1
|
Gargas J, Janowska J, Gebala P, Maksymiuk W, Sypecka J. Reactive Gliosis in Neonatal Disorders: Friend or Foe for Neuroregeneration? Cells 2024; 13:131. [PMID: 38247822 PMCID: PMC10813898 DOI: 10.3390/cells13020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
A developing nervous system is particularly vulnerable to the influence of pathophysiological clues and injuries in the perinatal period. Astrocytes are among the first cells that react to insults against the nervous tissue, the presence of pathogens, misbalance of local tissue homeostasis, and a lack of oxygen and trophic support. Under this background, it remains uncertain if induced astrocyte activation, recognized as astrogliosis, is a friend or foe for progressing neonatal neurodevelopment. Likewise, the state of astrocyte reactivity is considered one of the key factors discriminating between either the initiation of endogenous reparative mechanisms compensating for aberrations in the structures and functions of nervous tissue or the triggering of neurodegeneration. The responses of activated cells are modulated by neighboring neural cells, which exhibit broad immunomodulatory and pro-regenerative properties by secreting a plethora of active compounds (including interleukins and chemokines, neurotrophins, reactive oxygen species, nitric oxide synthase and complement components), which are engaged in cell crosstalk in a paracrine manner. As the developing nervous system is extremely sensitive to the influence of signaling molecules, even subtle changes in the composition or concentration of the cellular secretome can have significant effects on the developing neonatal brain. Thus, modulating the activity of other types of cells and their interactions with overreactive astrocytes might be a promising strategy for controlling neonatal astrogliosis.
Collapse
Affiliation(s)
| | | | | | | | - Joanna Sypecka
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, A. Pawinskiego 5, 02-106 Warsaw, Poland; (J.G.); (J.J.)
| |
Collapse
|
2
|
Alhashim A, Hadhiah K, Al-Dandan H, Aljaman M, Alabdali M, Alshurem M, Aljaafari D, AlQarni M. Spontaneous Simultaneous Bilateral Basal Ganglia Hemorrhage (SSBBGH): Systematic Review and Data Analysis on Epidemiology, Clinical Feature, Location of Bleeding, Etiology, Therapeutic Intervention and Outcome. Vasc Health Risk Manag 2022; 18:267-276. [PMID: 35444424 PMCID: PMC9015104 DOI: 10.2147/vhrm.s349912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/06/2022] [Indexed: 11/23/2022] Open
Abstract
Background Spontaneous simultaneous bilateral basal ganglia hemorrhage (SSBBGH) is an extremely rare condition with only a few published case reports and series. However, there is no systematic review that has been published yet. Objective The study aims to conduct a systematic review on spontaneous simultaneous bilateral basal ganglion bleeding and a descriptive statistical analysis of collected data on epidemiology, clinical features, etiology, therapeutic approach and prognosis. This review aims to be a clinical reference for busy clinicians when they are faced with such a rare condition. Methodology This review has been carried out in accordance with recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. Results Review of 60 cases showed that SSBBGH affected predominantly male patients (70%) with an average age of 50.8 ± 15.33 years and the male-to-female ratio was 2.5:1. The female patients tend to be older with an average age of 54.22 ± 16.67 years. Location of SSBBGHwas more common in the putamen (90% vs 10% non-putaminal). SSBBGH posed a significant mortality rate (33.33%). Among patients who survived, only 40.6% (13/32 report) have had favorable outcomes (mRS ≤2) and the remaining 59.4% (19/32) ended up with poor functional status (mRS ≥3-5). The most common implicated etiologies were hypertension followed by alcohol intoxication. Conclusion SSBBGH is a rare clinical entity with significant morbidity and mortality. Systemic approach can lead to early recognition of etiology and prompt treatment. Hypertension and the putamen are the most common etiology and location of SSBBGH, respectively. History of hypertension and age can help narrow differential diagnosis and limit unnecessary testing or intervention.
Collapse
Affiliation(s)
- Ali Alhashim
- Neurology Department, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, 34212, Saudi Arabia
- Correspondence: Ali Alhashim, Neurology Department, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, 34212, Saudi Arabia, Tel +966509444833, Email
| | - Kawther Hadhiah
- Neurology Department, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, 34212, Saudi Arabia
| | - Hassan Al-Dandan
- Neurology Department, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, 34212, Saudi Arabia
| | - Mugbil Aljaman
- Neurology Department, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, 34212, Saudi Arabia
| | - Majed Alabdali
- Neurology Department, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, 34212, Saudi Arabia
| | - Mohammed Alshurem
- Neurology Department, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, 34212, Saudi Arabia
| | - Danah Aljaafari
- Neurology Department, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, 34212, Saudi Arabia
| | - Mustafa AlQarni
- Neurology Department, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, 34212, Saudi Arabia
| |
Collapse
|
3
|
Zheng Y, Wang X. Amide proton transfer (APT) imaging-based study on the correlation between brain pH and voltage-gated proton channels in piglets after hypoxic-ischemic brain injury. Quant Imaging Med Surg 2021; 11:4408-4417. [PMID: 34603995 DOI: 10.21037/qims-21-250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/19/2021] [Indexed: 11/06/2022]
Abstract
Background The normal regulation of brain pH is particularly critical for protein structure and enzymatic catalysis in the brain. This study aimed to investigate the regulation mechanism of brain pH after hypoxic-ischemic brain injury (HIBI) through the combination of amide proton transfer (APT) imaging, the analysis of brain pH levels, and the analysis of voltage-gated proton channel (Hv1) expression in piglets with HIBI. Methods A total of 59 healthy piglets (age range, 3-5 days after birth; body weight, 1-1.5 kg) were selected. Six piglets were excluded due to death, modeling failure, or motion artifacts, leaving a total of 10 animals in the control group and 43 animals in the HIBI model group. At different time points (0-2, 2-6, 6-12, 12-24, 24-48, and 48-72 hours) after HIBI, brain pH, Hv1 expression, and APT values were measured and analyzed. The statistical analysis of data was performed using the independent samples t-test, analysis of variance, and Spearman rank correlation analysis. A P value less than 0.05 indicated statistical significance. Results As shown by the immunofluorescent staining results after HIBI, Hv1 protein expression in the basal ganglia reached a peak value at 0-2 hours, with a statistically significant difference between 0-2 hours and other time points (P<0.001). In piglets, the APT value reached a trough at 0-2 hours after HIBI, and subsequently, it gradually increased, and there was a significant difference between the control group and all HIBI model subgroups (P<0.001) except for the 2-6 hours subgroup (P=0.602). Brain pH decreased after HIBI and reached a trough at 0-2 hours, then gradually increased. Hv1 protein expression, pH, and APT values were all correlated (P<0.001). Conclusions After HIBI, values of brain pH, APT, and the expression of Hv1 changed over time and had a linear correlation. This suggests that there was a shift in brain hydrogen ions (H+) in the neural network and a change in brain pH after hypoxic-ischemic (HI) injury.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, China
| | - Xiaoming Wang
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, China
| |
Collapse
|
4
|
Kleuskens DG, Gonçalves Costa F, Annink KV, van den Hoogen A, Alderliesten T, Groenendaal F, Benders MJN, Dudink J. Pathophysiology of Cerebral Hyperperfusion in Term Neonates With Hypoxic-Ischemic Encephalopathy: A Systematic Review for Future Research. Front Pediatr 2021; 9:631258. [PMID: 33604320 PMCID: PMC7884860 DOI: 10.3389/fped.2021.631258] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/07/2021] [Indexed: 01/07/2023] Open
Abstract
Worldwide neonatal hypoxic-ischemic encephalopathy (HIE) is a common cause of mortality and neurologic disability, despite the implementation of therapeutic hypothermia treatment. Advances toward new neuroprotective interventions have been limited by incomplete knowledge about secondary injurious processes such as cerebral hyperperfusion commonly observed during the first 1-5 days after asphyxia. Cerebral hyperperfusion is correlated with adverse neurodevelopmental outcome and it is a process that remains poorly understood. In order to provide an overview of the existing knowledge on the pathophysiology and highlight the gaps in current understanding of cerebral hyperperfusion in term animals and neonates with HIE, we performed a systematic research. We included papers scoping for study design, population, number of participants, study technique and relevant findings. Methodological quality was assessed using the checklist for cohort studies from The Joanna Briggs Institute. Out of 2,690 results, 34 studies were included in the final review-all prospective cohort studies. There were 14 studies of high, 17 moderate and 3 of low methodological quality. Data from the literature were analyzed in two main subjects: (1) Hemodynamic Changes subdivided into macro- and microscopic hemodynamic changes, and (2) Endogenous Pathways which was subdivided into N-methyl-D-aspartate/Mitogen activated protein kinase (NDMA/MAPK), Nitric Oxide (NO), prostanoids and other endogenous studies. Cerebral hyperperfusion in term neonates with HIE was found to be present 10-30 min after the hypoxic-ischemic event and was still present around day 10 and up to 1 month after birth. Cerebral hyperperfusion was also characterized by angiogenesis and cerebral vasodilation. Additionally, cerebral vasodilation was mediated by endogenous pathways such as MAPK through urokinase Plasminogen Activator (uPA), by neuronal NO synthase following NMDA and by prostanoid synthesis. Future research should elucidate the precise role of NMDA, MAPK and prostanoids in cerebral hyperperfusion. Moreover, research should focus on possible interventions and the effect of hypothermia on hyperperfusion. These findings should be taken into account simultaneously with brain imagining techniques, becoming a valuable asset in assessing the impact in neurodevelopmental outcome.
Collapse
Affiliation(s)
- Dianne G Kleuskens
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Filipe Gonçalves Costa
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Kim V Annink
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Agnes van den Hoogen
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Thomas Alderliesten
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Floris Groenendaal
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Manon J N Benders
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
5
|
Ren H, Wang X, Gong R, Li M, Zhu H, Zhang J, Duan E. Atomically dispersed Eu(III) sites in natural deep eutectic solvents based fluorescent probe efficient identification of Fe 3+ and Cu 2+ in wastewater. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117874. [PMID: 31813718 DOI: 10.1016/j.saa.2019.117874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
Heavy metal ions in wastewater have brought serious environmental pollution. To improve the detection efficiency, it is important to find useful fluorescent probes. The emerging green natural deep eutectic solvents (NADESs) offer attractive option for "green" detection for its good biocompatibility, easy preparation, and high sensitivity. In this study, a multi-functionalized fluorescent probe with atomically dispersed EuCl3·6H2O in amino acid-based NADESs (l-Glutamic acid/Glycerol, l-Glu/Gly) was synthesized by metal-ligand coordination interactions with a mass ratio of 15:1. Combined with the NADESs and rare earth metal, the l-Glu/Gly/EuCl3·6H2O could form the amino site and Eu2+ site fluorescent centers. Under the excitation wavelength of 370 nm, it had dual emission peaks at 425 nm and 470 nm with efficient resonance energy transfer. The stable optoelectronic properties of l-Glu/Gly/EuCl3·6H2O under external factors, such as mass ratio (13,1 to 18:1), temperature (30-50 °C), pH (1 to 14) and storage time ( >42 days), approved l-Glu/Gly/EuCl3·6H2O an excellent fluorescence probe. In the application of water-quality monitoring, Fe3+ and Cu2+ could react with l-Glu/Gly/EuCl3·6H2O in different reactive patterns. The blue fluorescence was quenched by Fe3+ and enhanced by Cu2+, thus metal ions could be distinguished with high sensitivity. The detective process was determined and the fluorescent mechanism was also proposed. l-Glu/Gly/EuCl3·6H2O fluorescent probe was demonstrated to be an efficient fluorescent probe for metal detection avoiding the hydrothermal process, and the cumbersome of ilter, dialysis, freeze drying.
Collapse
Affiliation(s)
- Hongwei Ren
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, Hebei 050018, PR China
| | - Xue Wang
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China
| | - Ruiquan Gong
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China
| | - Meiyu Li
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China
| | - Hongyu Zhu
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China
| | - Jinfeng Zhang
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, Hebei 050018, PR China
| | - Erhong Duan
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, Hebei 050018, PR China.
| |
Collapse
|
6
|
Revuelta M, Elicegui A, Moreno-Cugnon L, Bührer C, Matheu A, Schmitz T. Ischemic stroke in neonatal and adult astrocytes. Mech Ageing Dev 2019; 183:111147. [PMID: 31493435 DOI: 10.1016/j.mad.2019.111147] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/06/2019] [Accepted: 09/02/2019] [Indexed: 11/26/2022]
Abstract
The objective of this paper is to review current information regarding astrocytes function after a stroke in neonatal and adult brain. Based on the current literature, there are some molecular differences related to blood brain barrier (BBB) homeostasis disruption, inflammation and reactive oxygen species (ROS) mediated injury between the immature and mature brain after an ischemic event. In particular, astrocytes, the main glial cells in brain, play a different role in neonatal and adult brain after stroke, as time course of glial activation is strongly age dependent. Moreover, the present review provides further insight into the therapeutic approaches of using neonatal and adult astrocytes after stroke. More research will be needed in order to translate them into an effective treatment against stroke, the second main cause of death and disability worldwide.
Collapse
Affiliation(s)
- Miren Revuelta
- Department for Neonatology, Charité University Medical Center, Chariteplatz 1, 10117, Berlin, Germany; Cellular Oncology Group, Biodonostia Health Research Institute, Paseo Doctor Begiristain, 20014, San Sebastian, Spain.
| | - Amaia Elicegui
- Department for Neonatology, Charité University Medical Center, Chariteplatz 1, 10117, Berlin, Germany
| | - Leire Moreno-Cugnon
- Cellular Oncology Group, Biodonostia Health Research Institute, Paseo Doctor Begiristain, 20014, San Sebastian, Spain
| | - Christoph Bührer
- Department for Neonatology, Charité University Medical Center, Chariteplatz 1, 10117, Berlin, Germany
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, Paseo Doctor Begiristain, 20014, San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, María Díaz Haroko 3, 48013, Bilbao, Spain; CIBERfes, Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Thomas Schmitz
- Department for Neonatology, Charité University Medical Center, Chariteplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
7
|
Ceprian M, Fulton D. Glial Cell AMPA Receptors in Nervous System Health, Injury and Disease. Int J Mol Sci 2019; 20:E2450. [PMID: 31108947 PMCID: PMC6566241 DOI: 10.3390/ijms20102450] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/11/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022] Open
Abstract
Glia form a central component of the nervous system whose varied activities sustain an environment that is optimised for healthy development and neuronal function. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole (AMPA)-type glutamate receptors (AMPAR) are a central mediator of glutamatergic excitatory synaptic transmission, yet they are also expressed in a wide range of glial cells where they influence a variety of important cellular functions. AMPAR enable glial cells to sense the activity of neighbouring axons and synapses, and as such many aspects of glial cell development and function are influenced by the activity of neural circuits. However, these AMPAR also render glia sensitive to elevations of the extracellular concentration of glutamate, which are associated with a broad range of pathological conditions. Excessive activation of AMPAR under these conditions may induce excitotoxic injury in glial cells, and trigger pathophysiological responses threatening other neural cells and amplifying ongoing disease processes. The aim of this review is to gather information on AMPAR function from across the broad diversity of glial cells, identify their contribution to pathophysiological processes, and highlight new areas of research whose progress may increase our understanding of nervous system dysfunction and disease.
Collapse
Affiliation(s)
- Maria Ceprian
- Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain.
- Departamento de Bioquímica y Biología Molecular, CIBERNED, IRICYS. Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Daniel Fulton
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
8
|
Pregnolato S, Chakkarapani E, Isles AR, Luyt K. Glutamate Transport and Preterm Brain Injury. Front Physiol 2019; 10:417. [PMID: 31068830 PMCID: PMC6491644 DOI: 10.3389/fphys.2019.00417] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/27/2019] [Indexed: 12/19/2022] Open
Abstract
Preterm birth complications are the leading cause of child death worldwide and a top global health priority. Among the survivors, the risk of life-long disabilities is high, including cerebral palsy and impairment of movement, cognition, and behavior. Understanding the molecular mechanisms of preterm brain injuries is at the core of future healthcare improvements. Glutamate excitotoxicity is a key mechanism in preterm brain injury, whereby the accumulation of extracellular glutamate damages the delicate immature oligodendrocytes and neurons, leading to the typical patterns of injury seen in the periventricular white matter. Glutamate excitotoxicity is thought to be induced by an interaction between environmental triggers of injury in the perinatal period, particularly cerebral hypoxia-ischemia and infection/inflammation, and developmental and genetic vulnerabilities. To avoid extracellular build-up of glutamate, the brain relies on rapid uptake by sodium-dependent glutamate transporters. Astrocytic excitatory amino acid transporter 2 (EAAT2) is responsible for up to 95% of glutamate clearance, and several lines of evidence suggest that it is essential for brain functioning. While in the adult EAAT2 is predominantly expressed by astrocytes, EAAT2 is transiently upregulated in the immature oligodendrocytes and selected neuronal populations during mid-late gestation, at the peak time for preterm brain injury. This developmental upregulation may interact with perinatal hypoxia-ischemia and infection/inflammation and contribute to the selective vulnerability of the immature oligodendrocytes and neurons in the preterm brain. Disruption of EAAT2 may involve not only altered expression but also impaired function with reversal of transport direction. Importantly, elevated EAAT2 levels have been found in the reactive astrocytes and macrophages of human infant post-mortem brains with severe white matter injury (cystic periventricular leukomalacia), potentially suggesting an adaptive mechanism against excitotoxicity. Interestingly, EAAT2 is suppressed in animal models of acute hypoxic-ischemic brain injury at term, pointing to an important and complex role in newborn brain injuries. Enhancement of EAAT2 expression and transport function is gathering attention as a potential therapeutic approach for a variety of adult disorders and awaits exploration in the context of the preterm brain injuries.
Collapse
Affiliation(s)
- Silvia Pregnolato
- Department of Neonatal Neurology, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Elavazhagan Chakkarapani
- Department of Neonatal Neurology, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Anthony R Isles
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Karen Luyt
- Department of Neonatal Neurology, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
9
|
Jiang L, Li H, Fan Z, Zhao R, Xia Z. Circular RNA expression profiles in neonatal rats following hypoxic-ischemic brain damage. Int J Mol Med 2019; 43:1699-1708. [PMID: 30816430 PMCID: PMC6414165 DOI: 10.3892/ijmm.2019.4111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/13/2019] [Indexed: 12/16/2022] Open
Abstract
Circular RNAs (circRNAs) have been studied in a number of diseases. However, the roles of circRNAs in hypoxic‑ischemic brain damage (HIBD) remains unknown. In the present study, high throughput sequencing was used to profile altered circRNAs in HIBD rats. A total of 66 circRNAs were identified to be differentially expressed (fold‑change >2 and P‑value <0.05) in HIBD rats compared with the control group, including 20 upregulated and 46 downregulated circRNAs. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that numerous mRNAs transcribed from the host genes of altered circRNAs were involved in brain damage and neural regeneration. The interaction of circRNA/microRNA was predicted based on TargetScan and miRanda. The results of this study demonstrated an altered circRNA expression pattern in HIBD rats and suggests important roles in HIBD physiological and pathological processes. These findings suggest a novel focus for future studies investigating the molecular mechanism underlying HIBD and possibilities for the treatment of HIBD through modulating circRNAs.
Collapse
Affiliation(s)
- Li Jiang
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210097, P.R. China
| | - Huijuan Li
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210097, P.R. China
| | - Zhongmin Fan
- Department of Pediatrics, The BenQ Hospital, Nanjing Medical University, Nanjing, Jiangsu 210019, P.R. China
| | - Ruibin Zhao
- Department of Pediatrics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Zhengkun Xia
- Department of Pediatrics, Jinling Hospital, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| |
Collapse
|
10
|
Yuan X, Yue C, Yu M, Chen P, Du P, Shao CH, Cheng SC, Bian RJ, Wang SY, Wang W, Cui GB. Fetal brain development at 25-39 weeks gestational age: A preliminary study using intravoxel incoherent motion diffusion-weighted imaging. J Magn Reson Imaging 2019; 50:899-909. [PMID: 30677192 DOI: 10.1002/jmri.26667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The fetal brain developmental changes of water diffusivity and perfusion has not been extensively explored. PURPOSE/HYPOTHESIS To evaluate the fetal brain developmental changes of water diffusivity and perfusion using intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI). STUDY TYPE Prospective. POPULATION Seventy-nine normal singleton fetuses were scanned without sedation of healthy pregnant women. FIELD STRENGTH/SEQUENCE 5 T MRI/T1 /2 -weighted image and IVIM-DWI. ASSESSMENT Pure diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (f) values were calculated in the frontal (FWM), temporal (TWM), parietal (PWM), and occipital white matter (OWM) as well as cerebellar hemisphere (CH), basal ganglia region (BGR), thalamus (TH), and pons using an IVIM model. STATISTICAL TESTS One-way analysis of variable (ANOVA) followed by Bonferroni post-hoc multiple comparison was employed to reveal the difference of IVIM parameters among the investigated brain regions. The linear and the nonlinear polynomial regression analyses were utilized to reveal the correlation between gestational age (GA) and IVIM parameters. RESULTS There were significant differences in both D (F(7,623) = 96.64, P = 0.000) and f values (F(7,623) = 2.361, P = 0.0219), but not D* values among the varied brain regions. D values from TWM (r2 = 0.1402, P = 0.0002), PWM (r2 = 0.2245, P = 0.0002), OWM (r2 = 0.2519, P = 0.0002), CH (r2 = 0.2245, P = 0.0002), BGR (r2 = 0.3393, P = 0.0001), TH (r2 = 0.1259, P = 0.0001), and D* value from pons (r2 = 0.2206, P = 0.0002) were significantly correlated with GA using linear regression analysis. Quadratic regression analysis led to results similar to those using the linear regression model. DATA CONCLUSION IVIM-DWI parameters may indicate fetal brain developmental alterations but the conclusion is far from reached due to the not as high-powered correlation between IVIM parameters and GA. LEVEL OF EVIDENCE 2 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2019;50:899-909.
Collapse
Affiliation(s)
- Xiao Yuan
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Shaanxi, China
| | - Cui Yue
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Shaanxi, China
| | - Mei Yu
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Shaanxi, China
| | - Ping Chen
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Shaanxi, China
| | - Pang Du
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Shaanxi, China
| | - Chang-Hua Shao
- Student Brigade, Fourth Military Medical University (Air Force Medical University), Shaanxi, China
| | - Si-Chao Cheng
- Student Brigade, Fourth Military Medical University (Air Force Medical University), Shaanxi, China
| | - Ren-Jie Bian
- Student Brigade, Fourth Military Medical University (Air Force Medical University), Shaanxi, China
| | | | - Wen Wang
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Shaanxi, China
| | - Guang-Bin Cui
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Shaanxi, China
| |
Collapse
|
11
|
Shevelev OB, Moshkin MP. Impact of glycolysis inhibitor (2-DG) and oxidation and phosphorylation uncoupler (2,4-DNP) on brain metabolites. Vavilovskii Zhurnal Genet Selektsii 2018. [DOI: 10.18699/vj18.353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Deviations in brain metabolism are the result of longterm pathological processes, which finally are manifested as symptoms of Parkinson’s or Alzheimer’s diseases or multiple sclerosis and other neuropathologies, as for example diabetic neuropathy. A deficiency of available energy for brain cells under neurodegenerative diseases is either developed due to age-dependent underexpression of genes that encode glycolytic enzymes or induced due to the uncoupling of oxidation and phosphorylation that could be mediated by inflammatory cytokines. Since the activity of many enzymes is under the control of adenosine triphosphate (ATP) or cofactors, such as nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH), energy deficiency can cause metabolic changes in brain tissue. Some clinical studies using proton nuclear magnetic resonance spectroscopy (1H NMR spectroscopy) revealed metabolic changes in brain tissue in patients with neurodegenerative diseases. However, data from different authors are quite contradictory, probably because of the complex genesis of metabolic disorders. In the present study, we tested the hypothesis of multidirectional changes in metabolism under the impact of the oxidation and phosphorylation uncoupler 2,4-dinitrophenol (2,4-DNP) and under the impact of 2-deoxy-Dglucose (2-DG), blocking the access of glucose to the brain cells. 1H NMR spectroscopy showed that 2-DG leads to the predominance of excitatory (glutamine + glutamate) neurotransmitters over inhibitory ones (gamma-aminobutyric acid), and 2,4 DNP causes opposite effects. The biochemical mechanisms of the observed changes require a special study, but it can be noted that the ATP deficiency caused by inhibition of glycolysis and the ATP deficiency caused by the uncouplers are accompanied by differently directed changes in the intensity of the tricarboxylic acid cycle. These changes in the intensity of the Krebs cycle are correlated with differently directed changes in the balance of the exciting and inhibitory neurotransmitters. The obtained results show that 1H NMR spectroscopy can be an effective method of differentiated lifetime assessment of the available energy deficit caused by a general suppression of energy exchange in nerve cells or oxidation and phosphorylation uncoupling.
Collapse
|