1
|
Skalny AV, Korobeinikova TV, Zabroda NN, Chang JS, Chao JCJ, Aschner M, Paoliello MMB, Burtseva TI, Tinkov AA. Interactive Effects of Obesity and Hypertension on Patterns of Hair Essential Trace Element and Mineral Content in Adult Women. Biol Trace Elem Res 2023; 201:4677-4687. [PMID: 36648598 DOI: 10.1007/s12011-023-03561-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023]
Abstract
The objective of the present study was to evaluate potential similar patterns and interactive effects of obesity and hypertension on hair essential trace element and mineral content in adult women. In this cross-sectional study, a total of 607 adult women divided into controls (n = 101), groups with obesity without hypertension (n = 199), hypertension without obesity (n = 143), and both obesity and hypertension (n = 164) were included in the study. Assessment of hair mineral and trace element levels was performed by inductively-coupled plasma mass-spectrometry. Hair Ca, Mg, Co, and Mn levels in women with obesity, hypertension, and both diseases were significantly lower, compared to controls. Hair Mg levels in women with obesity and hypertension were significantly lower, whereas hair Na and K were found to be higher when compared to other groups. Hair Fe and V content in obese patients was lower than in other groups. Obesity was associated with lower hair Cu levels, whereas patients with hypertension had higher hair Cu content. Hypertension was also associated with higher hair Cr and Se content irrespective of body weight. Hair Zn levels in obese women with and without hypertension were significantly lower than those in healthy controls and normal-weight women with hypertension. In multiple regression models hair Mg was considered as a significant negative predictor of both systolic and diastolic blood pressure values. The observed alterations in hair trace element and mineral content provide an additional link between obesity and hypertension, although further detailed studies are required.
Collapse
Affiliation(s)
- Anatoly V Skalny
- Center for Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia
- Yaroslavl State University, Yaroslavl, 150003, Russia
| | - Tatiana V Korobeinikova
- Center for Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia
| | - Nadezhda N Zabroda
- Center for Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia
| | - Jung-Su Chang
- Taipei Medical University, Taipei, 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| | - Jane C-J Chao
- Taipei Medical University, Taipei, 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Monica M B Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | - Alexey A Tinkov
- Center for Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia.
- Yaroslavl State University, Yaroslavl, 150003, Russia.
| |
Collapse
|
2
|
Zhang M, Yao A, Ai F, Lin J, Fu Q, Wang D. Cobalt-containing borate bioactive glass fibers for treatment of diabetic wound. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:42. [PMID: 37530851 PMCID: PMC10397116 DOI: 10.1007/s10856-023-06741-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023]
Abstract
Impaired angiogenesis is one of the predominant reasons for non-healing diabetic wounds. Cobalt is well known for its capacity to induce angiogenesis by stabilizing hypoxia-inducible factor-1α (HIF-1α) and subsequently inducing the production of vascular endothelial growth factor (VEGF). In this study, Co-containing borate bioactive glasses and their derived fibers were fabricated by partially replacing CaO in 1393B3 borate glass with CoO. Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR) analyses were performed to characterize the effect of Co incorporation on the glass structure, and the results showed that the substitution promoted the transformation of [BO3] into [BO4] units, which endow the glass with higher chemical durability and lower reaction rate with the simulated body fluid (SBF), thereby achieving sustained and controlled Co2+ ion release. In vitro biological assays were performed to assess the angiogenic potential of the Co-containing borate glass fibers. It was found that the released Co2+ ion significantly enhanced the proliferation, migration and tube formation of the Human Umbilical Vein Endothelial Cells (HUVECs) by upregulating the expression of angiogenesis-related proteins such as HIF-1α and VEGF. Finally. In vivo results demonstrated that the Co-containing fibers accelerated full-thickness skin wound healing in streptozotocin (STZ)-induced diabetic rat model by promoting angiogenesis and re-epithelialization.
Collapse
Affiliation(s)
- Minhui Zhang
- School of Materials Science and Engineering, Tongji University, 200092, Shanghai, China
| | - Aihua Yao
- School of Materials Science and Engineering, Tongji University, 200092, Shanghai, China
- Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, 200092, Shanghai, China
| | - Fanrong Ai
- School of Mechatronics Engineering, Nanchang University, 330031, Nanchang, China
| | - Jian Lin
- School of Materials Science and Engineering, Tongji University, 200092, Shanghai, China.
- Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, 200092, Shanghai, China.
| | - Qingge Fu
- Department of Orthopedic trauma, Changhai Hospital, Second Military Medical University, 200433, Shanghai, China.
| | - Deping Wang
- School of Materials Science and Engineering, Tongji University, 200092, Shanghai, China
- Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, 200092, Shanghai, China
| |
Collapse
|
3
|
Heck-Swain KL, Koeppen M. The Intriguing Role of Hypoxia-Inducible Factor in Myocardial Ischemia and Reperfusion: A Comprehensive Review. J Cardiovasc Dev Dis 2023; 10:jcdd10050215. [PMID: 37233182 DOI: 10.3390/jcdd10050215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Hypoxia-inducible factors (HIFs) play a crucial role in cellular responses to low oxygen levels during myocardial ischemia and reperfusion injury. HIF stabilizers, originally developed for treating renal anemia, may offer cardiac protection in this context. This narrative review examines the molecular mechanisms governing HIF activation and function, as well as the pathways involved in cell protection. Furthermore, we analyze the distinct cellular roles of HIFs in myocardial ischemia and reperfusion. We also explore potential therapies targeting HIFs, emphasizing their possible benefits and limitations. Finally, we discuss the challenges and opportunities in this research area, underscoring the need for continued investigation to fully realize the therapeutic potential of HIF modulation in managing this complex condition.
Collapse
Affiliation(s)
- Ka-Lin Heck-Swain
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Tuebingen, 72076 Tübingen, Germany
| | - Michael Koeppen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Tuebingen, 72076 Tübingen, Germany
| |
Collapse
|
4
|
Castilla R, Ruffa FV, Bancalari I, Fernández Vivanco M, Lallopizzo C, Torasso N, Farcy N, Gutierrez C, Bonazzolaa P. Cobalt chloride postconditioning as myoprotective therapy in cardiac ischemia-reperfusion. Pflugers Arch 2022; 474:743-752. [PMID: 35585327 DOI: 10.1007/s00424-022-02703-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/11/2022] [Accepted: 05/03/2022] [Indexed: 11/24/2022]
Abstract
Since damage induced by ischemia-reperfusion (I/R) involves alterations in Ca2+ homeostasis and is reduced by ischemic postconditioning (IP) and that CoCl2 can trigger changes resembling the response to a hypoxic event in normoxia and its blockade on Ca2+ current in heart muscle, our aim was to evaluate CoCl2 as an IP therapeutic tool. Mechanic and energetic parameters of isolated and arterially perfused male Wistar rat heart ventricles were simultaneously analyzed in a model of I/R in which 0.23 mmol/L CoCl2 was introduced upon reperfusion and kept or withdrawn after 20 min or introduced after 20 min of reperfusion. The presence of CoCl2 did not affect diastolic pressure but increased post-ischemic contractile recovery, which peaked at 20 min and decreased at the end of reperfusion. This decrease was prevented when CoCl2 was removed at 20 min of reperfusion. Total heat release increased throughout reperfusion, while economy increased between 15 and 25 min. No effect was observed when CoCl2 was introduced at 20 min of reperfusion. In addition, both the area under the contracture curve evoked by 10 mmol/L caffeine-36 mmol/L Na+ and the contracture tension relaxation rate were higher with CoCl2.Furthermore, CoCl2 decreased the number of arrhythmias during reperfusion and the ventricular damaged area. The presence of CoCl2 in reperfusion induces cardioprotection consistent with the improvement in cellular calcium handling. The use of CoCl2 constitutes a potential cardioprotective tool of clinical relevance.
Collapse
Affiliation(s)
- Rocío Castilla
- CONICET, Instituto Alberto C Taquini de Investigaciones en Medicina Traslacional (IATIMET) C1122AAJ, Universidad de Buenos Aires, Marcelo T. de Alvear, 2270- C1122AAJ, Buenos Aires, Argentina.
| | - Facundo Vigón Ruffa
- CONICET, Instituto Alberto C Taquini de Investigaciones en Medicina Traslacional (IATIMET) C1122AAJ, Universidad de Buenos Aires, Marcelo T. de Alvear, 2270- C1122AAJ, Buenos Aires, Argentina
| | - Ignacio Bancalari
- CONICET, Instituto Alberto C Taquini de Investigaciones en Medicina Traslacional (IATIMET) C1122AAJ, Universidad de Buenos Aires, Marcelo T. de Alvear, 2270- C1122AAJ, Buenos Aires, Argentina
| | - Mercedes Fernández Vivanco
- CONICET, Instituto Alberto C Taquini de Investigaciones en Medicina Traslacional (IATIMET) C1122AAJ, Universidad de Buenos Aires, Marcelo T. de Alvear, 2270- C1122AAJ, Buenos Aires, Argentina
| | - Carla Lallopizzo
- CONICET, Instituto Alberto C Taquini de Investigaciones en Medicina Traslacional (IATIMET) C1122AAJ, Universidad de Buenos Aires, Marcelo T. de Alvear, 2270- C1122AAJ, Buenos Aires, Argentina
| | - Nicolás Torasso
- Facultad de Ciencias Exactas Y Naturales, Instituto de Física de Buenos Aires (IFIBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nicole Farcy
- CONICET, Instituto Alberto C Taquini de Investigaciones en Medicina Traslacional (IATIMET) C1122AAJ, Universidad de Buenos Aires, Marcelo T. de Alvear, 2270- C1122AAJ, Buenos Aires, Argentina
| | - Christopher Gutierrez
- CONICET, Instituto Alberto C Taquini de Investigaciones en Medicina Traslacional (IATIMET) C1122AAJ, Universidad de Buenos Aires, Marcelo T. de Alvear, 2270- C1122AAJ, Buenos Aires, Argentina
| | - Patricia Bonazzolaa
- CONICET, Instituto Alberto C Taquini de Investigaciones en Medicina Traslacional (IATIMET) C1122AAJ, Universidad de Buenos Aires, Marcelo T. de Alvear, 2270- C1122AAJ, Buenos Aires, Argentina
| |
Collapse
|
5
|
ZOU T, WU J, YANG L, TAIWANGU T, CHEN S, WANG J. Effects of HIF-1α overexpression on mitochondrial function in aged mice with myocardial ischemia-reperfusion. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.59121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Tiantian ZOU
- The First Affiliated Hospital of Xinjiang Medical University, China
| | - Jianjiang WU
- The First Affiliated Hospital of Xinjiang Medical University, China
| | - Long YANG
- The First Affiliated Hospital of Xinjiang Medical University, China
| | | | - Siyu CHEN
- The First Affiliated Hospital of Xinjiang Medical University, China
| | - Jiang WANG
- The First Affiliated Hospital of Xinjiang Medical University, China
| |
Collapse
|
6
|
Zhai W, Li Y, Luo Y, Gao W, Liu S, Han J, Geng J. Sevoflurane prevents pulmonary vascular remodeling and right ventricular dysfunction in pulmonary arterial hypertension in rats. Am J Transl Res 2021; 13:11302-11315. [PMID: 34786059 PMCID: PMC8581939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The cardioprotective properties of sevoflurane have been reported in studies of the left ventricle. However, whether this volatile anesthetic would also be beneficial for pulmonary vascular remodeling and associated right ventricular hypertrophy (RVH) remained to be explored. Here, we investigated the potential benefit of sevoflurane to right heart function in experimental pulmonary arterial hypertension (PAH). METHODS Adult Wistar rats received one dose peritoneal injection of monocrotaline (MCT, 60 mg/kg) or the equal volume of normal saline. Two weeks later, rats were treated with sevoflurane or sham exposure. PAH status and cardiac function were assessed by echocardiography weekly, and the body weight (BW) was monitored every week. After 6 weeks of exercise, Fulton's index calculation, histological observation, IL-6 and TNF-α immunohistochemical analyses, evaluation of MDA, SOD and GSH-Px levels and NF-κB and MAPK active determination were performed in lung and RV tissue samples. RESULTS MCT induced pulmonary vascular remodeling, RVH, increased Fulton's index (P<0.01), and right ventricular failure (RVF) in rats. Animals inhaled sevoflurane had an increased cardiac output (P<0.05) and lower incidence of RVF (P<0.05). Also, these animals had a reduced RVEDD, RVWTd and PAID (P<0.05), increased PV (P<0.05), reduced wall thickness and vascular wall area of pulmonary small vascular (vascular external diameter 50-150 um) (P<0.01), reduced RV fibrosis, and increased RV cardiomyocyte area (P<0.01). Furthermore, sevoflurane reduced IL-6 and TNF-α expression in lungs and heart (P<0.01), decreased level of MDA (P<0.01) and increased activity of SOD and GSH-Px (P<0.01). In addition, it decreased the activities of NF-κB and MAPK pathways (P<0.01). CONCLUSION Sevoflurane reduces pulmonary vascular remodeling and RVH in PAH induced by MCT in rats. This effect is likely due to down-regulation of inflammatory factors IL-6 and TNF-α, reduced level of oxidative stress and the inhibition of NF-κB and MAPK pathways.
Collapse
Affiliation(s)
- Wenqian Zhai
- Department of Anesthesiology, Tianjin Chest HospitalTianjin 300222, China
| | - Yunfei Li
- Department of Anesthesiology, Tianjin Chest HospitalTianjin 300222, China
| | - Yongjuan Luo
- Department of Ultrasonics, Tianjin Chest HospitalTianjin 300222, China
| | - Weidong Gao
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of MedicineBaltimore 21205, MD, USA
| | - Shan Liu
- Tianjin Cardiovascular Institute, Tianjin Chest HospitalTianjin 300051, China
| | - Jiange Han
- Department of Anesthesiology, Tianjin Chest HospitalTianjin 300222, China
| | - Jie Geng
- Department of Cardiology, Tianjin Chest HospitalTianjin 300222, China
| |
Collapse
|
7
|
Andreadou I, Daiber A, Baxter GF, Brizzi MF, Di Lisa F, Kaludercic N, Lazou A, Varga ZV, Zuurbier CJ, Schulz R, Ferdinandy P. Influence of cardiometabolic comorbidities on myocardial function, infarction, and cardioprotection: Role of cardiac redox signaling. Free Radic Biol Med 2021; 166:33-52. [PMID: 33588049 DOI: 10.1016/j.freeradbiomed.2021.02.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 02/06/2023]
Abstract
The morbidity and mortality from cardiovascular diseases (CVD) remain high. Metabolic diseases such as obesity, hyperlipidemia, diabetes mellitus (DM), non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) as well as hypertension are the most common comorbidities in patients with CVD. These comorbidities result in increased myocardial oxidative stress, mainly from increased activity of nicotinamide adenine dinucleotide phosphate oxidases, uncoupled endothelial nitric oxide synthase, mitochondria as well as downregulation of antioxidant defense systems. Oxidative and nitrosative stress play an important role in ischemia/reperfusion injury and may account for increased susceptibility of the myocardium to infarction and myocardial dysfunction in the presence of the comorbidities. Thus, while early reperfusion represents the most favorable therapeutic strategy to prevent ischemia/reperfusion injury, redox therapeutic strategies may provide additive benefits, especially in patients with heart failure. While oxidative and nitrosative stress are harmful, controlled release of reactive oxygen species is however important for cardioprotective signaling. In this review we summarize the current data on the effect of hypertension and major cardiometabolic comorbidities such as obesity, hyperlipidemia, DM, NAFLD/NASH on cardiac redox homeostasis as well as on ischemia/reperfusion injury and cardioprotection. We also review and discuss the therapeutic interventions that may restore the redox imbalance in the diseased myocardium in the presence of these comorbidities.
Collapse
Affiliation(s)
- Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece.
| | - Andreas Daiber
- Department of Cardiology 1, Molecular Cardiology, University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany; Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr, Germany.
| | - Gary F Baxter
- Division of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, United Kingdom
| | | | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Italy; Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
| | - Nina Kaludercic
- Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
| | - Antigone Lazou
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
| | - Coert J Zuurbier
- Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany.
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
8
|
Khan H, Kashyap A, Kaur A, Singh TG. Pharmacological postconditioning: a molecular aspect in ischemic injury. J Pharm Pharmacol 2020; 72:1513-1527. [PMID: 33460133 DOI: 10.1111/jphp.13336] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/21/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Ischaemia/reperfusion (I/R) injury is defined as the damage to the tissue which is caused when blood supply returns to tissue after ischaemia. To protect the ischaemic tissue from irreversible injury, various protective agents have been studied but the benefits have not been clinically applicable due to monotargeting, low potency, late delivery or poor tolerability. KEY FINDINGS Strategies involving preconditioning or postconditioning can address the issues related to the failure of protective therapies. In principle, postconditioning (PoCo) is clinically more applicable in the conditions in which there is unannounced ischaemic event. Moreover, PoCo is an attractive beneficial strategy as it can be induced rapidly at the onset of reperfusion via series of brief I/R cycles following a major ischaemic event or it can be induced in a delayed manner. Various pharmacological postconditioning (pPoCo) mechanisms have been investigated systematically. Using different animal models, most of the studies on pPoCo have been carried out preclinically. SUMMARY However, there is a need for the optimization of the clinical protocols to quicken pPoCo clinical translation for future studies. This review summarizes the involvement of various receptors and signalling pathways in the protective mechanisms of pPoCo.
Collapse
Affiliation(s)
- Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ankita Kashyap
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | |
Collapse
|
9
|
Yang L, Xie P, Wu J, Yu J, Li X, Ma H, Yu T, Wang H, Ye J, Wang J, Zheng H. Deferoxamine Treatment Combined With Sevoflurane Postconditioning Attenuates Myocardial Ischemia-Reperfusion Injury by Restoring HIF-1/BNIP3-Mediated Mitochondrial Autophagy in GK Rats. Front Pharmacol 2020; 11:6. [PMID: 32140105 PMCID: PMC7042377 DOI: 10.3389/fphar.2020.00006] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial autophagy is involved in myocardial protection of sevoflurane postconditioning (SPostC) and in diabetic state this protective effect is weakened due to impaired HIF-1 signaling pathway. Previous studies have proved that deferoxamine (DFO) could activate impaired HIF-1α in diabetic state to restore the cardioprotective of sevoflurane, while the specific mechanism is unclear. This study aims to investigate whether HIF-1/BNIP3-mediated mitochondrial autophagy is involved in the restoration of sevoflurane postconditioning cardioprotection in diabetic state. Ischemia/reperfusion (I/R) model was established by ligating the anterior descending coronary artery and sevoflurane was administered at the first 15 min of reperfusion. Myocardial infarct size, mitochondrial ultrastructure and autophagosome, ATP content, mitochondrial membrane potential, ROS production, HIF-1α, BNIP3, LC3B-II, Beclin-1, P62, LAMP2 protein expression were detected 2 h after reperfusion, and cardiac function was evaluated by ultrasound at 24 h after reperfusion. Our results showed that with DFO treatment, SPostC up-regulated the expression of HIF-1α and BNIP3, thus reduced the expression of key autophagy proteins LC3B-II, Beclin-1, p62, and increased the expression of LAMP2. Furthermore, it reduced the accumulation of autophagosomes and ROS production, increased the content of ATP, and stabilized the membrane potential. Finally, the myocardial infarction size was reduced and cardiac function was improved. Taken together, DFO treatment combined with SPostC could alleviate myocardial ischemia reperfusion injury in diabetic rats by restoring and promoting HIF-1/BNIP3-mediated mitochondrial autophagy.
Collapse
Affiliation(s)
- Long Yang
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Peng Xie
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Department of Anesthesiology, Zunyi Medical College, Zunyi, China
| | - Jianjiang Wu
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jin Yu
- Department of Anesthesiology, Chongqing Health Center for Women and Children, Chongqing, China
| | - Xin Li
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Haiping Ma
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Department of Anesthesiology, Zunyi Medical College, Zunyi, China
| | - Haiying Wang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Department of Anesthesiology, Zunyi Medical College, Zunyi, China
| | - Jianrong Ye
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jiang Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hong Zheng
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
10
|
Zhang LM, Zhang DX, Fu L, Li Y, Wang XP, Qi MM, Li CC, Song PP, Wang XD, Kong XJ. Carbon monoxide-releasing molecule-3 protects against cortical pyroptosis induced by hemorrhagic shock and resuscitation via mitochondrial regulation. Free Radic Biol Med 2019; 141:299-309. [PMID: 31265876 DOI: 10.1016/j.freeradbiomed.2019.06.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Carbon monoxide (CO) releasing molecule (CORM)-3, a water-soluble CORM, has protective effects against inflammatory and ischemia/reperfusion injury. We determined the effect of CORM-3 against neuronal pyroptosis in a model of hemorrhagic shock and resuscitation (HSR) in rats via mitochondrial regulation. METHODS Rats were treated with CORM-3 (4 mg/kg) in vitro after HSR. We measured cortical CO content 3-24 h after HSR; assessed neuronal pyroptosis, mitochondrial morphology, ROS production, and mitochondrial membrane potential at 12 h after HSR; and evaluated brain magnetic resonance imaging at 24 h after HSR and learning ability 30 days after HSR. We also measured soluble guanylate-cyclase (sGC)-cyclic guanosine monophosphate (cGMP) signaling pathway activity using a blocker of sGC, NS2028, and 125I-cGMP assay. RESULTS Among rats that underwent HSR, CORM-3-treated rats had more CO in the cortical tissue than sham- and iCORM-3-treated rats. CORM-3-treated rats had significantly less neuronal pyroptosis in the cortical tissue; higher sGC activity and cGMP content; lower ROS production; better mitochondrial morphology, function, and membrane potential; and enhanced learning/memory ability than HSR-treated rats. However, these neuroprotective effects of CORM-3 were partially inhibited by NS2028. CONCLUSION CORM-3 may alleviate neuronal pyroptosis and improve neurological recovery in HSR through mitochondrial regulation mediated by the sGC-cGMP pathway. Thus, CO administration could be a promising therapeutic strategy for hemorrhagic shock.
Collapse
Affiliation(s)
- Li-Min Zhang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China.
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Lan Fu
- Department of Radiodiagnosis, Cangzhou Central Hospital, Cangzhou, China
| | - Yan Li
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Xu-Peng Wang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Man-Man Qi
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Chen-Chen Li
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Pan-Pan Song
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Xiao-Dong Wang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Xiang-Jun Kong
- Central Laboratory, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
11
|
Zhang LM, Zhang DX. The Dual Neuroprotective-Neurotoxic Effects of Sevoflurane After Hemorrhagic Shock Injury. J Surg Res 2019; 235:591-599. [DOI: 10.1016/j.jss.2018.10.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/08/2018] [Accepted: 10/25/2018] [Indexed: 12/27/2022]
|
12
|
Neckář J, Hsu A, Hye Khan MA, Gross GJ, Nithipatikom K, Cyprová M, Benák D, Hlaváčková M, Sotáková-Kašparová D, Falck JR, Sedmera D, Kolář F, Imig JD. Infarct size-limiting effect of epoxyeicosatrienoic acid analog EET-B is mediated by hypoxia-inducible factor-1α via downregulation of prolyl hydroxylase 3. Am J Physiol Heart Circ Physiol 2018; 315:H1148-H1158. [PMID: 30074840 PMCID: PMC6734065 DOI: 10.1152/ajpheart.00726.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 07/06/2018] [Accepted: 07/18/2018] [Indexed: 12/27/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) decrease cardiac ischemia-reperfusion injury; however, the mechanism of their protective effect remains elusive. Here, we investigated the cardioprotective action of a novel EET analog, EET-B, in reperfusion and the role of hypoxia-inducible factor (HIF)-1α in such action of EET-B. Adult male rats were subjected to 30 min of left coronary artery occlusion followed by 2 h of reperfusion. Administration of 14,15-EET (2.5 mg/kg) or EET-B (2.5 mg/kg) 5 min before reperfusion reduced infarct size expressed as a percentage of the area at risk from 64.3 ± 1.3% in control to 42.6 ± 1.9% and 46.0 ± 1.6%, respectively, and their coadministration did not provide any stronger effect. The 14,15-EET antagonist 14,15-epoxyeicosa-5( Z)-enoic acid (2.5 mg/kg) inhibited the infarct size-limiting effect of EET-B (62.5 ± 1.1%). Similarly, the HIF-1α inhibitors 2-methoxyestradiol (2.5 mg/kg) and acriflavine (2 mg/kg) completely abolished the cardioprotective effect of EET-B. In a separate set of experiments, the immunoreactivity of HIF-1α and its degrading enzyme prolyl hydroxylase domain protein 3 (PHD3) were analyzed in the ischemic areas and nonischemic septa. At the end of ischemia, the HIF-1α immunogenic signal markedly increased in the ischemic area compared with the septum (10.31 ± 0.78% vs. 0.34 ± 0.08%). After 20 min and 2 h of reperfusion, HIF-1α immunoreactivity decreased to 2.40 ± 0.48% and 1.85 ± 0.43%, respectively, in the controls. EET-B blunted the decrease of HIF-1α immunoreactivity (7.80 ± 0.69% and 6.44 ± 1.37%, respectively) and significantly reduced PHD3 immunogenic signal in ischemic tissue after reperfusion. In conclusion, EET-B provides an infarct size-limiting effect at reperfusion that is mediated by HIF-1α and downregulation of its degrading enzyme PHD3. NEW & NOTEWORTHY The present study shows that EET-B is an effective agonistic 14,15-epoxyeicosatrienoic acid analog, and its administration before reperfusion markedly reduced myocardial infarction in rats. Most importantly, we demonstrate that increased hypoxia-inducible factor-1α levels play a role in cardioprotection mediated by EET-B in reperfusion likely by mechanisms including downregulation of the hypoxia-inducible factor -1α-degrading enzyme prolyl hydroxylase domain protein 3.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/pharmacology
- 8,11,14-Eicosatrienoic Acid/therapeutic use
- Animals
- Disease Models, Animal
- Down-Regulation
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor-Proline Dioxygenases/genetics
- Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism
- Male
- Myocardial Infarction/enzymology
- Myocardial Infarction/pathology
- Myocardial Infarction/physiopathology
- Myocardial Infarction/prevention & control
- Myocardial Reperfusion Injury/enzymology
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/physiopathology
- Myocardial Reperfusion Injury/prevention & control
- Myocardium/enzymology
- Myocardium/pathology
- Proteolysis
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Ventricular Function, Left/drug effects
- Ventricular Remodeling/drug effects
Collapse
Affiliation(s)
- Jan Neckář
- Department of Pharmacology and Toxicology, Medical College of Wisconsin , Milwaukee, Wisconsin
- Department of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine Physiology , Prague , Czech Republic
| | - Anna Hsu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Md Abdul Hye Khan
- Department of Pharmacology and Toxicology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Garrett J Gross
- Department of Pharmacology and Toxicology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Kasem Nithipatikom
- Department of Pharmacology and Toxicology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Michaela Cyprová
- Department of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
| | - Daniel Benák
- Department of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
| | - Markéta Hlaváčková
- Department of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
| | - Dita Sotáková-Kašparová
- Department of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center , Dallas, Texas
| | - David Sedmera
- Department of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University , Prague , Czech Republic
| | - František Kolář
- Department of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
| | - John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin , Milwaukee, Wisconsin
| |
Collapse
|
13
|
Ghanei N, Amin RH. Commentary: Neutral Commentary on Frontiers Article "Cobalt Chloride Upregulates Impaired HIF-1α Expression to Restore Sevoflurane Post-conditioning-Dependent Myocardial Protection in Diabetic Rats". Front Physiol 2017; 8:926. [PMID: 29209228 PMCID: PMC5702356 DOI: 10.3389/fphys.2017.00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/31/2017] [Indexed: 11/15/2022] Open
Affiliation(s)
- Nila Ghanei
- Cardio-Metabolic Research Lab, Department of Drug Discovery and Development, The Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Rajesh H Amin
- Cardio-Metabolic Research Lab, Department of Drug Discovery and Development, The Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| |
Collapse
|