1
|
Desai A, Loureiro ZY, DeSouza T, Yang Q, Solivan-Rivera J, Corvera S. cAMP driven UCP1 induction in human adipocytes requires ATGL-catalyzed lipolysis. Mol Metab 2024; 90:102051. [PMID: 39454826 PMCID: PMC11585812 DOI: 10.1016/j.molmet.2024.102051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
OBJECTIVE The uncoupling protein 1 (UCP1) is induced in brown or "beige" adipocytes through catecholamine-induced cAMP signaling, which activates diverse transcription factors. UCP1 expression can also be enhanced by PPARγ agonists such as rosiglitazone (Rsg). However, it is unclear whether this upregulation results from de-novo differentiation of beige adipocytes from progenitor cells, or from the induction of UCP1 in pre-existing adipocytes. To explore this, we employed human adipocytes differentiated from progenitor cells and examined their acute response to Rsg, to the adenylate-cyclase activator forskolin (Fsk), or to both simultaneously. METHODS Adipocytes generated from primary human progenitor cells were differentiated without exposure to PPARγ agonists, and treated for 3, 6 or 78 h to Fsk, to Rsg, or to both simultaneously. Bulk RNASeq, RNAScope, RT-PCR, CRISPR-Cas9 mediated knockout, oxygen consumption and western blotting were used to assess cellular responses. RESULTS UCP1 mRNA expression was induced within 3 h of exposure to either Rsg or Fsk, indicating that Rsg's effect is independent on additional adipocyte differentiation. Although Rsg and Fsk induced distinct overall transcriptional responses, both induced genes associated with calcium metabolism, lipid droplet assembly, and mitochondrial remodeling, denoting core features of human adipocyte beiging. Unexpectedly, we found that Fsk-induced UCP1 expression was reduced by approximately 80% following CRISPR-Cas9-mediated knockout of PNPLA2, the gene encoding the triglyceride lipase ATGL. As anticipated, ATGL knockout suppressed lipolysis; however, the associated suppression of UCP1 induction indicates that maximal cAMP-mediated UCP1 induction requires products of ATGL-catalyzed lipolysis. Supporting this, we observed that the reduction in Fsk-stimulated UCP1 induction caused by ATGL knockout was reversed by Rsg, implying that the role of lipolysis in this process is to generate natural PPARγ agonists. CONCLUSIONS UCP1 transcription is known to be stimulated by transcription factors activated downstream of cAMP-dependent protein kinases. Here we demonstrate that UCP1 transcription can also be acutely induced through PPARγ-activation. Moreover, both pathways are activated in human adipocytes in response to cAMP, synergistically inducing UCP1 expression. The stimulation of PPARγ in response to cAMP may result from the production of natural PPARγ activating ligands through ATGL-mediated lipolysis.
Collapse
Affiliation(s)
- Anand Desai
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Zinger Yang Loureiro
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA; Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Tiffany DeSouza
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Qin Yang
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA; Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Javier Solivan-Rivera
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA; Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Silvia Corvera
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA; Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
2
|
Desai A, Yang Loureiro Z, DeSouza T, Yang Q, Solivan-Rivera J, Corvera S. PPARγ activation by lipolysis-generated ligands is required for cAMP dependent UCP1 induction in human thermogenic adipocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.10.607465. [PMID: 39211160 PMCID: PMC11360943 DOI: 10.1101/2024.08.10.607465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Objective The uncoupling protein 1 (UCP1) is induced in brown or "beige" adipocytes through catecholamine-induced cAMP signaling, which activates diverse transcription factors. UCP1 expression can also be enhanced by PPARγ agonists such as rosiglitazone (Rsg). However, it is unclear whether this upregulation results from de-novo differentiation of beige adipocytes from progenitor cells, or from the induction of UCP1 in pre-existing adipocytes. To explore this, we employed human adipocytes differentiated from progenitor cells and examined their acute response to Rsg, to the adenylate-cyclase activator forskolin (Fsk), or to both simultaneously. Methods Adipocytes generated from primary human progenitor cells were differentiated without exposure to PPARγ agonists, and treated for 3, 6 or 78 hours to Fsk, to Rsg, or to both simultaneously. Bulk RNASeq, RNAScope, RT-PCR, CRISPR-Cas9 mediated knockout, oxygen consumption and western blotting were used to assess cellular responses. Results UCP1 mRNA expression was induced within 3 hours of exposure to either Rsg or Fsk, indicating that Rsg's effect is independent on additional adipocyte differentiation. Although Rsg and Fsk induced distinct overall transcriptional responses, both induced genes associated with calcium metabolism, lipid droplet assembly, and mitochondrial remodeling, denoting core features of human adipocyte beiging. Unexpectedly, we found that Fsk-induced UCP1 expression was reduced by approximately 80% following CRISPR-Cas9-mediated knockout of PNPLA2 , the gene encoding the triglyceride lipase ATGL. As anticipated, ATGL knockout suppressed lipolysis; however, the associated suppression of UCP1 induction indicates that maximal cAMP-mediated UCP1 induction requires products of ATGL-catalyzed lipolysis. Supporting this, we observed that the reduction in Fsk-stimulated UCP1 induction caused by ATGL knockout was reversed by Rsg, implying that the role of lipolysis in this process is to generate natural PPARγ agonists. Conclusion UCP1 transcription is known to be stimulated by transcription factors activated downstream of cAMP-dependent protein kinases. Here we demonstrate that UCP1 transcription can also be acutely induced through PPARγ-activation. Moreover, both pathways are activated in human adipocytes in response to cAMP, synergistically inducing UCP1 expression. The stimulation of PPARγ in response to cAMP occurs as a result of the production of natural PPARγ activating ligands through ATGL-mediated lipolysis. GRAPHICAL ABSTRACT
Collapse
|
3
|
Mansueto A, Good DJ. Conservation of a Chromosome 8 Inversion and Exon Mutations Confirm Common Gulonolactone Oxidase Gene Evolution Among Primates, Including H. Neanderthalensis. J Mol Evol 2024; 92:266-277. [PMID: 38683367 PMCID: PMC11169010 DOI: 10.1007/s00239-024-10165-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/20/2024] [Indexed: 05/01/2024]
Abstract
Ascorbic acid functions as an antioxidant and facilitates other biochemical processes such as collagen triple helix formation, and iron uptake by cells. Animals which endogenously produce ascorbic acid have a functional gulonolactone oxidase gene (GULO); however, humans have a GULO pseudogene (GULOP) and depend on dietary ascorbic acid. In this study, the conservation of GULOP sequences in the primate haplorhini suborder were investigated and compared to the GULO sequences belonging to the primates strepsirrhini suborder. Phylogenetic analysis suggested that the conserved GULOP exons in the haplorhini primates experienced a high rate of mutations following the haplorhini/strepsirrhini divergence. This high mutation rate has decreased during the evolution of the haplorhini primates. Additionally, indels of the haplorhini GULOP sequences were conserved across the suborder. A separate analysis for GULO sequences and well-conserved GULOP sequences focusing on placental mammals identified an in-frame GULO sequence in the Brazilian guinea pig, and a potential GULOP sequence in the pika. Similar to haplorhini primates, the guinea pig and lagomorph species have experienced a high substitution rate when compared to the mammals used in this study. A shared synteny to examine the conservation of local genes near GULO/GULOP identified a conserved inversion around the GULO/GULOP locus between the haplorhini and strepsirrhini primates. Fischer's exact test did not support an association between GULOP and the chromosomal inversion. Mauve alignment showed that the inversion of the length of the syntenic block that the GULO/GULOP genes belonged to was variable. However, there were frequent rearrangements around ~ 2 million base pairs adjacent to GULOP involving the KIF13B and MSRA genes. These data may suggest that genes acquiring deleterious mutations in the coding sequence may respond to these deleterious mutations with rapid substitution rates.
Collapse
Affiliation(s)
- Alexander Mansueto
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
- Department of Biological Sciences, Vanderbilt University, Nashvile, TN, USA
| | - Deborah J Good
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA.
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, 1981 Kraft Drive (0913), ILSB Room 1020, Blacksburg, VA, 24060, USA.
| |
Collapse
|
4
|
Niclou A, Vesi L, Arorae M, Naseri NC, Savusa KF, Naseri T, DeLany JP, McGarvey ST, Rivara AC, Ocobock C. When the cold gets under your skin: Evidence for brown adipose tissue activity in Samoan adults. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24848. [PMID: 37740598 PMCID: PMC10843446 DOI: 10.1002/ajpa.24848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/13/2023] [Accepted: 08/28/2023] [Indexed: 09/24/2023]
Abstract
OBJECTIVES Brown adipose tissue (BAT) is a heat-producing organ aiding nonshivering thermogenesis (NST) during cold stress. Due to its potential cold-adaptive role BAT has been predominantly studied in cold and temperate climate populations, but not among warm-climate adults. This work explores if BAT activity can be inferred in Samoans. MATERIALS AND METHODS We inferred BAT activity by comparing metabolic rate and surface heat dissipation using indirect calorimetry and thermal imaging between room temperature and cold exposure among Samoans (N = 61, females: n = 38) from 'Upolu Island, Samoa. BAT activity was inferred using ANOVA linear regression models with the variables measured at cold exposure as outcomes. T-tests were used to compare changes in surface temperature between room temperature and cold exposure. RESULTS Metabolic rate significantly increased after cooling. In both the supraclavicular area, a known BAT location, and the sternum, a non-BAT location, temperatures decreased significantly upon cold exposure. Differences in supraclavicular temperatures between room temperature and cold were significantly smaller than differences in sternum temperatures between exposures. These results suggest that BAT thermogenesis occurred in known BAT-locations and thus contributed to NST during cooling. CONCLUSIONS This study adds to our understanding of BAT activity across different populations and climates. Further study may illuminate whether the cold-adaptive properties of BAT may have played a role in the successful expansion of populations across the globe, including warm-climate groups.
Collapse
Affiliation(s)
- Alexandra Niclou
- Pennington Biomedical Research Center, Baton Rouge, LA
- Department of Anthropology, University of Notre Dame, Notre Dame, IN
| | - Lupesina Vesi
- Obesity, Lifestyle and Genetic Adaptations (OLaGA) Study Group, Apia, Samoa
| | - Maria Arorae
- Obesity, Lifestyle and Genetic Adaptations (OLaGA) Study Group, Apia, Samoa
| | | | | | | | - James P. DeLany
- AdventHealth Orlando, Translational Research Institute, Orlando, FL
| | - Stephen T. McGarvey
- International Health Institute & Departments of Epidemiology and Anthropology, Brown University, Providence, RI
| | - Anna C. Rivara
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT
| | - Cara Ocobock
- Department of Anthropology, University of Notre Dame, Notre Dame, IN
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN
| |
Collapse
|
5
|
Fuentes-Romero R, Velázquez-Villegas LA, Vasquez-Reyes S, Pérez-Jiménez B, Domínguez Velázquez ZN, Sánchez-Tapia M, Vargas-Castillo A, Tobón-Cornejo S, López-Barradas AM, Mendoza V, Torres N, López-Casillas F, Tovar AR. Genistein-mediated thermogenesis and white-to-beige adipocyte differentiation involve transcriptional activation of cAMP response elements in the Ucp1 promoter. FASEB J 2023; 37:e23079. [PMID: 37410022 DOI: 10.1096/fj.202300139rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023]
Abstract
Genistein is an isoflavone present in soybeans and is considered a bioactive compound due to its widely reported biological activity. We have previously shown that intraperitoneal genistein administration and diet supplementation activates the thermogenic program in rats and mice subcutaneous white adipose tissue (scWAT) under multiple environmental cues, including cold exposure and high-fat diet feeding. However, the mechanistic insights of this process were not previously unveiled. Uncoupling protein 1 (UCP1), a mitochondrial membrane polypeptide responsible for dissipating energy into heat, is considered the most relevant thermogenic marker; thus, we aimed to evaluate whether genistein regulates UCP1 transcription. Here we show that genistein administration to thermoneutral-housed mice leads to the appearance of beige adipocyte markers, including a sharp upregulation of UCP1 expression and protein abundance in scWAT. Reporter assays showed an increase in UCP1 promoter activity after genistein stimulation, and in silico analysis revealed the presence of estrogen (ERE) and cAMP (CRE) response elements as putative candidates of genistein activation. Mutation of the CRE but not the ERE reduced genistein-induced promoter activity by 51%. Additionally, in vitro and in vivo ChIP assays demonstrated the binding of CREB to the UCP1 promoter after acute genistein administration. Taken together, these data elucidate the mechanism of genistein-mediated UCP1 induction and confirm its potential applications in managing metabolic disorders.
Collapse
Affiliation(s)
- Rebeca Fuentes-Romero
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
- Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, México City, Mexico
| | - Laura A Velázquez-Villegas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Sarai Vasquez-Reyes
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Berenice Pérez-Jiménez
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Zuleima N Domínguez Velázquez
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Mónica Sánchez-Tapia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Ariana Vargas-Castillo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Sandra Tobón-Cornejo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Adriana M López-Barradas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Valentín Mendoza
- Department of Cellular and Developmental Biology, Institute of Cellular Physiology, UNAM, México City, Mexico
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Fernando López-Casillas
- Department of Cellular and Developmental Biology, Institute of Cellular Physiology, UNAM, México City, Mexico
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| |
Collapse
|
6
|
Gagnon CM, Svardal H, Jasinska AJ, Danzy Cramer J, Freimer NB, Paul Grobler J, Turner TR, Schmitt CA. Evidence of selection in the uncoupling protein 1 gene region suggests local adaptation to solar irradiance in savannah monkeys ( Chlorocebus spp.). Proc Biol Sci 2022; 289:20221254. [PMID: 36100027 PMCID: PMC9470266 DOI: 10.1098/rspb.2022.1254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/23/2022] [Indexed: 11/12/2022] Open
Abstract
In the last 300 thousand years, the genus Chlorocebus expanded from equatorial Africa into the southernmost latitudes of the continent, where colder climate was a probable driver of natural selection. We investigated population-level genetic variation in the mitochondrial uncoupling protein 1 (UCP1) gene region-implicated in non-shivering thermogenesis (NST)-in 73 wild savannah monkeys from three taxa representing this southern expansion (Chlorocebus pygerythrus hilgerti, Chlorocebus cynosuros and Chlorocebus pygerythrus pygerythrus) ranging from Kenya to South Africa. We found 17 single nucleotide polymorphisms with extended haplotype homozygosity consistent with positive selective sweeps, 10 of which show no significant linkage disequilibrium with each other. Phylogenetic generalized least-squares modelling with ecological covariates suggest that most derived allele frequencies are significantly associated with solar irradiance and winter precipitation, rather than overall low temperatures. This selection and association with irradiance is demonstrated by a relatively isolated population in the southern coastal belt of South Africa. We suggest that sunbathing behaviours common to savannah monkeys, in combination with the strength of solar irradiance, may mediate adaptations to thermal stress via NST among savannah monkeys. The variants we discovered all lie in non-coding regions, some with previously documented regulatory functions, calling for further validation and research.
Collapse
Affiliation(s)
| | - Hannes Svardal
- Department of Biology, University of Antwerp, Antwerp, Belgium
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Anna J. Jasinska
- Center for Neurobehavioral Genetics, University of California, Los Angeles, CA 90095, USA
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Nelson B. Freimer
- Center for Neurobehavioral Genetics, University of California, Los Angeles, CA 90095, USA
| | - J. Paul Grobler
- Department of Genetics, University of the Free State, Bloemfontein, Free State 9301, South Africa
| | - Trudy R. Turner
- Department of Genetics, University of the Free State, Bloemfontein, Free State 9301, South Africa
- Department of Anthropology, University of Wisconsin, Milwaukee, Milwaukee, WI, 53201, USA
| | - Christopher A. Schmitt
- Department of Anthropology, Boston University, Boston, MA 02215, USA
- Department of Biology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
7
|
Mejías C, Navedo J, Sabat P, Franco LM, Bozinovic F, Nespolo RF. Body Composition and Energy Savings by Hibernation: Lessons from the South American Marsupial Dromiciops gliroides. Physiol Biochem Zool 2022; 95:239-250. [DOI: 10.1086/719932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Houssaye A, de Perthuis A, Houée G. Sesamoid bones also show functional adaptation in their microanatomy-The example of the patella in Perissodactyla. J Anat 2022; 240:50-65. [PMID: 34402049 PMCID: PMC8655183 DOI: 10.1111/joa.13530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 11/27/2022] Open
Abstract
The patella is the largest sesamoid bone of the skeleton. It is strongly involved in the knee, improving output force and velocity of the knee extensors, and thus plays a major role in locomotion and limb stability. However, the relationships between its structure and functional constraints, that would enable a better understanding of limb bone functional adaptations, are poorly known. This contribution proposes a comparative analysis, both qualitative and quantitative, of the microanatomy of the whole patella in perissodactyls, which show a wide range of morphologies, masses, and locomotor abilities, in order to investigate how the microanatomy of the patella adapts to evolutionary constraints. The inner structure of the patella consists of a spongiosa surrounded by a compact cortex. Contrary to our expectations, there is no increase in compactness with bone size, and thus body size and weight, but only an increase in the tightness of the spongiosa. No particular thickening of the cortex associated with muscle insertions is noticed but a strong thickening is observed anteriorly at about mid-length, where the strong intermediate patellar ligament inserts. The trabeculae are mainly oriented perpendicularly to the posterior articular surface, which highlights that the main stress is anteroposteriorly directed, maintaining the patella against the femoral trochlea. Conversely, anteriorly, trabeculae are rather circumferentially oriented, following the insertion of the patellar ligament and, possibly also, of the quadriceps tendon. A strong variation is observed among perissodactyl families but also intraspecifically, which is in accordance with previous studies suggesting a higher variability in sesamoid bones. Clear trends are nevertheless observed between the three families. Equids have a much thinner cortex than ceratomorphs. Rhinos and equids, both characterized by a development of the medial border, show an increase in trabecular density laterally suggesting stronger stresses laterally. The inner structure in tapirs is more homogeneous despite the absence of medial development of the medial border with no "compensation" of the inner structure, which suggests different stresses on their knees associated with a different morphology of their patellofemoral joint.
Collapse
Affiliation(s)
- Alexandra Houssaye
- Département Adaptations du vivantUMR 7179 CNRS/Muséum National d'Histoire NaturelleParisFrance
| | - Adrien de Perthuis
- Département Adaptations du vivantUMR 7179 CNRS/Muséum National d'Histoire NaturelleParisFrance
| | - Guillaume Houée
- Département Adaptations du vivantUMR 7179 CNRS/Muséum National d'Histoire NaturelleParisFrance
| |
Collapse
|
9
|
Jastroch M, Polymeropoulos ET, Gaudry MJ. Pros and cons for the evidence of adaptive non-shivering thermogenesis in marsupials. J Comp Physiol B 2021; 191:1085-1095. [PMID: 33860348 PMCID: PMC8572181 DOI: 10.1007/s00360-021-01362-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 01/11/2023]
Abstract
The thermogenic mechanisms supporting endothermy are still not fully understood in all major mammalian subgroups. In placental mammals, brown adipose tissue currently represents the most accepted source of adaptive non-shivering thermogenesis. Its mitochondrial protein UCP1 (uncoupling protein 1) catalyzes heat production, but the conservation of this mechanism is unclear in non-placental mammals and lost in some placentals. Here, we review the evidence for and against adaptive non-shivering thermogenesis in marsupials, which diverged from placentals about 120-160 million years ago. We critically discuss potential mechanisms that may be involved in the heat-generating process among marsupials.
Collapse
Affiliation(s)
- Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden.
| | - Elias T Polymeropoulos
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, TAS, 7001, Australia
| | - Michael J Gaudry
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| |
Collapse
|
10
|
Brzęk P. Sex differences in nonshivering thermogenesis in the wild. Mol Cell Endocrinol 2021; 536:111402. [PMID: 34302908 DOI: 10.1016/j.mce.2021.111402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Nonshivering thermogenesis (NST) is a key mechanism that allows mammals to control their body temperature. Sex can frequently affect thermoregulatory requirements; therefore, males and females can be expected to differ significantly in their NST capacity. Several sex-related differences in NST have been described in laboratory animals and humans; however, these parameters are relatively rarely studied in animals living under natural conditions. Here, I briefly review factors that may be responsible for this disparity and point out two situations that should be particularly promising in searching for sex differences in NST under natural conditions: the lactation period and potential mitonuclear conflicts over NST control in species with genetic polymorphism.
Collapse
Affiliation(s)
- Paweł Brzęk
- Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245, Białystok, Poland.
| |
Collapse
|
11
|
Gaudry MJ, Jastroch M. Comparative functional analyses of UCP1 to unravel evolution, ecophysiology and mechanisms of mammalian thermogenesis. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110613. [PMID: 33971349 DOI: 10.1016/j.cbpb.2021.110613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/23/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022]
Abstract
Brown adipose tissue (BAT), present in many placental mammals, provides adaptive nonshivering thermogenesis (NST) for body temperature regulation and has facilitated survival in diverse thermal niches on our planet. Intriguingly, several key details on the molecular mechanisms of NST and their potential ecophysiological adaptations are still unknown. Comparative studies at the whole animal level are unpragmatic, due to the diversity and complexity of thermoregulation among different species. We propose that the molecular evolution of mitochondrial uncoupling protein 1 (UCP1), a central component for BAT thermogenesis, represents a powerful opportunity to unravel key questions of mammalian thermoregulation. Comparative analysis of UCP1 may elucidate how its thermogenic function arose, how environmental selection has shaped protein function to support ecophysiological requirements, and how the enigmatic molecular mechanism of proton leak is governed. Several approaches for the assessment of UCP1 function in vitro have been introduced over the years. For comparative characterization of UCP1, we put forward the overexpression of UCP1 orthologues and mutated variants in a mammalian cell system as a primary strategy and discuss advantageous aspects in contrast to other experimental systems. In turn, we suggest how remaining experimental caveats can be solved by complimentary test systems before physiological consolidation in the animal model. Furthermore, we highlight the appropriate bioenergetic techniques to perform the functional analyses on UCP1. The comparative characterizations of diverse UCP1 variants may enable key insights into open questions surrounding the molecular basis of NST.
Collapse
Affiliation(s)
- Michael J Gaudry
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
12
|
Manger PR, Patzke N, Spocter MA, Bhagwandin A, Karlsson KÆ, Bertelsen MF, Alagaili AN, Bennett NC, Mohammed OB, Herculano-Houzel S, Hof PR, Fuxe K. Amplification of potential thermogenetic mechanisms in cetacean brains compared to artiodactyl brains. Sci Rep 2021; 11:5486. [PMID: 33750832 PMCID: PMC7970898 DOI: 10.1038/s41598-021-84762-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/19/2021] [Indexed: 01/25/2023] Open
Abstract
To elucidate factors underlying the evolution of large brains in cetaceans, we examined 16 brains from 14 cetartiodactyl species, with immunohistochemical techniques, for evidence of non-shivering thermogenesis. We show that, in comparison to the 11 artiodactyl brains studied (from 11 species), the 5 cetacean brains (from 3 species), exhibit an expanded expression of uncoupling protein 1 (UCP1, UCPs being mitochondrial inner membrane proteins that dissipate the proton gradient to generate heat) in cortical neurons, immunolocalization of UCP4 within a substantial proportion of glia throughout the brain, and an increased density of noradrenergic axonal boutons (noradrenaline functioning to control concentrations of and activate UCPs). Thus, cetacean brains studied possess multiple characteristics indicative of intensified thermogenetic functionality that can be related to their current and historical obligatory aquatic niche. These findings necessitate reassessment of our concepts regarding the reasons for large brain evolution and associated functional capacities in cetaceans.
Collapse
Affiliation(s)
- Paul R Manger
- School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Nina Patzke
- School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Institute for the Advancement of Higher Education, Hokkaido University, Sapporo, Japan
| | - Muhammad A Spocter
- School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Anatomy, Des Moines University, Des Moines, IA, USA
| | - Adhil Bhagwandin
- School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Karl Æ Karlsson
- Biomedical Engineering, Reykjavik University, Reykjavik, Iceland
| | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Abdulaziz N Alagaili
- KSU Mammals Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nigel C Bennett
- KSU Mammals Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Osama B Mohammed
- KSU Mammals Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Suzana Herculano-Houzel
- Department of Psychology, Department of Biological Sciences, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Giroud S, Habold C, Nespolo RF, Mejías C, Terrien J, Logan SM, Henning RH, Storey KB. The Torpid State: Recent Advances in Metabolic Adaptations and Protective Mechanisms †. Front Physiol 2021; 11:623665. [PMID: 33551846 PMCID: PMC7854925 DOI: 10.3389/fphys.2020.623665] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Torpor and hibernation are powerful strategies enabling animals to survive periods of low resource availability. The state of torpor results from an active and drastic reduction of an individual's metabolic rate (MR) associated with a relatively pronounced decrease in body temperature. To date, several forms of torpor have been described in all three mammalian subclasses, i.e., monotremes, marsupials, and placentals, as well as in a few avian orders. This review highlights some of the characteristics, from the whole organism down to cellular and molecular aspects, associated with the torpor phenotype. The first part of this review focuses on the specific metabolic adaptations of torpor, as it is used by many species from temperate zones. This notably includes the endocrine changes involved in fat- and food-storing hibernating species, explaining biomedical implications of MR depression. We further compare adaptive mechanisms occurring in opportunistic vs. seasonal heterotherms, such as tropical and sub-tropical species. Such comparisons bring new insights into the metabolic origins of hibernation among tropical species, including resistance mechanisms to oxidative stress. The second section of this review emphasizes the mechanisms enabling heterotherms to protect their key organs against potential threats, such as reactive oxygen species, associated with the torpid state. We notably address the mechanisms of cellular rehabilitation and protection during torpor and hibernation, with an emphasis on the brain, a central organ requiring protection during torpor and recovery. Also, a special focus is given to the role of an ubiquitous and readily-diffusing molecule, hydrogen sulfide (H2S), in protecting against ischemia-reperfusion damage in various organs over the torpor-arousal cycle and during the torpid state. We conclude that (i) the flexibility of torpor use as an adaptive strategy enables different heterothermic species to substantially suppress their energy needs during periods of severely reduced food availability, (ii) the torpor phenotype implies marked metabolic adaptations from the whole organism down to cellular and molecular levels, and (iii) the torpid state is associated with highly efficient rehabilitation and protective mechanisms ensuring the continuity of proper bodily functions. Comparison of mechanisms in monotremes and marsupials is warranted for understanding the origin and evolution of mammalian torpor.
Collapse
Affiliation(s)
- Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Caroline Habold
- University of Strasbourg, CNRS, IPHC, UMR 7178, Strasbourg, France
| | - Roberto F. Nespolo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, ANID – Millennium Science Initiative Program-iBio, Valdivia, Chile
- Center of Applied Ecology and Sustainability, Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Mejías
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, ANID – Millennium Science Initiative Program-iBio, Valdivia, Chile
- Center of Applied Ecology and Sustainability, Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jérémy Terrien
- Unité Mécanismes Adaptatifs et Evolution (MECADEV), UMR 7179, CNRS, Muséum National d’Histoire Naturelle, Brunoy, France
| | | | - Robert H. Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, Netherlands
| | | |
Collapse
|
14
|
Fyda TJ, Spencer C, Jastroch M, Gaudry MJ. Disruption of thermogenic UCP1 predated the divergence of pigs and peccaries. J Exp Biol 2020; 223:jeb223974. [PMID: 32620708 DOI: 10.1242/jeb.223974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/30/2020] [Indexed: 11/20/2022]
Abstract
Uncoupling protein 1 (UCP1) governs non-shivering thermogenesis in brown adipose tissue. It has been estimated that pigs lost UCP1 ∼20 million years ago (MYA), dictating cold intolerance among piglets. Our current understanding of the root causes of UCP1 loss are, however, incomplete. Thus, examination of additional species can shed light on these fundamental evolutionary questions. Here, we investigated UCP1 in the Chacoan peccary (Catagonus wagneri), a member of the Tayassuid lineage that diverged from pigs during the late Eocene-mid Oligocene. Exons 1 and 2 have been deleted in peccary UCP1 and the remaining exons display additional inactivating mutations. A common nonsense mutation in exon 6 revealed that UCP1 was pseudogenized in a shared ancestor of pigs and peccaries. Our selection pressure analyses indicate that the inactivation occurred 36.2-44.3 MYA during the mid-late Eocene, which is much earlier than previously thought. Importantly, pseudogenized UCP1 provides the molecular rationale for cold sensitivity and current tropical biogeography of extant peccaries.
Collapse
Affiliation(s)
- Thomas Jacob Fyda
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Connor Spencer
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Michael J Gaudry
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
15
|
Jefimow M, Przybylska-Piech AS, Wojciechowski MS. Predictive and reactive changes in antioxidant defence system in a heterothermic rodent. J Comp Physiol B 2020; 190:479-492. [PMID: 32435827 PMCID: PMC7311498 DOI: 10.1007/s00360-020-01280-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/03/2020] [Accepted: 04/27/2020] [Indexed: 11/26/2022]
Abstract
Living in a seasonal environment requires periodic changes in animal physiology, morphology and behaviour. Winter phenotype of small mammals living in Temperate and Boreal Zones may differ considerably from summer one in multiple traits that enhance energy conservation or diminish energy loss. However, there is a considerable variation in the development of winter phenotype among individuals in a population and some, representing the non-responding phenotype (non-responders), are insensitive to shortening days and maintain summer phenotype throughout a year. Differences in energy management associated with the development of different winter phenotypes should be accompanied by changes in antioxidant defence capacity, leading to effective protection against oxidative stress resulting from increased heat production in winter. To test it, we analysed correlation of winter phenotypes of Siberian hamsters (Phodopus sungorus) with facultative non-shivering thermogenesis capacity (NST) and oxidative status. We found that in both phenotypes acclimation to winter-like conditions increased NST capacity and improved antioxidant defence resulting in lower oxidative stress (OS) than in summer, and females had always lower OS than males. Although NST capacity did not correlate with the intensity of OS, shortly after NST induction responders had lower OS than non-responders suggesting more effective mechanisms protecting from detrimental effects of reactive oxygen metabolites generated during rewarming from torpor. We suggest that seasonal increase in antioxidant defence is programmed endogenously to predictively prevent oxidative stress in winter. At the same time reactive upregulation of antioxidant defence protects against reactive oxygen species generated during NST itself. It suggests that evolution of winter phenotype with potentially harmful characteristics was counterbalanced by the development of protective mechanisms allowing for the maintenance of phenotypic adjustments to seasonally changing environment.
Collapse
Affiliation(s)
- Małgorzata Jefimow
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, ul. Lwowska 1, 87-100, Toruń, Poland.
| | - Anna S Przybylska-Piech
- Department of Vertebrate Zoology and Ecology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, ul. Lwowska 1, 87-100, Toruń, Poland
| | - Michał S Wojciechowski
- Department of Vertebrate Zoology and Ecology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, ul. Lwowska 1, 87-100, Toruń, Poland
| |
Collapse
|
16
|
Jastroch M, Seebacher F. Importance of adipocyte browning in the evolution of endothermy. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190134. [PMID: 31928187 DOI: 10.1098/rstb.2019.0134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endothermy changes the relationship between organisms and their environment fundamentally, and it is therefore of major ecological and evolutionary significance. Endothermy is characterized by non-shivering thermogenesis, that is metabolic heat production in the absence of muscular activity. In many eutherian mammals, brown adipose tissue (BAT) is an evolutionary innovation that facilitates non-shivering heat production in mitochondria by uncoupling food-derived substrate oxidation from chemical energy (ATP) production. Consequently, energy turnover is accelerated resulting in increased heat release. The defining characteristics of BAT are high contents of mitochondria and vascularization, and the presence of uncoupling protein 1. Recent insights, however, reveal that a range of stimuli such as exercise, diet and the immune system can cause the browning of white adipocytes, thereby increasing energy expenditure and heat production even in the absence of BAT. Here, we review the molecular mechanisms that cause browning of white adipose tissue, and their potential contribution to thermoregulation. The significance for palaeophysiology lies in the presence of adipose tissue and the mechanisms that cause its browning and uncoupling in all amniotes. Hence, adipocytes may have played a role in the evolution of endothermy beyond the more specific evolution of BAT in eutherians. This article is part of the theme issue 'Vertebrate palaeophysiology'.
Collapse
Affiliation(s)
- Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
17
|
Gaudry MJ, Keuper M, Jastroch M. Molecular evolution of thermogenic uncoupling protein 1 and implications for medical intervention of human disease. Mol Aspects Med 2019; 68:6-17. [DOI: 10.1016/j.mam.2019.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022]
|
18
|
Fifty shades of brown: The functions, diverse regulation and evolution of brown adipose tissue. Mol Aspects Med 2019; 68:1-5. [PMID: 31325457 DOI: 10.1016/j.mam.2019.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Molecular evolution of uncoupling proteins and implications for brain function. Neurosci Lett 2018; 696:140-145. [PMID: 30582970 DOI: 10.1016/j.neulet.2018.12.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 01/01/2023]
Abstract
Uncoupling proteins (UCPs) belong to the mitochondrial anion carrier superfamily and catalyze important metabolic functions at the mitochondrial inner membrane. While the thermogenic role of UCP1 in brown fat of eutherian mammals is well established, the molecular functions of UCP1 in ectothermic vertebrates and of other UCP paralogs remain less clear. Here, we critically discuss the existence of brain UCPs and their potential roles. Applying phylogenetic classification of novel UCPs, we summarize the evidence for brain UCP1 among vertebrates, the role of UCP2 in specific brain areas, and the existence of brain-specific UCPs. The phylogenetic analyses and discussion on functional data should alert the scientific community that the molecular function of so-called UCP1 homologues is by far not clarified and possibly relates to neither thermogenesis nor mitochondrial uncoupling.
Collapse
|
20
|
Sellayah D. The Impact of Early Human Migration on Brown Adipose Tissue Evolution and Its Relevance to the Modern Obesity Pandemic. J Endocr Soc 2018; 3:372-386. [PMID: 30723844 PMCID: PMC6354082 DOI: 10.1210/js.2018-00363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/13/2018] [Indexed: 01/12/2023] Open
Abstract
Genetic factors are believed to be primarily responsible for obesity; however, an understanding of how genes for obesity have become so prevalent in modern society has proved elusive. Several theories have attempted to explain the genetic basis for obesity, but none of these appear to factor in the interethnic variation in obesity. Emerging evidence is increasingly pointing to a link between reduced basal metabolism and ineffective brown adipose tissue (BAT) thermogenesis. In fact, BAT presence and function are strongly correlated with metabolic rates and directly influence obesity susceptibility. My colleagues and I recently theorized that ancestral exposure to cold necessitated the evolution of enhanced BAT thermogenesis, which, with today’s hypercaloric and sedentary lifestyle, becomes advantageous, because thermogenesis is energetically wasteful, raising basal metabolism and burning excess calories. The opposite may be true for the descendants of heat-adapted populations. This review further reconciles global evolutionary climatic exposures with obesity demographics to understand the genetic basis for the obesity pandemic, and new insights from the most recent studies are provided, including those assessing archaic human admixture. Key genetic variants influencing BAT thermogenesis are outlined that have also been linked with climatic exposure to cold and appear to support the theory that evolutionary factors relevant to climate may have shaped the modern obesity pandemic.
Collapse
Affiliation(s)
- Dyan Sellayah
- School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
| |
Collapse
|
21
|
Jastroch M, Oelkrug R, Keipert S. Insights into brown adipose tissue evolution and function from non-model organisms. ACTA ACUST UNITED AC 2018. [PMID: 29514888 DOI: 10.1242/jeb.169425] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Brown adipose tissue (BAT) enables adaptive thermoregulation through heat production that is catalyzed by mitochondrial uncoupling protein 1 (UCP1). BAT is frequently studied in rodent model organisms, and recently in adult humans to treat metabolic diseases. However, complementary studies of many non-model species, which have diversified to many more ecological niches, may significantly broaden our understanding of BAT regulation and its physiological roles. This Review highlights the research on non-model organisms, which was instrumental to the discovery of BAT function, and the unique evolutionary history of BAT/UCP1 in mammalian thermogenesis. The comparative biology of BAT provides a powerful integrative approach that could identify conserved and specialized functional changes in BAT and UCP1 by considering species diversity, ecology and evolution, and by fusing multiple scientific disciplines such as physiology and biochemistry. Thus, resolving the complete picture of BAT biology may fail if comparative studies of non-model organisms are neglected.
Collapse
Affiliation(s)
- Martin Jastroch
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, D-85764 Neuherberg, Germany .,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.,Department of Animal Physiology, Faculty of Biology, Philipps University of Marburg, D-35032 Marburg, Germany
| | - Rebecca Oelkrug
- Department of Molecular Endocrinology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, D-23562 Lübeck, Germany
| | - Susanne Keipert
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
| |
Collapse
|
22
|
Abstract
Brown adipose tissue (BAT), the specialized heat-producing organ found in many placental mammals including humans, may be accessible for clinical drug intervention to help combat metabolic diseases. Understanding the biology of BAT and its thermogenic uncoupling protein 1 (UCP1) will benefit from an assessment of its evolution, answering where UCP1 originated and how it has been modified and integrated into cellular energy metabolism. Here, we review topical insights regarding the molecular evolution of UCP1-also reconstructing the proximate and ultimate factors selecting for brown fat thermogenesis in placental mammals. This new thinking on "old" events will assist our understanding of how thermogenic mitochondrial uncoupling was integrated into the physiology of the brown adipocyte. Recent comparative studies examining the occurrence of UCP1 in vertebrates not only identified the ancient (pre-mammal) rise of UCP1 but also its repeated downfall during mammalian evolution as evidenced by multiple independent gene loss and/or inactivation events. Together with the comparative physiology of various species, we may be able to find conditions that favor UCP1 thermogenesis and, learning from these insights, identify molecular networks that will be useful to pharmacologically stimulate the tissue.
Collapse
Affiliation(s)
- Michael J Gaudry
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Kevin L Campbell
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Martin Jastroch
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany. .,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
23
|
Fromme T. Commentary: Evolution of UCP1 Transcriptional Regulatory Elements Across the Mammalian Phylogeny. Front Physiol 2017; 8:978. [PMID: 29235582 PMCID: PMC5712371 DOI: 10.3389/fphys.2017.00978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/16/2017] [Indexed: 01/15/2023] Open
Affiliation(s)
- Tobias Fromme
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center for Nutritional Medicine and ZIEL Institute for Food and Health, Technical University of Munich, Freising, Germany
| |
Collapse
|