of DMD PEs and examine the diversity and commonalities of their features. In particular, I note the high frequency of PEs that arise from deep intronic SNVs and discuss a possible link between PEs induced by distal mutations and the regulation of recursive splicing.
Collapse
Affiliation(s)
- Niall P Keegan
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University and Perron Institute, Perth, Australia
| |
Collapse
|
11
|
Taylor K, Sobczak K. Intrinsic Regulatory Role of RNA Structural Arrangement in Alternative Splicing Control. Int J Mol Sci 2020; 21:ijms21145161. [PMID: 32708277 PMCID: PMC7404189 DOI: 10.3390/ijms21145161] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing is a highly sophisticated process, playing a significant role in posttranscriptional gene expression and underlying the diversity and complexity of organisms. Its regulation is multilayered, including an intrinsic role of RNA structural arrangement which undergoes time- and tissue-specific alterations. In this review, we describe the principles of RNA structural arrangement and briefly decipher its cis- and trans-acting cellular modulators which serve as crucial determinants of biological functionality of the RNA structure. Subsequently, we engage in a discussion about the RNA structure-mediated mechanisms of alternative splicing regulation. On one hand, the impairment of formation of optimal RNA structures may have critical consequences for the splicing outcome and further contribute to understanding the pathomechanism of severe disorders. On the other hand, the structural aspects of RNA became significant features taken into consideration in the endeavor of finding potential therapeutic treatments. Both aspects have been addressed by us emphasizing the importance of ongoing studies in both fields.
Collapse
|
12
|
Ág N, Kavalecz N, Pénzes F, Karaffa L, Scazzocchio C, Flipphi M, Fekete E. Complex intron generation in the yeast genus Lipomyces. Sci Rep 2020; 10:6022. [PMID: 32265493 PMCID: PMC7138796 DOI: 10.1038/s41598-020-63239-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/27/2020] [Indexed: 11/16/2022] Open
Abstract
In primary transcripts of eukaryotic nuclear genes, coding sequences are often interrupted by U2-type introns. Such intervening sequences can constitute complex introns excised by consecutive splicing reactions. The origin of spliceosomal introns is a vexing problem. Sequence variation existent across fungal taxa provides means to study their structure and evolution. In one class of complex introns called [D] stwintrons, an (internal) U2 intron is nested within the 5'-donor element of another (external) U2 intron. In the gene for a reticulon-like protein in species of the ascomycete yeast genus Lipomyces, the most 5' terminal intron position is occupied by one of three complex intervening sequences consistent of differently nested U2 intron units, as demonstrated in L. lipofer, L. suomiensis, and L. starkeyi. In L. starkeyi, the donor elements of the constituent introns are abutting and the complex intervening sequence can be excised alternatively either with one standard splicing reaction or, as a [D] stwintron, by two consecutive reactions. Our work suggests how [D] stwintrons could emerge by the appearance of new functional splice sites within an extant intron. The stepwise stwintronisation mechanism may involve duplication of the functional intron donor element of the ancestor intron.
Collapse
Affiliation(s)
- Norbert Ág
- Dept. of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, 4032, Hungary
| | - Napsugár Kavalecz
- Dept. of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, 4032, Hungary.,Juhász-Nagy Pál Doctoral School of Biology and Environmental Sciences, University of Debrecen, Debrecen, 4032, Hungary
| | - Fruzsina Pénzes
- Dept. of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, 4032, Hungary.,Juhász-Nagy Pál Doctoral School of Biology and Environmental Sciences, University of Debrecen, Debrecen, 4032, Hungary
| | - Levente Karaffa
- Dept. of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, 4032, Hungary
| | - Claudio Scazzocchio
- Dept. of Microbiology, Imperial College London, SW7 2AZ, London, UK.,Institut de Biologie Intégrative de la Cellule, Centre National de la Recherche Scientifique - Unité Mixte de Recherche UMR 9198, Gif-sur-Yvette, 91190, France
| | - Michel Flipphi
- Dept. of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, 4032, Hungary
| | - Erzsébet Fekete
- Dept. of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
13
|
Szabo EX, Reichert P, Lehniger MK, Ohmer M, de Francisco Amorim M, Gowik U, Schmitz-Linneweber C, Laubinger S. Metabolic Labeling of RNAs Uncovers Hidden Features and Dynamics of the Arabidopsis Transcriptome. THE PLANT CELL 2020; 32:871-887. [PMID: 32060173 PMCID: PMC7145469 DOI: 10.1105/tpc.19.00214] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 01/14/2020] [Accepted: 02/11/2020] [Indexed: 05/05/2023]
Abstract
Transcriptome analysis by RNA sequencing (RNA-seq) has become an indispensable research tool in modern plant biology. Virtually all RNA-seq studies provide a snapshot of the steady state transcriptome, which contains valuable information about RNA populations at a given time but lacks information about the dynamics of RNA synthesis and degradation. Only a few specialized sequencing techniques, such as global run-on sequencing, have been used to provide information about RNA synthesis rates in plants. Here, we demonstrate that RNA labeling with the modified, nontoxic uridine analog 5-ethynyl uridine (5-EU) in Arabidopsis (Arabidopsis thaliana) seedlings provides insight into plant transcriptome dynamics. Pulse labeling with 5-EU revealed nascent and unstable RNAs, RNA processing intermediates generated by splicing, and chloroplast RNAs. Pulse-chase experiments with 5-EU allowed us to determine RNA stabilities without the need for chemical transcription inhibitors such as actinomycin and cordycepin. Inhibitor-free, genome-wide analysis of polyadenylated RNA stability via 5-EU pulse-chase experiments revealed RNAs with shorter half-lives than those reported after chemical inhibition of transcription. In summary, our results indicate that the Arabidopsis nascent transcriptome contains unstable RNAs and RNA processing intermediates and suggest that polyadenylated RNAs have low stability in plants. Our technique lays the foundation for easy, affordable, nascent transcriptome analysis and inhibitor-free analysis of RNA stability in plants.
Collapse
Affiliation(s)
- Emese Xochitl Szabo
- Institute for Biology and Environmental Science, University of Oldenburg, 26129 Oldenburg, Germany
- Centre for Plant Molecular Biology, University of Tübingen, 72074 Tübingen, Germany
- Chemical Genomics Centre of the Max Planck Society, 44227 Dortmund, Germany
| | - Philipp Reichert
- Institute for Biology and Environmental Science, University of Oldenburg, 26129 Oldenburg, Germany
- Centre for Plant Molecular Biology, University of Tübingen, 72074 Tübingen, Germany
- Chemical Genomics Centre of the Max Planck Society, 44227 Dortmund, Germany
| | | | - Marilena Ohmer
- Centre for Plant Molecular Biology, University of Tübingen, 72074 Tübingen, Germany
| | | | - Udo Gowik
- Institute for Biology and Environmental Science, University of Oldenburg, 26129 Oldenburg, Germany
| | | | - Sascha Laubinger
- Institute for Biology and Environmental Science, University of Oldenburg, 26129 Oldenburg, Germany
- Centre for Plant Molecular Biology, University of Tübingen, 72074 Tübingen, Germany
- Chemical Genomics Centre of the Max Planck Society, 44227 Dortmund, Germany
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| |
Collapse
|
14
|
Ma L, Chen Z, Huang DW, Cissé OH, Rothenburger JL, Latinne A, Bishop L, Blair R, Brenchley JM, Chabé M, Deng X, Hirsch V, Keesler R, Kutty G, Liu Y, Margolis D, Morand S, Pahar B, Peng L, Van Rompay KKA, Song X, Song J, Sukura A, Thapar S, Wang H, Weissenbacher-Lang C, Xu J, Lee CH, Jardine C, Lempicki RA, Cushion MT, Cuomo CA, Kovacs JA. Diversity and Complexity of the Large Surface Protein Family in the Compacted Genomes of Multiple Pneumocystis Species. mBio 2020; 11:e02878-19. [PMID: 32127451 PMCID: PMC7064768 DOI: 10.1128/mbio.02878-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/16/2020] [Indexed: 12/23/2022] Open
Abstract
Pneumocystis, a major opportunistic pathogen in patients with a broad range of immunodeficiencies, contains abundant surface proteins encoded by a multicopy gene family, termed the major surface glycoprotein (Msg) gene superfamily. This superfamily has been identified in all Pneumocystis species characterized to date, highlighting its important role in Pneumocystis biology. In this report, through a comprehensive and in-depth characterization of 459 msg genes from 7 Pneumocystis species, we demonstrate, for the first time, the phylogeny and evolution of conserved domains in Msg proteins and provide a detailed description of the classification, unique characteristics, and phylogenetic relatedness of five Msg families. We further describe, for the first time, the relative expression levels of individual msg families in two rodent Pneumocystis species, the substantial variability of the msg repertoires in P. carinii from laboratory and wild rats, and the distinct features of the expression site for the classic msg genes in Pneumocystis from 8 mammalian host species. Our analysis suggests multiple functions for this superfamily rather than just conferring antigenic variation to allow immune evasion as previously believed. This study provides a rich source of information that lays the foundation for the continued experimental exploration of the functions of the Msg superfamily in Pneumocystis biology.IMPORTANCEPneumocystis continues to be a major cause of disease in humans with immunodeficiency, especially those with HIV/AIDS and organ transplants, and is being seen with increasing frequency worldwide in patients treated with immunodepleting monoclonal antibodies. Annual health care associated with Pneumocystis pneumonia costs ∼$475 million dollars in the United States alone. In addition to causing overt disease in immunodeficient individuals, Pneumocystis can cause subclinical infection or colonization in healthy individuals, which may play an important role in species preservation and disease transmission. Our work sheds new light on the diversity and complexity of the msg superfamily and strongly suggests that the versatility of this superfamily reflects multiple functions, including antigenic variation to allow immune evasion and optimal adaptation to host environmental conditions to promote efficient infection and transmission. These findings are essential to consider in developing new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Liang Ma
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Zehua Chen
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Da Wei Huang
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Ousmane H Cissé
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Jamie L Rothenburger
- Department of Pathobiology, Canadian Wildlife Health Cooperative, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | | | - Lisa Bishop
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert Blair
- Tulane National Primate Research Center, Tulane University, New Orleans, Louisiana, USA
| | - Jason M Brenchley
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Magali Chabé
- Université Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Xilong Deng
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Vanessa Hirsch
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rebekah Keesler
- California National Primate Research Center, University of California, Davis, Davis, California, USA
| | - Geetha Kutty
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Yueqin Liu
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel Margolis
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Serge Morand
- Institut des Sciences de l'Evolution, Université de Montpellier 2, Montpellier, France
| | - Bapi Pahar
- Tulane National Primate Research Center, Tulane University, New Orleans, Louisiana, USA
| | - Li Peng
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, Davis, California, USA
| | - Xiaohong Song
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Jun Song
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Antti Sukura
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Sabrina Thapar
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Honghui Wang
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Chao-Hung Lee
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Claire Jardine
- Department of Pathobiology, Canadian Wildlife Health Cooperative, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Richard A Lempicki
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Melanie T Cushion
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Christina A Cuomo
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Joseph A Kovacs
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Kavalecz N, Ág N, Karaffa L, Scazzocchio C, Flipphi M, Fekete E. A spliceosomal twin intron (stwintron) participates in both exon skipping and evolutionary exon loss. Sci Rep 2019; 9:9940. [PMID: 31289343 PMCID: PMC6616335 DOI: 10.1038/s41598-019-46435-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/28/2019] [Indexed: 01/06/2023] Open
Abstract
Spliceosomal twin introns (stwintrons) are introns where any of the three consensus sequences involved in splicing is interrupted by another intron (internal intron). In Aspergillus nidulans, a donor-disrupted stwintron (intron-1) is extant in the transcript encoding a reticulon-like protein. The orthologous transcript of Aspergillus niger can be alternatively spliced; the exon downstream the stwintron could be skipped by excising a sequence that comprises this stwintron, the neighbouring intron-2, and the exon bounded by these. This process involves the use of alternative 3' splice sites for the internal intron, the resulting alternative intervening sequence being a longer 3'-extended stwintron. In 29 species of Onygenales, a multi-step splicing process occurs in the orthologous transcript, in which a complex intervening sequence including the stwintron and neigbouring intron-2, generates by three splicing reactions a "second order intron" which must then be excised with a fourth splicing event. The gene model in two species can be envisaged as one canonical intron (intron-1) evolved from this complex intervening sequence of nested canonical introns found elsewhere in Onygenales. Postulated splicing intermediates were experimentally verified in one or more species. This work illustrates a role of stwintrons in both alternative splicing and the evolution of intron structure.
Collapse
Affiliation(s)
- Napsugár Kavalecz
- Department of Biochemical Engineering, University of Debrecen, Debrecen, 4032, Hungary
| | - Norbert Ág
- Department of Biochemical Engineering, University of Debrecen, Debrecen, 4032, Hungary
| | - Levente Karaffa
- Department of Biochemical Engineering, University of Debrecen, Debrecen, 4032, Hungary
| | - Claudio Scazzocchio
- Department of Microbiology, Imperial College London, London, SW7 2AZ, UK.,Institut de Biologie Intégrative de la Cellule, Centre National de la Recherche Scientifique - Unité Mixte de Recherche 9198, Gif-sur-Yvette, 91405, France
| | - Michel Flipphi
- Department of Biochemical Engineering, University of Debrecen, Debrecen, 4032, Hungary
| | - Erzsébet Fekete
- Department of Biochemical Engineering, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
16
|
Networks of mRNA Processing and Alternative Splicing Regulation in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1157:1-27. [PMID: 31342435 DOI: 10.1007/978-3-030-19966-1_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
mRNA processing events introduce an intricate layer of complexity into gene expression processes, supporting a tremendous level of diversification of the genome's coding and regulatory potential, particularly in vertebrate species. The recent development of massive parallel sequencing methods and their adaptation to the identification and quantification of different RNA species and the dynamics of mRNA metabolism and processing has generated an unprecedented view over the regulatory networks that are established at this level, which contribute to sustain developmental, tissue specific or disease specific gene expression programs. In this chapter, we provide an overview of the recent evolution of transcriptome profiling methods and the surprising insights that have emerged in recent years regarding distinct mRNA processing events - from the 5' end to the 3' end of the molecule.
Collapse
|
17
|
Zhang XO, Fu Y, Mou H, Xue W, Weng Z. The temporal landscape of recursive splicing during Pol II transcription elongation in human cells. PLoS Genet 2018; 14:e1007579. [PMID: 30148885 PMCID: PMC6110456 DOI: 10.1371/journal.pgen.1007579] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/20/2018] [Indexed: 01/28/2023] Open
Abstract
Recursive splicing (RS) is an evolutionarily conserved process of removing long introns via multiple steps of splicing. It was first discovered in Drosophila and recently proven to occur also in humans. The detailed mechanism of recursive splicing is not well understood, in particular, whether it is kinetically coupled with transcription. To investigate the dynamic process that underlies recursive splicing, we systematically characterized 342 RS sites in three human cell types using published time-series data that monitored synchronized Pol II elongation and nascent RNA production with 4-thiouridine labeling. We found that half of the RS events occurred post-transcriptionally with long delays. For at least 18-47% RS introns, we detected RS junction reads only after detecting canonical splicing junction reads, supporting the notion that these introns were removed by both recursive splicing and canonical splicing. Furthermore, the choice of which splicing mechanism was used showed cell type specificity. Our results suggest that recursive splicing supplements, rather than replaces, canonical splicing for removing long introns.
Collapse
Affiliation(s)
- Xiao-Ou Zhang
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Yu Fu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - Haiwei Mou
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
18
|
Dvinge H. Regulation of alternative
mRNA
splicing: old players and new perspectives. FEBS Lett 2018; 592:2987-3006. [DOI: 10.1002/1873-3468.13119] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Heidi Dvinge
- Department of Biomolecular Chemistry School of Medicine and Public Health University of Wisconsin‐Madison WI USA
| |
Collapse
|
19
|
Chen W, Moore J, Ozadam H, Shulha HP, Rhind N, Weng Z, Moore MJ. Transcriptome-wide Interrogation of the Functional Intronome by Spliceosome Profiling. Cell 2018; 173:1031-1044.e13. [PMID: 29727662 PMCID: PMC6090549 DOI: 10.1016/j.cell.2018.03.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/09/2018] [Accepted: 03/23/2018] [Indexed: 12/31/2022]
Abstract
Full understanding of eukaryotic transcriptomes and how they respond to different conditions requires deep knowledge of all sites of intron excision. Although RNA sequencing (RNA-seq) provides much of this information, the low abundance of many spliced transcripts (often due to their rapid cytoplasmic decay) limits the ability of RNA-seq alone to reveal the full repertoire of spliced species. Here, we present "spliceosome profiling," a strategy based on deep sequencing of RNAs co-purifying with late-stage spliceosomes. Spliceosome profiling allows for unambiguous mapping of intron ends to single-nucleotide resolution and branchpoint identification at unprecedented depths. Our data reveal hundreds of new introns in S. pombe and numerous others that were previously misannotated. By providing a means to directly interrogate sites of spliceosome assembly and catalysis genome-wide, spliceosome profiling promises to transform our understanding of RNA processing in the nucleus, much as ribosome profiling has transformed our understanding mRNA translation in the cytoplasm.
Collapse
Affiliation(s)
- Weijun Chen
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jill Moore
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Hakan Ozadam
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Hennady P Shulha
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Nicholas Rhind
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Zhiping Weng
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Melissa J Moore
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
20
|
It Is Imperative to Establish a Pellucid Definition of Chimeric RNA and to Clear Up a Lot of Confusion in the Relevant Research. Int J Mol Sci 2017; 18:ijms18040714. [PMID: 28350330 PMCID: PMC5412300 DOI: 10.3390/ijms18040714] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 12/27/2022] Open
Abstract
There have been tens of thousands of RNAs deposited in different databases that contain sequences of two genes and are coined chimeric RNAs, or chimeras. However, "chimeric RNA" has never been lucidly defined, partly because "gene" itself is still ill-defined and because the means of production for many RNAs is unclear. Since the number of putative chimeras is soaring, it is imperative to establish a pellucid definition for it, in order to differentiate chimeras from regular RNAs. Otherwise, not only will chimeric RNA studies be misled but also characterization of fusion genes and unannotated genes will be hindered. We propose that only those RNAs that are formed by joining two RNA transcripts together without a fusion gene as a genomic basis should be regarded as authentic chimeras, whereas those RNAs transcribed as, and cis-spliced from, single transcripts should not be deemed as chimeras. Many RNAs containing sequences of two neighboring genes may be transcribed via a readthrough mechanism, and thus are actually RNAs of unannotated genes or RNA variants of known genes, but not chimeras. In today's chimeric RNA research, there are still several key flaws, technical constraints and understudied tasks, which are also described in this perspective essay.
Collapse
|