1
|
Gungor-Orhan I, Akin S, Powers SK, Olgaz-Bingol S, Demirel HA. Sedentary lifestyle induces oxidative stress and atrophy in rat skeletal muscle. Exp Physiol 2025. [PMID: 39887581 DOI: 10.1113/ep092331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025]
Abstract
Abundant evidence indicates that skeletal muscle plays a key role in regulating metabolic homeostasis. Therefore, maintaining healthy skeletal muscles is essential to good health. While prolonged muscle inactivity is known to cause oxidative stress and muscle loss, it remains unclear whether a shift from an active to a sedentary lifestyle induces similar effects. This study tested the hypothesis that transitioning to a sedentary lifestyle rapidly leads to oxidative stress and muscle loss in the load-bearing soleus muscle. Adult Wistar rats were randomly divided into control (CON; n = 8) and sedentary (SED; n = 8) groups. During a 7-day experimental period, CON rats were housed in standard cages allowing free movement, while SED rats were confined to smaller cages promoting sedentary behaviour. Soleus muscles were analysed for antioxidant enzyme activities (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX)), as well as two oxidative stress biomarkers (advanced protein oxidation products (AOPPs) and 4-hydroxynonenal (4-HNE)). Sedentary behaviour caused a 17.2% reduction in the soleus-to-body weight ratio (P < 0.001). Moreover, the activities of SOD, CAT and GPX were significantly lower in the soleus muscle of SED animals (P < 0.05), while AOPPs and 4-HNE levels were higher (P < 0.001 and P < 0.05) compared to CON animals. These findings provide the first evidence that transitioning from an active to a sedentary lifestyle leads to the rapid onset of oxidative stress and atrophy in the soleus muscle. Importantly, the results suggest that impaired antioxidant defences contribute to sedentary behaviour-induced oxidative stress in load-bearing muscles.
Collapse
Affiliation(s)
- Irem Gungor-Orhan
- Department of Exercise and Sport Sciences, Exercise and Sport Physiology Division, Faculty of Sport Sciences, Hacettepe University, Ankara, Türkiye
| | - Senay Akin
- Department of Exercise and Sport Sciences, Exercise and Sport Physiology Division, Faculty of Sport Sciences, Hacettepe University, Ankara, Türkiye
| | - Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Seda Olgaz-Bingol
- Turkish Doping Control Center, Hacettepe University, Ankara, Türkiye
| | - Haydar A Demirel
- Faculty of Sport Sciences, Near East University, Nicosia, Cyprus
| |
Collapse
|
2
|
Wang LY, Liang LM, Zhang XX, Chi H, Peng FL. Short bouts and long-term exercise reduce sedentary-induced bone loss and microstructural changes by modulating bone formation and resorption in healthy young male rats. Sci Rep 2025; 15:1825. [PMID: 39805876 PMCID: PMC11730605 DOI: 10.1038/s41598-024-82243-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025] Open
Abstract
Although the toxic effect of Sedentary behavior (SED) on bone health has been demonstrated in the previous study, the underlying mechanisms of SED, or break SED to bone health remain unclear. In this study, we aim to investigate the effects of sedentary behavior (SED) on bone health, as well as the potential favor effects of moderate to vigorous physical activity (MVPA) and periodic interruptions of SED. To simulate SED, we used small Plexiglas cages (20.0 × 9.0 × 10.0 cm) to restrict animal movement. Short bursts of exercise to break SED and continuous long-term exercise were also designed. After an 8-weeks period of SED, we observed decreased bone mass and bone microstructure. Specifically, there was a notable decrease in the bone mineral density (BMD), bone surface (BS) and cortical thickness (Ct.Th) significantly reduced in cortical bone. In the trabecular bone, parameters such as trabecular separation (Tb.Sp), trabecular number (Tb.N), BS, connectivity density (Conn.D), BS/BV, bone volume/tissue volume (BV/TV), degree of anisotropy (DA), and structural model index (SMI) were also significantly reduced. In addition, we detected an increase in serum tartrate-resistant acid phosphatase (TRAP) levels in SED rats at both 4 and 8 weeks. At 8 weeks, the osteoclast number and surface with TRAP-staining were significantly increased, however, the OPG mRNA and proteins level were significantly decreased. After daily short bouts exercise and long-term exercise, we observed improvements in bone mass and microstructure. These improvements included increasing BMD and BV/TV of cortical bone, and improving Conn.D, BV/TV, DA and SMI of trabecular. Meanwhile, we found that, at 4 and 8 weeks, there was an increase in serum ALP. At 8 weeks, the mineralized nodules surface with Alizarin Red S-staining, and OPG mRNA and proteins level in bone tissue were significantly increased. Our findings suggest that SED leads to alterations in the bone mass and microstructure, which are associated with the changes in the OPG protein and bone remodeling. Exercise, whether in short daily bouts or continuous long-term sessions, can ameliorate the harmful effects of SED. Similarly, the changes in bone mass and microstructure from exercise are also associated with the changes in the OPG protein and bone remodeling by upregulated osteoblast activity to bone formation. Overall, our findings indicate the importance of physical activity in maintaining bone health and preventing the negative impacts of prolonged SED.
Collapse
Affiliation(s)
- L Y Wang
- Guangxi Normal University, Guangxi, China
- Guangxi Medical University, Guangxi, China
| | - L M Liang
- Guangxi Normal University, Guangxi, China.
| | - X X Zhang
- Guangxi Normal University, Guangxi, China
| | - H Chi
- Guangxi Normal University, Guangxi, China
| | - F L Peng
- Guangxi Normal University, Guangxi, China.
| |
Collapse
|
3
|
Opurum PC, Decker ST, Stuart D, Peterlin AD, Paula VL, Siripoksup P, Drummond MJ, Sanchez A, Ramkumar N, Funai K. Six months of physical inactivity is insufficient to cause chronic kidney disease in C57BL/6J mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610415. [PMID: 39257785 PMCID: PMC11384017 DOI: 10.1101/2024.08.29.610415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Chronic kidney disease (CKD) is a progressive disorder marked by a decline in kidney function. Obesity and sedentary behavior contribute to the development of CKD, though mechanisms by which this occurs are poorly understood. This knowledge gap is worsened by the lack of a reliable murine CKD model that does not rely on injury, toxin, or gene deletion to induce a reduction in kidney function. High-fat diet (HFD) feeding alone is insufficient to cause reduced kidney function until later in life. Here, we employed a small mouse cage (SMC), a recently developed mouse model of sedentariness, to study its effect on kidney function. Wildtype C57BL/6J male mice were housed in sham or SMC housing for six months with HFD in room (22°C) or thermoneutral (30°C) conditions. Despite hyperinsulinemia induced by the SMC+HFD intervention, kidneys from these mice displayed normal glomerular filtration rate (GFR). However, the kidneys showed early signs of kidney injury, including increases in Col1a1 and NGAL transcripts, as well as fibrosis by histology, primarily in the inner medullary/papilla region. High-resolution respirometry and fluorometry experiments showed no statistically significant changes in the capacities for respiration, ATP synthesis, or electron leak. These data confirm the technical challenge in modeling human CKD. They further support the notion that obesity and a sedentary lifestyle make the kidneys more vulnerable, but additional insults are likely required for the pathogenesis of CKD.
Collapse
Affiliation(s)
- Precious C. Opurum
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
| | - Stephen T. Decker
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Deborah Stuart
- Division of Nephrology & Hypertension, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Alek D. Peterlin
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
| | - Venisia L. Paula
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
| | - Piyarat Siripoksup
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA
- Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Micah J. Drummond
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA
- Division of Nephrology & Hypertension, School of Medicine, University of Utah, Salt Lake City, Utah, USA
- Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Alejandro Sanchez
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, Cancer Hospital, Salt Lake City, Utah, USA
| | - Nirupama Ramkumar
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA
- Division of Nephrology & Hypertension, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Katsuhiko Funai
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
- Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, Cancer Hospital, Salt Lake City, Utah, USA
| |
Collapse
|
4
|
Siripoksup P, Cao G, Cluntun AA, Maschek JA, Pearce Q, Brothwell MJ, Jeong MY, Eshima H, Ferrara PJ, Opurum PC, Mahmassani ZS, Peterlin AD, Watanabe S, Walsh MA, Taylor EB, Cox JE, Drummond MJ, Rutter J, Funai K. Sedentary behavior in mice induces metabolic inflexibility by suppressing skeletal muscle pyruvate metabolism. J Clin Invest 2024; 134:e167371. [PMID: 38652544 PMCID: PMC11142742 DOI: 10.1172/jci167371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
Carbohydrates and lipids provide the majority of substrates to fuel mitochondrial oxidative phosphorylation. Metabolic inflexibility, defined as an impaired ability to switch between these fuels, is implicated in a number of metabolic diseases. Here, we explore the mechanism by which physical inactivity promotes metabolic inflexibility in skeletal muscle. We developed a mouse model of sedentariness, small mouse cage (SMC), that, unlike other classic models of disuse in mice, faithfully recapitulated metabolic responses that occur in humans. Bioenergetic phenotyping of skeletal muscle mitochondria displayed metabolic inflexibility induced by physical inactivity, demonstrated by a reduction in pyruvate-stimulated respiration (JO2) in the absence of a change in palmitate-stimulated JO2. Pyruvate resistance in these mitochondria was likely driven by a decrease in phosphatidylethanolamine (PE) abundance in the mitochondrial membrane. Reduction in mitochondrial PE by heterozygous deletion of phosphatidylserine decarboxylase (PSD) was sufficient to induce metabolic inflexibility measured at the whole-body level, as well as at the level of skeletal muscle mitochondria. Low mitochondrial PE in C2C12 myotubes was sufficient to increase glucose flux toward lactate. We further implicate that resistance to pyruvate metabolism is due to attenuated mitochondrial entry via mitochondrial pyruvate carrier (MPC). These findings suggest a mechanism by which mitochondrial PE directly regulates MPC activity to modulate metabolic flexibility in mice.
Collapse
Affiliation(s)
- Piyarat Siripoksup
- Diabetes & Metabolism Research Center
- Department of Physical Therapy and Athletic Training
| | - Guoshen Cao
- Diabetes & Metabolism Research Center
- Department of Biochemistry
| | | | - J. Alan Maschek
- Metabolomics Core Research Facility
- Department of Nutrition & Integrative Physiology, and
| | | | - Marisa J. Brothwell
- Diabetes & Metabolism Research Center
- Department of Nutrition & Integrative Physiology, and
| | - Mi-Young Jeong
- Diabetes & Metabolism Research Center
- Department of Biochemistry
| | - Hiroaki Eshima
- Diabetes & Metabolism Research Center
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Patrick J. Ferrara
- Diabetes & Metabolism Research Center
- Department of Nutrition & Integrative Physiology, and
| | - Precious C. Opurum
- Diabetes & Metabolism Research Center
- Department of Nutrition & Integrative Physiology, and
| | - Ziad S. Mahmassani
- Diabetes & Metabolism Research Center
- Department of Physical Therapy and Athletic Training
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Alek D. Peterlin
- Diabetes & Metabolism Research Center
- Department of Nutrition & Integrative Physiology, and
| | - Shinya Watanabe
- Diabetes & Metabolism Research Center
- Department of Nutrition & Integrative Physiology, and
| | - Maureen A. Walsh
- Diabetes & Metabolism Research Center
- Department of Physical Therapy and Athletic Training
| | - Eric B. Taylor
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - James E. Cox
- Diabetes & Metabolism Research Center
- Department of Biochemistry
- Metabolomics Core Research Facility
| | - Micah J. Drummond
- Diabetes & Metabolism Research Center
- Department of Physical Therapy and Athletic Training
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Jared Rutter
- Diabetes & Metabolism Research Center
- Department of Biochemistry
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, USA
| | - Katsuhiko Funai
- Diabetes & Metabolism Research Center
- Department of Physical Therapy and Athletic Training
- Department of Biochemistry
- Department of Nutrition & Integrative Physiology, and
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
5
|
Kaya SA, Okuyan HM, Erboğa ZF, Güzel S, Yılmaz A, Karaboğa İ. Prenatal immobility stress: Relationship with oxidative stress, inflammation, apoptosis, and intrauterine growth restriction in rats. Birth Defects Res 2023; 115:1398-1410. [PMID: 37403489 DOI: 10.1002/bdr2.2205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/14/2023] [Accepted: 05/10/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND Prenatal stress is a significant risk factor affecting pregnant women and fetal health. In the present study, we aimed to investigate the effect of immobility stress at different periods of pregnancy on oxidative stress, inflammation, placental apoptosis and intrauterine growth retardation in rats. METHODS Fifty adult virgin female Wistar albino rats were used. Pregnant rats were exposed to 6 h/day immobilization stress in a wire cage at different stages of pregnancy. Groups I and II (Day 1-10 stress group) were sacrificed on the 10th day of pregnancy, and Group III, Group IV (10-19th-day stress group), and Group V (1-19th-day stress group) were sacrificed on the 19th day of pregnancy. Inflammatory cytokines, including interleukin-6 (IL-6) and interleukin-10 (IL-10), serum corticotropin-releasing hormone (CRH), and corticosterone levels were measured by enzyme-linked immunosorbent assay. Malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) levels in the placenta were spectrophotometrically measured. Histopathological analyses of the placenta were evaluated by hematoxylin and eosin staining. Tumor necrosis factor-alpha (TNF-α) and caspase-3 immunoreactivity in placenta tissues were determined by the indirect immunohistochemical method. Placental apoptosis was determined by the TUNEL staining method. RESULTS We found that the immobility stress during pregnancy significantly increased serum corticosterone levels. Our results showed that the immobility stress diminished the number and weight of fetuses in rats compared to the non-stress group. The immobility stress caused significant histopathological changes in the connection zone and labyrinth zone and increased placental TNF-α and caspase-3 immunoreactivity and placental apoptosis. In addition, immobility stress significantly increased the levels of pro-inflammatory IL-6 and MDA and caused a significant decrease in the levels of antioxidant enzymes such as SOD, CAT, and anti-inflammatory IL-10. CONCLUSIONS Our data suggest that immobility stress causes intrauterine growth retardation by activating the hypothalamic-pituitary-adrenal axis and deteriorating placental histomorphology and deregulating inflammatory and oxidative processes.
Collapse
Affiliation(s)
- Sinem Albayrak Kaya
- Department of Midwifery, Biruni University, Faculty of Health Sciences, Istanbul, Türkiye
| | - Hamza Malik Okuyan
- Department of Physiotherapy and Rehabilitation-Faculty of Health Sciences, Biomedical Technologies Application and Research Center, Sakarya University of Applied Sciences, Sakarya, Türkiye
| | - Zeynep Fidanol Erboğa
- Department of Histology and Embriology, Tekirdağ Namık Kemal University, Faculty of Medicine, Tekirdağ, Türkiye
| | - Savaş Güzel
- Department of Medical Biochemistry, Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Türkiye
| | - Ahsen Yılmaz
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa Istanbul, Istanbul, Türkiye
| | - İhsan Karaboğa
- Department of Histology and Embryology, Faculty of Medicine, Kırklareli University, Kırklareli, Türkiye
| |
Collapse
|
6
|
Changes in the Mechanical Properties of Fast and Slow Skeletal Muscle after 7 and 21 Days of Restricted Activity in Rats. Int J Mol Sci 2023; 24:ijms24044141. [PMID: 36835551 PMCID: PMC9966780 DOI: 10.3390/ijms24044141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Disuse muscle atrophy is usually accompanied by changes in skeletal muscle structure, signaling, and contractile potential. Different models of muscle unloading can provide valuable information, but the protocols of experiments with complete immobilization are not physiologically representative of a sedentary lifestyle, which is highly prevalent among humans now. In the current study, we investigated the potential effects of restricted activity on the mechanical characteristics of rat postural (soleus) and locomotor (extensor digitorum longus, EDL) muscles. The restricted-activity rats were kept in small Plexiglas cages (17.0 × 9.6 × 13.0 cm) for 7 and 21 days. After this, soleus and EDL muscles were collected for ex vivo mechanical measurements and biochemical analysis. We demonstrated that while a 21-day movement restriction affected the weight of both muscles, in soleus muscle we observed a greater decrease. The maximum isometric force and passive tension in both muscles also significantly changed after 21 days of movement restriction, along with a decrease in the level of collagen 1 and 3 mRNA expression. Furthermore, the collagen content itself changed only in soleus after 7 and 21 days of movement restriction. With regard to cytoskeletal proteins, in our experiment we observed a significant decrease in telethonin in soleus, and a similar decrease in desmin and telethonin in EDL. We also observed a shift towards fast-type myosin heavy chain expression in soleus, but not in EDL. In summary, in this study we showed that movement restriction leads to profound specific changes in the mechanical properties of fast and slow skeletal muscles. Future studies may include evaluation of signaling mechanisms regulating the synthesis, degradation, and mRNA expression of the extracellular matrix and scaffold proteins of myofibers.
Collapse
|
7
|
Effect of Mechanical Stimuli and Zoledronic Acid on the Femoral Bone Morphology in Rats with Obesity and Limited Mobility. J Clin Med 2022; 12:jcm12010043. [PMID: 36614859 PMCID: PMC9820925 DOI: 10.3390/jcm12010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/28/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Our study aimed to compare the impact of zoledronic acid and whole-body vibration (WBV) as a non-pharmacological method of treatment for early obesity/immobility-related osteoporosis in male rat models. In total, 36 male Wistar rats were assigned to the following groups: obese control with immobility (Control, n = 12) and two experimental groups (n = 12 each), including obese and immobile rats subjected to whole-body vibration with an acceleration level of 3 m/s2 g (obesity and immobility + WBV) and obese and immobile rats that received an intramuscular injection of zoledronic acid at a dose of 0.025 mg/kg (obesity and immobility + ZOL). After the 8th and 16th week of treatment, n = 6 rats from each group were euthanized and isolated femora were subjected to a histological examination of bone, and analysis of the expression of osteoprotegerin (OPG) and the receptor activator of nuclear factor kappa-B ligand (RANKL) involved in bone turnover and the amount of thin collagen fibers (PSR stain). The obtained results showed that short-term vibrotherapy (up to 8 weeks) can lead to improvement in bone remodeling in rat models with obesity and limited mobility.
Collapse
|
8
|
Scariot PP, Gobatto CA, Polisel EE, Gomes AE, Beck WR, Manchado-Gobatto FB. Early-life mice housed in standard stocking density reduce the spontaneous physical activity and increase visceral fat deposition before reaching adulthood. Lab Anim 2022; 56:344-355. [PMID: 35062839 DOI: 10.1177/00236772211065915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Laboratory rodents spend the entire day housed in standard cages that provide a restricted area for movements and might, therefore, limit physical activity. However, it has not been tested in immature rodents of ages ranging from weaning to adulthood (adolescence period) whether the restricted area per animal does actually reduce physical activity and impact the body composition. We analyzed the spontaneous physical activity and feeding behavior during the adolescence of mice kept in two different housing conditions (standard stocking density (SSD) versus low stocking density (LSD)). We aimed to compare the body composition between SSD and LSD groups before they reached adulthood. Differential housing began at four weeks of age and was maintained for four weeks until euthanasia at eight weeks of age. The SSD group had a floor space of 88 cm2 available per animal, while LSD mice were housed with a floor space of 320 cm2 per animal, increasing the individual radius for movement more than three-fold compared with standard requirements. Mice kept in SSD exhibit lower spontaneous physical activity than mice kept in LSD. Early-life exposure to reduced physical activity in mice housed in SSD resulted in greater visceral fat accumulation before adulthood. An environment enabling/stimulating physical activity should be established for rodents as early as possible. This study will be helpful in showing that mice kept in SSD are early exposed to a reduced physical activity already in the adolescence period. Our findings could raise reflections about the translatability of rodents kept in SSD to healthy active humans.
Collapse
Affiliation(s)
- Pedro Pm Scariot
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Claudio A Gobatto
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Emanuel Ec Polisel
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Ana Ec Gomes
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Wladimir R Beck
- Laboratory of Endocrine Physiology and Physical Exercise, Department of Physiological Sciences, Federal University of São Carlos, Brazil
| | - Fúlvia B Manchado-Gobatto
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira, Brazil
| |
Collapse
|
9
|
Moreira-Pais A, Ferreira R, Oliveira PA, Duarte JA. Sarcopenia versus cancer cachexia: the muscle wasting continuum in healthy and diseased aging. Biogerontology 2021; 22:459-477. [PMID: 34324116 DOI: 10.1007/s10522-021-09932-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022]
Abstract
Muscle wasting is one of the major health problems in older adults and is traditionally associated to sarcopenia. Nonetheless, muscle loss may also occur in older adults in the presence of cancer, and in this case, it is associated to cancer cachexia. The clinical management of these conditions is a challenge due to, at least in part, the difficulties in their differential diagnosis. Thus, efforts have been made to better comprehend the pathogenesis of sarcopenia and cancer cachexia, envisioning the improvement of their clinical discrimination and treatment. To add insights on this topic, this review discusses the current knowledge on key molecular players underlying sarcopenia and cancer cachexia in a comparative perspective. Data retrieved from this analysis highlight that while sarcopenia is characterized by the atrophy of fast-twitch muscle fibers, in cancer cachexia an increase in the proportion of fast-twitch fibers appears to happen. The molecular drivers for these specificmuscle remodeling patterns are still unknown; however, among the predominant contributors to sarcopenia is the age-induced neuromuscular denervation, and in cancer cachexia, the muscle disuse experienced by cancer patients seems to play an important role. Moreover, inflammation appears to be more severe in cancer cachexia. Impairment of nutrition-related mediators may also contribute to sarcopenia and cancer cachexia, being distinctly modulated in each condition.
Collapse
Affiliation(s)
- Alexandra Moreira-Pais
- CIAFEL, Faculty of Sport, University of Porto, Dr. Plácido da Costa 91, 4200-450, Porto, Portugal. .,LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal. .,Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal. .,Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Paula A Oliveira
- Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - José A Duarte
- CIAFEL, Faculty of Sport, University of Porto, Dr. Plácido da Costa 91, 4200-450, Porto, Portugal. .,Faculdade de Desporto, Universidade do Porto, Rua Dr. Plácido da Costa 91, 4200-450, Porto, Portugal. .,TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal.
| |
Collapse
|
10
|
Belova SP, Tyganov SA, Mochalova EP, Shenkman BS. Restricted Activity and Protein Synthesis
in Postural and Locomotor Muscles. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021030194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
11
|
Memme JM, Slavin M, Moradi N, Hood DA. Mitochondrial Bioenergetics and Turnover during Chronic Muscle Disuse. Int J Mol Sci 2021; 22:ijms22105179. [PMID: 34068411 PMCID: PMC8153634 DOI: 10.3390/ijms22105179] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022] Open
Abstract
Periods of muscle disuse promote marked mitochondrial alterations that contribute to the impaired metabolic health and degree of atrophy in the muscle. Thus, understanding the molecular underpinnings of muscle mitochondrial decline with prolonged inactivity is of considerable interest. There are translational applications to patients subjected to limb immobilization following injury, illness-induced bed rest, neuropathies, and even microgravity. Studies in these patients, as well as on various pre-clinical rodent models have elucidated the pathways involved in mitochondrial quality control, such as mitochondrial biogenesis, mitophagy, fission and fusion, and the corresponding mitochondrial derangements that underlie the muscle atrophy that ensues from inactivity. Defective organelles display altered respiratory function concurrent with increased accumulation of reactive oxygen species, which exacerbate myofiber atrophy via degradative pathways. The preservation of muscle quality and function is critical for maintaining mobility throughout the lifespan, and for the prevention of inactivity-related diseases. Exercise training is effective in preserving muscle mass by promoting favourable mitochondrial adaptations that offset the mitochondrial dysfunction, which contributes to the declines in muscle and whole-body metabolic health. This highlights the need for further investigation of the mechanisms in which mitochondria contribute to disuse-induced atrophy, as well as the specific molecular targets that can be exploited therapeutically.
Collapse
Affiliation(s)
| | | | | | - David A. Hood
- Correspondence: ; Tel.: +1-(416)-736-2100 (ext. 66640)
| |
Collapse
|
12
|
Brent MB, Brüel A, Thomsen JS. A Systematic Review of Animal Models of Disuse-Induced Bone Loss. Calcif Tissue Int 2021; 108:561-575. [PMID: 33386477 DOI: 10.1007/s00223-020-00799-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Several different animal models are used to study disuse-induced bone loss. This systematic review aims to give a comprehensive overview of the animal models of disuse-induced bone loss and provide a detailed narrative synthesis of each unique animal model. METHODS PubMed and Embase were systematically searched for animal models of disuse from inception to November 30, 2019. In addition, Google Scholar and personal file archives were searched for relevant publications not indexed in PubMed or Embase. Two reviewers independently reviewed titles and abstracts for full-text inclusion. Data were extracted using a predefined extraction scheme to ensure standardization. RESULTS 1964 titles and abstracts were screened of which 653 full-text articles were included. The most common animal species used to model disuse were rats (59%) and mice (30%). Males (53%) where used in the majority of the studies and genetically modified animals accounted for 7%. Twelve different methods to induce disuse were identified. The most frequently used methods were hindlimb unloading (44%), neurectomy (15%), bandages and orthoses (15%), and botulinum toxin (9%). The median time of disuse was 21 days (quartiles: 14 days, 36 days) and the median number of animals per group subjected to disuse was 10 (quartiles: 7, 14). Random group allocation was reported in 43% of the studies. Fewer than 5% of the studies justified the number of animals per group by a sample size calculation to ensure adequate statistical power. CONCLUSION Multiple animal models of disuse-induced bone loss exist, and several species of animals have successfully been studied. The complexity of disuse-induced bone loss warrants rigid research study designs. This systematic review emphasized the need for standardization of animal disuse research and reporting.
Collapse
Affiliation(s)
- Mikkel Bo Brent
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Department of Biomedicine, Health, Aarhus University, Wilhelm Meyers Allé 3, 8000, Aarhus C, Denmark.
| | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
13
|
Yoshihara T, Natsume T, Tsuzuki T, Chang SW, Kakigi R, Machida S, Sugiura T, Naito H. Long-term physical inactivity exacerbates hindlimb unloading-induced muscle atrophy in young rat soleus muscle. J Appl Physiol (1985) 2021; 130:1214-1225. [PMID: 33600278 DOI: 10.1152/japplphysiol.00494.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study investigated the effects of long-term physical inactivity in adolescent on subsequent hindlimb unloading-induced muscle atrophy in rat soleus muscle. First, 3-wk-old male Wistar rats were assigned to an age-matched control (n = 6) or a physical inactivity (n = 8) group. Rats in the physical inactivity group were housed in narrow cages with approximately half the usual floor space for 8 wk to limit range of movement. Whole body energy consumption was measured, and the blood, organs, femoral bone, and hindlimb muscles were removed. We found that long-term physical inactivity did not affect the metabolic and physiological characteristics of growing rats. Then, fifty-six 3-wk-old male Wistar rats were assigned randomly into control (n = 28) and physical inactivity (n = 28) groups. After 8 wk, the rats in both groups underwent hindlimb unloading. The soleus muscles were removed before unloading (0 day), and 1, 3, and 7 days after unloading (n = 7 for each). Although the soleus muscle weight was significantly decreased after 7 days of hindlimb unloading in both groups, the decrease was drastic in the inactive group. A significant interaction between inactivity and unloading (P < 0.01) was observed according to the 4-hydroxynonenal-conjugated protein levels and the histone deacetylase 4 (HDAC4) and NF-κB protein levels. HDAC4 and NF-κB p65 protein levels in the physical inactivity group increased significantly 1 day after hindlimb unloading, along with the mRNA levels of their downstream targets myogenin and muscle RING finger protein 1 (MuRF1). Subsequent protein ubiquitination was upregulated by long-term physical inactivity (P < 0.05).NEW & NOTEWORTHY Long-term physical inactivity exacerbates hindlimb unloading-induced disuse muscle atrophy in young rat soleus muscles, possibly mediated by oxidative stress-induced protein ubiquitination via HDAC4- and NF-κB p65-induced MuRF1 mRNA upregulation.
Collapse
Affiliation(s)
- Toshinori Yoshihara
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan.,Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Toshiharu Natsume
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | | | - Shuo-Wen Chang
- Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Ryo Kakigi
- Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan.,Faculty of Management & Information Sciences, Josai International University, Togane, Chiba, Japan
| | - Shuichi Machida
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan.,Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Takao Sugiura
- Faculty of Education, Yamaguchi University, Yoshida, Yamaguchi, Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan.,Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| |
Collapse
|
14
|
Reidy PT, Monnig JM, Pickering CE, Funai K, Drummond MJ. Preclinical rodent models of physical inactivity-induced muscle insulin resistance: challenges and solutions. J Appl Physiol (1985) 2020; 130:537-544. [PMID: 33356986 DOI: 10.1152/japplphysiol.00954.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Physical inactivity influences the development of muscle insulin resistance yet is far less understood than diet-induced muscle insulin resistance. Progress in understanding the mechanisms of physical inactivity-induced insulin resistance is limited by a lack of an appropriate preclinical model of muscle insulin resistance. Here, we discuss differences between diet and physical inactivity-induced insulin resistance, the advantages and disadvantages of the available rodent inactivity models to study insulin resistance, and our current understanding of the mechanisms of muscle insulin resistance derived from such preclinical inactivity designs. The burgeoning rise of health complications emanating from metabolic disease presents an alarming issue with mounting costs for health care and a reduced quality of life. There exists a pressing need for more complete understanding of mechanisms behind the development and progression of metabolic dysfunction. Since lifestyle modifications such as poor diet and lack of physical activity are primary catalysts of metabolic dysfunction, rodent models have been formed to explore mechanisms behind these issues. Particularly, the use of a high-fat diet has been pervasive and has been an instrumental model to gain insight into mechanisms underlying diet-induced insulin resistance (IR). However, physical inactivity (and to some extent muscle disuse) is an often overlooked and much less frequently studied lifestyle modification, which some have contended is the primary contributor in the initial development of muscle IR. In this mini-review we highlight some of the key differences between diet- and physical inactivity-induced development of muscle IR and propose reasons for the sparse volume of academic research into physical inactivity-induced IR including infrequent use of clearly translatable rodent physical inactivity models.
Collapse
Affiliation(s)
- Paul T Reidy
- Department of Kinesiology and Health, Miami University, Oxford, Ohio
| | - Jackie M Monnig
- Department of Kinesiology and Health, Miami University, Oxford, Ohio
| | | | - Katsuhiko Funai
- Departments of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah
| | - Micah J Drummond
- Departments of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah
| |
Collapse
|
15
|
Mahmassani ZS, Reidy PT, McKenzie AI, Petrocelli JJ, Matthews O, de Hart NM, Ferrara PJ, O'Connell RM, Funai K, Drummond MJ. Absence of MyD88 from Skeletal Muscle Protects Female Mice from Inactivity-Induced Adiposity and Insulin Resistance. Obesity (Silver Spring) 2020; 28:772-782. [PMID: 32108446 PMCID: PMC7093260 DOI: 10.1002/oby.22759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Inactivity and inflammation are linked to obesity and insulin resistance. It was hypothesized that MyD88 (mediates inflammation) knockout from muscle (MusMyD88-/- ) would prevent, whereas miR146a-/- (MyD88 inhibitor) would exacerbate, inactivity-induced metabolic disturbances. METHODS Cre-control, MusMyD88-/- , and miR146a-/- mice were given running wheels for 5 weeks to model an active phenotype. Afterward, half were placed into a small mouse cage (SMC) to restrict movement for 8 days. Body composition, muscle (3 H)2-deoxyglucose uptake, visceral fat histology, and tissue weight (hind limb muscles, visceral fat, and liver) were assessed. In skeletal muscle and visceral fat, RNA sequencing and mitochondrial function were performed on female MusMyD88-/- and Cre-control SMC mice. RESULTS The SMC induced adiposity, hyperinsulinemia, and muscle insulin-stimulated glucose uptake, which was worsened in miR146a-/- mice. In females, MusMyD88-/- mice were protected. Female MusMyD88-/- mice during the SMC period (vs. Cre-control) exhibited higher Igf1 and decreased Ip6k3 and Trim63 muscle expression. Visceral fat transcript changes corresponded to improved lipid metabolism, decreased adipose expansion (Gulp1↑, Anxa2↓, Ehd1↓) and meta-inflammation (Hmox1↓), and increased beiging (Fgf10↑). Ralgapa2, negative regulator of GLUT4 translocation, and inflammation-related gene 993011J21Rik2 were decreased in both muscle and fat. CONCLUSIONS Whole-body miR146a-/- exacerbated inactivity-induced fat gain and muscle insulin resistance, whereas MusMyD88-/- prevented insulin resistance in female mice.
Collapse
Affiliation(s)
- Ziad S Mahmassani
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Paul T Reidy
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Alec I McKenzie
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Jonathan J Petrocelli
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - O'Connor Matthews
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Naomi M de Hart
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
| | - Patrick J Ferrara
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
| | - Ryan M O'Connell
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Katsuhiko Funai
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Micah J Drummond
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
16
|
Roemers P, Hulst Y, van Heijningen S, van Dijk G, van Heuvelen MJG, De Deyn PP, van der Zee EA. Inducing Physical Inactivity in Mice: Preventing Climbing and Reducing Cage Size Negatively Affect Physical Fitness and Body Composition. Front Behav Neurosci 2019; 13:221. [PMID: 31680890 PMCID: PMC6797814 DOI: 10.3389/fnbeh.2019.00221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/06/2019] [Indexed: 01/01/2023] Open
Abstract
Physical inactivity has emerged as an important and risk factor for cardiovascular and metabolic diseases, independent of levels of exercise engagement. Moreover, inactivity is associated with poor brain functioning. However, little data on the effects of physical inactivity on the brain is available and few methods are suitable to investigate this matter. We tested whether preventing lid climbing and reducing cage size could be used to model physical inactivity in mice. Sixty young adult C57Bl6 mice (10 weeks old) were divided over six groups with different housing conditions: in cages of three different sizes with lids that either allowed or prevented lid climbing. Housing under these conditions was maintained for a period of 19 weeks before the mice were killed for body composition analysis. Physical fitness tests performed around 5 and 10 weeks into the intervention revealed that motor coordination in the balance beam test was reduced by 30.65%, grip strength by 8.91% and muscle stamina in the inverted screen test by 70.37% in non-climbing mice as compared to climbing controls. Preventing climbing increased visceral fat mass by 17.31%, but did not reduce muscle mass. Neither preventing climbing nor reducing cage size affected anxiety assessed in the Open Field test and the Elevated Plus Maze. We did not find any negative effect of inactivity on spatial learning and memory in the novel object location test or working memory measured with the Y-maze Alternation test. The reduced physical fitness and increase in visceral fat mass show that our inactivity method models most effects of physical inactivity that are observed in experimental and observational studies in humans. Whereas established methods such as hindlimb unloading mimic many of the effects of bed rest, our novel method can be applied to study the effects of less extreme forms of physical inactivity (i.e., sedentary behavior) in various disease models including rodent models for brain diseases (i.e., stroke, Alzheimer’s disease).
Collapse
Affiliation(s)
- Peter Roemers
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
| | - Yasmin Hulst
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
| | - Steffen van Heijningen
- Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
| | - Gertjan van Dijk
- Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
| | - Marieke J G van Heuvelen
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Peter P De Deyn
- Department of Neurology and Alzheimer Research Center, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Eddy A van der Zee
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
| |
Collapse
|
17
|
Brézulier D, Pellen-Mussi P, Sorel O, Jeanne S. [Bone mechanobiology, an emerging field: a review]. Orthod Fr 2018; 89:343-353. [PMID: 30565553 DOI: 10.1051/orthodfr/2018034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/15/2018] [Indexed: 11/14/2022]
Abstract
INTRODUCTION Mechanobiology, at the interface between biology and biophysics, studies the impact of mechanical forces on tissues, cells and biomolecules. The application of orthodontic forces, followed by induced tooth displacement, is a striking example of its clinical application. OBJECTIVE The purpose of this article was to compile a review of the literature on the subject of mechanobiology; from its detection at bone level to the presentation of stimulated intracellular pathways. MATERIALS AND METHODS The literature search was conducted on the Pubmed database in April 2018, with associations of the terms "mechanobiology", "orthodontics", "cell culture", "physiopathology". RESULTS Three major areas of research were selected: highlighting of the phenomenon and its application in the field of bone biology; the cellular effectors of mechanobiology and its clinical applications. The use of mechanobiology in dentofacial orthopedics opens up a new field of reflection for clinicians regarding future advances in orthodontics.
Collapse
Affiliation(s)
- Damien Brézulier
- Université de Rennes, ISCR, CNRS - UMR 6226, Pole Odontologie, 35000 Rennes, France
| | - Pascal Pellen-Mussi
- Université de Rennes, ISCR, CNRS - UMR 6226, Pole Odontologie, 35000 Rennes, France
| | - Olivier Sorel
- Université de Rennes, ISCR, CNRS - UMR 6226, Pole Odontologie, 35000 Rennes, France
| | - Sylvie Jeanne
- Université de Rennes, ISCR, CNRS - UMR 6226, Pole Odontologie, 35000 Rennes, France
| |
Collapse
|