1
|
Wang RX, Wang LY, Han XY, Chen SF, Sun XJ, Li ZY, Little MA, Zhao MH, Chen M. FTY720 ameliorates experimental MPO-ANCA-associated vasculitis by regulating fatty acid oxidation via the neutrophil PPARα-CPT1a pathway. Rheumatology (Oxford) 2024; 63:2578-2589. [PMID: 38837706 PMCID: PMC11371367 DOI: 10.1093/rheumatology/keae320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 04/15/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
OBJECTIVES Increasing studies demonstrated the importance of C5a and anti-neutrophil cytoplasmic antibody (ANCA)-induced neutrophil activation in the pathogenesis of ANCA-associated vasculitis (AAV). Sphingosine-1-phosphate (S1P) acts as a downstream effector molecule of C5a and enhances neutrophil activation induced by C5a and ANCA. The current study investigated the role of a S1P receptor modulator, FTY720, in experimental autoimmune vasculitis (EAV) and explored the immunometabolism-related mechanisms of FTY720 in modulating ANCA-induced neutrophil activation. METHODS The effects of FTY720 in EAV were evaluated by quantifying haematuria, proteinuria, crescent formation, tubulointerstitial injury and pulmonary haemorrhage. RNA sequencing of renal cortex and gene enrichment analysis were performed. The proteins of key identified pathways were analysed in neutrophils isolated from peripheral blood of patients with active AAV and normal controls. We assessed the effects of FTY720 on ANCA-induced neutrophil respiratory burst and neutrophil extracellular traps formation (NETosis). RESULTS FTY720 treatment significantly attenuated renal injury and pulmonary haemorrhage in EAV. RNA sequencing analyses of renal cortex demonstrated enhanced fatty acid oxidation (FAO) and peroxisome proliferator-activated receptor (PPAR) signalling in FTY720-treated rats. Compared with normal controls, patients with active AAV showed decreased FAO in neutrophils. FTY720-treated differentiated HL-60 cells showed increased expression of carnitine palmitoyltransferase 1a (CPT1a) and PPARα. Blocking or knockdown of CPT1a or PPARα in isolated human neutrophils and HL-60 cells reversed the inhibitory effects of FTY720 on ANCA-induced neutrophil respiratory burst and NETosis. CONCLUSION FTY720 attenuated renal injury in EAV through upregulating FAO via the PPARα-CPT1a pathway in neutrophils, offering potential immunometabolic targets in AAV treatment.
Collapse
Affiliation(s)
- Rui-Xue Wang
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Luo-Yi Wang
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Xiang-Yu Han
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Su-Fang Chen
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Xiao-Jing Sun
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Zhi-Ying Li
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Mark A Little
- Trinity Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Irish Centre for Vascular Biology, Trinity College Dublin, Dublin, Ireland
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Min Chen
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Gao H, Gao Z, Liu X, Sun X, Hu Z, Song Z, Zhang C, Fei J, Wang X. miR-101-3p-mediated role of PDZK1 in hepatocellular carcinoma progression and the underlying PI3K/Akt signaling mechanism. Cell Div 2024; 19:9. [PMID: 38532426 DOI: 10.1186/s13008-023-00106-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/16/2023] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND The molecular targets and associated mechanisms of hepatocellular carcinoma (HCC) have been widely studied, but the roles of PDZK1 in HCC are unclear. Therefore, the aim of this study is to explore the role and associated mechanisms of PDZK1 in HCC. RESULTS It was found that the expression of PDZK1 in HCC tissues was higher than that in paired paracancerous tissues. High expression of PDZK1 was associated with lymph node metastasis, degree of differentiation, and clinical stage. Upregulation of PDZK1 in HCC cells affected their proliferation, migration, invasion, apoptosis, and cell cycle, and also induced PI3K/AKT activation. PDZK1 is a downstream target gene of miR-101-3p. Accordingly, increase in the expression of miR-101-3p reversed the promotive effect of PDZK1 in HCC. Moreover, PDZK1 was found to accelerate cell proliferation and promote the malignant progression of HCC via the PI3K/AKT pathway. CONCLUSION Our study indicated that the miR-101-3p/PDZK1 axis plays a role in HCC progression and could be beneficial as a novel biomarker and new therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Huihui Gao
- Department of Internal Medicine, The No.1 People's Hospital of Pinghu City, Pinghu, 314201, Zhejiang, China
| | - Zhaofeng Gao
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, No. 397, Huangcheng North Road, Jiaxing, 314000, Zhejiang, China
- Faculty of Graduate Studies, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Xiaobei Liu
- Department of Internal Medicine, The No.1 People's Hospital of Pinghu City, Pinghu, 314201, Zhejiang, China
| | - Xu Sun
- School of Medicine, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University, Huzhou, 313003, Zhejiang, China
| | - Zhonghui Hu
- Department of Internal Medicine, The No.1 People's Hospital of Pinghu City, Pinghu, 314201, Zhejiang, China
| | - Zhengwei Song
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, No. 397, Huangcheng North Road, Jiaxing, 314000, Zhejiang, China
| | - Cheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jianguo Fei
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, No. 397, Huangcheng North Road, Jiaxing, 314000, Zhejiang, China.
| | - Xiaoguang Wang
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, No. 397, Huangcheng North Road, Jiaxing, 314000, Zhejiang, China.
| |
Collapse
|
3
|
Lu S, Chen X, Chen Y, Zhang Y, Luo J, Jiang H, Fang L, Zhou H. Downregulation of PDZK1 by TGF-β1 promotes renal fibrosis via inducing epithelial-mesenchymal transition of renal tubular cells. Biochem Pharmacol 2024; 220:116015. [PMID: 38158021 DOI: 10.1016/j.bcp.2023.116015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Transforming growth factor-beta 1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) of renal tubular cells promotes renal fibrosis and the progression of chronic kidney disease (CKD). PDZ domain-containing 1 (PDZK1) is highly expressed in renal tubular epithelial cells; however, its role in TGF-β1-induced EMT remains poorly understood. The present study showed that PDZK1 expression was extremely downregulated in fibrotic mouse kidneys and its negative correlation with TGF-β1 expression and the degree of renal fibrosis. In addition, TGF-β1 downregulated the mRNA expression of PDZK1 in a time- and concentration-dependent manner in vitro. The downregulation of PDZK1 exacerbated TGF-β1-induced EMT upon oxidative stress, while the overexpression of PDZK1 had the converse effect. Subsequent investigations demonstrated that TGF-β1 downregulated PDZK1 expression via p38 MAPK or PI3K/AKT signaling in vitro, but independently of ERK/JNK MAPK signaling. Meanwhile, inhibition of the p38/JNK MAPK or PI3K/AKT signaling using chemical inhibitors restored the PDZK1 expression, mitigated renal fibrosis, and elevated renal levels of endogenous antioxidants carnitine and ergothioneine in adenine-induced CKD mice. These findings provide the first evidence suggesting a negative correlation between PDZK1 and renal fibrosis, and identifying PDZK1 as a novel suppressor of renal fibrosis in CKD through ameliorating oxidant stress.
Collapse
Affiliation(s)
- Shuanghui Lu
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiu Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yujia Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingqiong Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jun Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huidi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321036, China
| | - Luo Fang
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - Hui Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321036, China.
| |
Collapse
|
4
|
Guo S, He L, Zhang Y, Niu J, Li C, Zhang Z, Li P, Ding B. Effects of Vitamin A on Immune Responses and Vitamin A Metabolism in Broiler Chickens Challenged with Necrotic Enteritis. Life (Basel) 2023; 13:life13051122. [PMID: 37240767 DOI: 10.3390/life13051122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Necrotic enteritis (NE) is an important enteric inflammatory disease of poultry, and the effects of vitamin A (VitA) on NE birds are largely unknown. The present study was conducted to investigate the effects of VitA on the immune responses and VitA metabolism of NE broilers as well as the underlying mechanisms. Using a 2 × 2 factorial arrangement, 336 1-day-old Ross 308 broiler chicks were randomly assigned to 4 groups with 7 replicates. Broilers in the control (Ctrl) group were fed a basal diet without extra VitA supplementation. Broilers in the VitA group were fed a basal diet supplemented with 12,000 IU/kg of VitA. Birds in NE and VitA + NE groups were fed corresponding diets and, in addition, co-infected with Eimeria spp. and Clostridium perfringens on days 14 to 20. Samples of the blood, jejunum, spleen and liver were obtained on day 28 for analysis, and meanwhile, lesion scores were also recorded. The results showed that NE challenge increased lesion score in the jejunum and decreased serum glucose, total glyceride, calcium, phosphorus and uric acid levels (p < 0.05). VitA supplementation reduced the levels of serum phosphorus, uric acid and alkaline phosphatase in NE-challenged birds and increased serum low-density lipoprotein content and the activity of aspartate aminotransferase and creatine kinase (p < 0.05). Compared with the Ctrl group, the VitA and NE groups had higher mRNA expression of interferon-γ in the jejunum (p < 0.05). NE challenge up-regulated mRNA expression of interleukin (IL)-13, transforming growth factor-β4, aldehyde dehydrogenase (RALDH)-2 and RALDH-3 in the jejunum, while VitA supplementation increased jejunal IL-13 mRNA expression and hepatic VitA content, but down-regulated splenic IL-13 mRNA expression (p < 0.05). The VitA + NE group had higher serum prostaglandin E2 levels and the Ctrl group had higher splenic RALDH-3 mRNA expression than that of the other three groups (p < 0.05). NE challenge up-regulated jejunal retinoic acid receptor (RAR)-β and retinoid X receptor (RXR)-α as well as splenic RAR-α and RAR-β mRNA expression (p < 0.05). VitA supplementation up-regulated jejunal RAR-β expression but down-regulated mRNA expression of RXR-α, RXR-γ, signal transducers and activators of transcription (STAT) 5 and STAT6 in the spleen (p < 0.05). Moreover, compared with the Ctrl group, the VitA and NE groups had down-regulated mRNA expression of jejunal and splenic Janus kinase (JAK) 1 (p < 0.05). In conclusion, NE challenge induced jejunal injury and expression of Th2 and Treg cell-related cytokines and enhanced RALDH and RAR/RXR mRNA expression, mainly in the jejunum of broilers. VitA supplementation did not alleviate jejunal injury or Th2 cell-related cytokine expression; however, it improved hepatic VitA deposition and inhibited the expression of RALDH-3, RXR and the JAK/STAT signaling pathway in the spleen of broilers. In short, the present study suggested the modulatory effects of vitamin A on the immune responses and vitamin A metabolism in broiler chickens challenged with necrotic enteritis.
Collapse
Affiliation(s)
- Shuangshuang Guo
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lai He
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuanke Zhang
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Junlong Niu
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Changwu Li
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhengfan Zhang
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Peng Li
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Binying Ding
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
5
|
Sun X, Xia M, Liu J, Cui J, Zhang Y, Sun R, Cui X. lnc-AC145676.2.1-6-3 plays an important role in intestinal acute graft-versus-host disease through the regulation of interleukin-1β. Int J Lab Hematol 2022; 44:759-768. [PMID: 35441492 DOI: 10.1111/ijlh.13852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/26/2022] [Accepted: 04/03/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Acute graft-versus-host disease (aGVHD) is one of the major complications of allogeneic hematopoietic stem cell transplantation, and the liver, skin, and gastrointestinal tract are the main target organs. The most common type is intestinal aGVHD. Long noncoding RNAs (lncRNAs) have coregulatory functions and participate in a variety of intracellular regulatory processes. We investigated the expression of lncRNAs and their mechanisms in the development of aGVHD. METHODS The participants included 15 patients with aGVHD and 4 healthy controls (HCs). To generate profiles of abnormally expressed lncRNAs, peripheral blood mononuclear cell (PBMC) lncRNAs from four patients and four HCs were validated by high-throughput sequencing and quantitative real-time-PCR (qRT-PCR). A number of databases, including Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, miRanda, TargetScan, and Metascape, were used for bioinformatics analysis. Bioinformatics analysis indicated that overexpression of lnc-AC145676.2.1-6-3 might induce aGVHD via the interleukin (IL)-1β axis and a downstream miRNA. After the higher levels of lnc-AC145676.2.1-6-3 in other patients were confirmed by qRT-PCR, serum IL-1β, IL-6, and tumor necrosis factor-α were measured by enzyme linked immunosorbent assays. RESULTS In our study, a large number of lncRNAs were found in PBMCs of patients with intestinal aGVHD, and bioinformatics analysis showed that the upregulated lncRNA lnc-AC145676.2.1-6-3 probably affected the progression of intestinal aGVHD by regulating the hsa-miR-3064-5p/IL-1β axis. In addition, the changes in lncRNA expression levels were positively correlated with the clinical characteristics of intestinal aGVHD. CONCLUSION Our results suggest that lncRNAs in PBMCs may become new biomarkers and therapeutic targets for intestinal aGVHD.
Collapse
Affiliation(s)
- Xiaoqi Sun
- Department of Traditional Chinese Medicine, Shandong University of Traditional, Chinese Medicine, Jinan, China
| | - Mengting Xia
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiang Liu
- Department of Osteoporosis, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinwei Cui
- Jingwu Road Primary School of Jinan, Jinan, China
| | - Yanyu Zhang
- Department of Traditional Chinese Medicine, Shandong University of Traditional, Chinese Medicine, Jinan, China
| | - Runjie Sun
- Department of Traditional Chinese Medicine, Shandong University of Traditional, Chinese Medicine, Jinan, China
| | - Xing Cui
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Center of Oncology and Hematology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine/Shandong Hospital of Integrated Traditional Chinese and Western Medicine, Jinan, China
| |
Collapse
|
6
|
Pei H, Wu S, Zheng L, Wang H, Zhang X. Identification of the active compounds and their mechanisms of medicinal and edible Shanzha based on network pharmacology and molecular docking. J Food Biochem 2021; 46:e14020. [PMID: 34825377 DOI: 10.1111/jfbc.14020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022]
Abstract
Shanzha (Crataegus pinnatifida Bunge), an edible traditional Chinese medicine (TCM), has an effect on dyspepsia. However, the investigations of the pharmacological effects have not been carried out. This study aimed to identify the potential targets and pharmacological mechanisms of Shanzha in the treatment of dyspepsia by network pharmacology and molecular docking. Five active compounds and 13 key targets were obtained by a set of bioinformatics assays. Vitexin 7-glucoside, suchilactone, and 20-hexadecanoylingenol were the main compounds acting on dyspepsia. The key targets were prostaglandin-endoperoxide synthase 2 (PTGS2), serine/threonine-protein kinase mTOR (MTOR), heat shock protein HSP 90-alpha (HSP90AA1), mitogen-activated protein kinase 1 (MAPK1), MAPK3, E3 ubiquitin-protein ligase Mdm2 (MDM2), receptor tyrosine-protein kinase erbB-2 (ERBB2), caspase-3 (CASP3), matrix metalloproteinase-9 (MMP9), estrogen receptor (ESR1), tumor necrosis factor (TNF), phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform (PIK3CA), and peroxisome proliferator-activated receptor gamma (PPARG), which played the vital roles in TNF, prostate cancer, thyroid hormone, hepatitis B and estrogen signaling pathway. The molecular mechanisms of Shanzha regulating dyspepsia were mainly related to reduction of inflammatory response, controlling cell proliferation and survival, increasing intestinal moisture, and promoting intestinal motility. PRACTICAL APPLICATIONS: Shanzha has been used as an edible TCM to improve digestion for a long time. However, the ingredients and mechanisms of Shanzha in the treatment of dyspepsia are not clear. In this research, network pharmacological analysis integrated with molecular docking was conducted to investigate the molecular mechanism. The results suggested that the core targets alleviated dyspepsia by reducing the intestinal inflammatory response, increasing intestinal movement, controlling cell physiological activities, and reducing constipation. In summary, this study demonstrated the multiple compounds, targets, and pathways characteristics of Shanzha in the treatment of dyspepsia, which may provide guidance and foundations for further application of edible medicine.
Collapse
Affiliation(s)
- Huimin Pei
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Shaokang Wu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Lijun Zheng
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Hanxun Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiangrong Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
7
|
Shan H, Liu J, Shen J, Dai J, Xu G, Lu K, Han C, Wang Y, Xu X, Tong Y, Xiang H, Ai Z, Zhuang G, Hu J, Zhang Z, Li Y, Pan L, Tan L. Development of potent and selective inhibitors targeting the papain-like protease of SARS-CoV-2. Cell Chem Biol 2021; 28:855-865.e9. [PMID: 33979649 PMCID: PMC8075810 DOI: 10.1016/j.chembiol.2021.04.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/02/2021] [Accepted: 04/23/2021] [Indexed: 01/02/2023]
Abstract
The COVID-19 pandemic has been disastrous to society and effective drugs are urgently needed. The papain-like protease domain (PLpro) of SARS-CoV-2 (SCoV2) is indispensable for viral replication and represents a putative target for pharmacological intervention. In this work, we describe the development of a potent and selective SCoV2 PLpro inhibitor, 19. The inhibitor not only effectively blocks substrate cleavage and immunosuppressive function imparted by PLpro, but also markedly mitigates SCoV2 replication in human cells, with a submicromolar IC50. We further present a convenient and sensitive activity probe, 7, and complementary assays to readily evaluate SCoV2 PLpro inhibitors in vitro or in cells. In addition, we disclose the co-crystal structure of SCoV2 PLpro in complex with a prototype inhibitor, which illuminates their detailed binding mode. Overall, these findings provide promising leads and important tools for drug discovery aiming to target SCoV2 PLpro.
Collapse
Affiliation(s)
- Hengyue Shan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianping Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiali Shen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jialin Dai
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Gang Xu
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province 518112, China
| | - Kuankuan Lu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Han
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaru Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaolong Xu
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yilun Tong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaijiang Xiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zhiyuan Ai
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Guanglei Zhuang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junhao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zheng Zhang
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province 518112, China.
| | - Ying Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Lifeng Pan
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Li Tan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.
| |
Collapse
|
8
|
Ikpa PT, Meijsen KF, Nieuwenhuijze ND, Dulla K, de Jonge HR, Bijvelds MJ. Transcriptome analysis of the distal small intestine of Cftr null mice. Genomics 2020; 112:1139-1150. [DOI: 10.1016/j.ygeno.2019.06.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 12/22/2022]
|
9
|
Enns CB, Keith BA, Challa N, Harding JCS, Loewen ME. Impairment of electroneutral Na + transport and associated downregulation of NHE3 contributes to the development of diarrhea following in vivo challenge with Brachyspira spp. Am J Physiol Gastrointest Liver Physiol 2020; 318:G288-G297. [PMID: 31760765 PMCID: PMC7052572 DOI: 10.1152/ajpgi.00011.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effect of Brachyspira hyodysenteriae and Brachyspira hampsonii spirochetosis on Na+ transport was assessed in the colon to determine its contribution to diarrheal disease in pigs following experimental infection. Electrogenic and electroneutral Na+ absorption was assessed in Ussing chambers by radiolabeled 22Na flux and pharmacological inhibitory studies. Basal radiolabeled 22Na flux experiments revealed that mucosal-to-serosal flux (Jms) was significantly impaired in B. hyodysenteriae and B. hampsonii-diseased pigs. Inhibition of epithelial sodium channel via amiloride did not significantly reduce electrogenic short-circuit current (Isc) in the proximal, apex, and distal colonic segments of diseased pigs over control pigs, suggesting that a loss of electroneutral Na+ absorption is responsible for diarrheal development. These findings were further supported by significant downregulation of Na+/H+ exchanger (NHE1, NHE2, and NHE3) mRNA expression in the proximal, apex, and distal colonic segments paired with decreased protein expression of the critical NHE3 isoform. The decrease in NHE3 mRNA expression appears not to be attributed to the host's cytokine response as human IL-1α did not modify NHE3 mRNA expression in Caco-2 cells. However, a whole cell B. hampsonii lysate significantly downregulated NHE3 mRNA expression and significantly increased p38 phosphorylation in Caco-2 cells. Together these findings provide a likely mechanism for the spirochete-induced malabsorptive diarrhea, indicated by a decrease in electroneutral Na+ absorption in the porcine colon due to Brachyspira's ability to inhibit NHE3 transcription, resulting in diarrheal disease.NEW & NOTEWORTHY This research demonstrates that diarrheal disease caused by two infectious spirochete spp. is a result of impaired electroneutral Na+ absorption via Na+/H+ exchanger 3 (NHE3) in the porcine colon. Our findings suggest that the decrease in NHE3 mRNA and protein is not likely a result of the host's cytokine response. Rather, it appears that these two Brachyspira spp. directly inhibit the transcription and translation of NHE3, resulting in the development of diarrhea.
Collapse
Affiliation(s)
- Cole B. Enns
- 1Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Brandon A. Keith
- 1Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Nitin Challa
- 1Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John C. S. Harding
- 2Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Matthew E. Loewen
- 1Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
10
|
Xu J, Zeug A, Riederer B, Yeruva S, Griesbeck O, Daniel H, Tuo B, Ponimaskin E, Dong H, Seidler U. Calcium-sensing receptor regulates intestinal dipeptide absorption via Ca 2+ signaling and IK Ca activation. Physiol Rep 2020; 8:e14337. [PMID: 31960592 PMCID: PMC6971415 DOI: 10.14814/phy2.14337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although absorption of di- and tripeptides into intestinal epithelial cells occurs via the peptide transporter 1 (PEPT1, also called solute carrier family 15 member 1 (SLC15A1)), the detailed regulatory mechanisms are not fully understood. We examined: (a) whether dipeptide absorption in villous enterocytes is associated with a rise in cytosolic Ca2+ ([Ca2+ ]cyt ), (b) whether the calcium sensing receptor (CaSR) is involved in dipeptide-elicited [Ca2+ ]cyt signaling, and (c) what potential consequences of [Ca2+ ]cyt signaling may enhance enterocyte dipeptide absorption. Dipeptide Gly-Sar and CaSR agonist spermine markedly raised [Ca2+ ]cyt in villous enterocytes, which was abolished by NPS-2143, a selective CaSR antagonist and U73122, an phospholipase C (PLC) inhibitor. Apical application of Gly-Sar induced a jejunal short-circuit current (Isc), which was reduced by NPS-2143. CaSR expression was identified in the lamina propria and on the basal enterocyte membrane of mouse jejunal mucosa in both WT and Slc15a1-/- animals, but Gly-Sar-induced [Ca2+ ]cyt signaling was significantly decreased in Slc15a1-/- villi. Clotrimazole and TRM-34, two selective blockers of the intermediate conductance Ca2+ -activated K+ channel (IKCa ), but not iberiotoxin, a selective blocker of the large-conductance K+ channel (BKCa ) and apamin, a selective blocker of the small-conductance K+ channel (SKCa ), significantly inhibited Gly-Sar-induced Isc in native tissues. We reveal a novel CaSR-PLC-Ca2+ -IKCa pathway in the regulation of small intestinal dipeptide absorption, which may be exploited as a target for future drug development in human nutritional disorders.
Collapse
Affiliation(s)
- Jingyu Xu
- Department of Gastroenterology, Hepatology and EndocrinologyHannover Medical SchoolHannoverGermany
- Research GastroenterologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Andre Zeug
- Cellular NeurophysiologyHannover Medical SchoolHannoverGermany
| | - Brigitte Riederer
- Department of Gastroenterology, Hepatology and EndocrinologyHannover Medical SchoolHannoverGermany
| | - Sunil Yeruva
- Department of Gastroenterology, Hepatology and EndocrinologyHannover Medical SchoolHannoverGermany
| | | | - Hannelore Daniel
- Nutritional PhysiologyTechnical University of MunichFreisingGermany
| | - Biguang Tuo
- Research GastroenterologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | | | - Hui Dong
- Department of MedicineUniversity of California, San DiegoLa JollaCAUSA
| | - Ursula Seidler
- Department of Gastroenterology, Hepatology and EndocrinologyHannover Medical SchoolHannoverGermany
| |
Collapse
|
11
|
Seiler KM, Waye SE, Kong W, Kamimoto K, Bajinting A, Goo WH, Onufer EJ, Courtney C, Guo J, Warner BW, Morris SA. Single-Cell Analysis Reveals Regional Reprogramming During Adaptation to Massive Small Bowel Resection in Mice. Cell Mol Gastroenterol Hepatol 2019; 8:407-426. [PMID: 31195149 PMCID: PMC6718927 DOI: 10.1016/j.jcmgh.2019.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The small intestine (SI) displays regionality in nutrient and immunological function. Following SI tissue loss (as occurs in short gut syndrome, or SGS), remaining SI must compensate, or "adapt"; the capacity of SI epithelium to reprogram its regional identity has not been described. Here, we apply single-cell resolution analyses to characterize molecular changes underpinning adaptation to SGS. METHODS Single-cell RNA sequencing was performed on epithelial cells isolated from distal SI of mice following 50% proximal small bowel resection (SBR) vs sham surgery. Single-cell profiles were clustered based on transcriptional similarity, reconstructing differentiation events from intestinal stem cells (ISCs) through to mature enterocytes. An unsupervised computational approach to score cell identity was used to quantify changes in regional (proximal vs distal) SI identity, validated using immunofluorescence, immunohistochemistry, qPCR, western blotting, and RNA-FISH. RESULTS Uniform Manifold Approximation and Projection-based clustering and visualization revealed differentiation trajectories from ISCs to mature enterocytes in sham and SBR. Cell identity scoring demonstrated segregation of enterocytes by regional SI identity: SBR enterocytes assumed more mature proximal identities. This was associated with significant upregulation of lipid metabolism and oxidative stress gene expression, which was validated via orthogonal analyses. Observed upstream transcriptional changes suggest retinoid metabolism and proximal transcription factor Creb3l3 drive proximalization of cell identity in response to SBR. CONCLUSIONS Adaptation to proximal SBR involves regional reprogramming of ileal enterocytes toward a proximal identity. Interventions bolstering the endogenous reprogramming capacity of SI enterocytes-conceivably by engaging the retinoid metabolism pathway-merit further investigation, as they may increase enteral feeding tolerance, and obviate intestinal failure, in SGS.
Collapse
Affiliation(s)
- Kristen M Seiler
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Sarah E Waye
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Wenjun Kong
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Kenji Kamimoto
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Adam Bajinting
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - William H Goo
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Emily J Onufer
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Cathleen Courtney
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Jun Guo
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Brad W Warner
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Samantha A Morris
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri.
| |
Collapse
|
12
|
Lu X, Chen M, Shen J, Xu Y, Wu H. IL-1β functionally attenuates ABCG2 and PDZK1 expression in HK-2 cells partially through NF-ĸB activation. Cell Biol Int 2019; 43:279-289. [PMID: 30632646 DOI: 10.1002/cbin.11100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/28/2018] [Indexed: 12/19/2022]
Abstract
Long-standing untreated hyperuricemia could lead to gout. Several recent studies have demonstrated a significant decrease of serum urate during acute gout attack, which is an aseptic inflammation process focusing on IL-1β. However, how IL-1β, by itself, alters the expression and the functional activity of urate transporters in renal tubular epithelial cells is still unclear. Herein, we revealed that IL-1β could attenuate the mRNA and protein levels of ABCG2, a major urate efflux pump, in HK-2 cells by real-time PCR and Western-blot assays. Moreover, using an ABCG2 specific inhibitor and a new sensitive and specific detection system, it was found that IL-1β also reduced the ABCG2 transporter activities. Incubation with specific inhibitors of the NF-κB pathway partly dampened the inhibitory effect of IL-1β on ABCG2, indicating that IL-1β reduced the ABCG2 expression partially through the NF-ĸB pathway. Furthermore, the decreased expression of PDZK1 induced by IL-1β, which is dependent on the NF-κB pathway, could account for the imbalance between the functions and expressions of ABCG2 on this status. These findings demonstrated a new role for IL-1β, whereby it leads to the inhibition of ABCG2 in renal tubular epithelial cells; this new role probably does not encompass its involvement in the process of renal urate excretion mediated by inflammation. Therefore, other regulation mechanisms of urate reabsorption in renal tubular epithelial cells deserve to be examined in further studies.
Collapse
Affiliation(s)
- Xiaoyong Lu
- Department of Rheumatology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310009, China
| | - Mo Chen
- Department of Rheumatology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310009, China
| | - Jingfang Shen
- Department of Rheumatology, the people's hospital of Xingtai, Hebei, 054000, China
| | - Yujia Xu
- Department of Rheumatology, the Huzhou Central hospital, Zhejiang, 313000, China
| | - Huaxiang Wu
- Department of Rheumatology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310009, China
| |
Collapse
|