1
|
Scacchi S, Pavarino LF, Mazzanti A, Trancuccio A, Priori SG, Colli Franzone P. Transmural APD heterogeneity determines ventricular arrhythmogenesis in LQT8 syndrome: Insights from Bidomain computational modeling. PLoS One 2024; 19:e0305248. [PMID: 38968219 PMCID: PMC11226139 DOI: 10.1371/journal.pone.0305248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/27/2024] [Indexed: 07/07/2024] Open
Abstract
Long QT Syndrome type 8 (LQT8) is a cardiac arrhythmic disorder associated with Timothy Syndrome, stemming from mutations in the CACNA1C gene, particularly the G406R mutation. While prior studies hint at CACNA1C mutations' role in ventricular arrhythmia genesis, the mechanisms, especially in G406R presence, are not fully understood. This computational study explores how the G406R mutation, causing increased transmural dispersion of repolarization, induces and sustains reentrant ventricular arrhythmias. Using three-dimensional numerical simulations on an idealized left-ventricular model, integrating the Bidomain equations with the ten Tusscher-Panfilov ionic model, we observe that G406R mutation with 11% and 50% heterozygosis significantly increases transmural dispersion of repolarization. During S1-S4 stimulation protocols, these gradients facilitate conduction blocks, triggering reentrant ventricular tachycardia. Sustained reentry pathways occur only with G406R mutation at 50% heterozygosis, while neglecting transmural heterogeneities of action potential duration prevents stable reentry, regardless of G406R mutation presence.
Collapse
Affiliation(s)
- Simone Scacchi
- Dipartimento di Matematica, Università degli Studi di Milano, Milano, Italy
| | - Luca F. Pavarino
- Dipartimento di Matematica, Università degli Studi di Pavia, Pavia, Italy
| | - Andrea Mazzanti
- Molecular Cardiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Alessandro Trancuccio
- Molecular Cardiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Silvia G. Priori
- Molecular Cardiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | |
Collapse
|
2
|
Porta-Sánchez A, Mazzanti A, Tarifa C, Kukavica D, Trancuccio A, Mohsin M, Zanfrini E, Perota A, Duchi R, Hernandez-Lopez K, Jáuregui-Abularach ME, Pergola V, Fernandez E, Bongianino R, Tavazzani E, Gambelli P, Memmi M, Scacchi S, Pavarino LF, Franzone PC, Lentini G, Filgueiras-Rama D, Galli C, Santiago DJ, Priori SG. Unexpected impairment of INa underpins reentrant arrhythmias in a knock-in swine model of Timothy syndrome. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1291-1309. [PMID: 38665938 PMCID: PMC11041658 DOI: 10.1038/s44161-023-00393-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 11/15/2023] [Indexed: 04/28/2024]
Abstract
Timothy syndrome 1 (TS1) is a multi-organ form of long QT syndrome associated with life-threatening cardiac arrhythmias, the organ-level dynamics of which remain unclear. In this study, we developed and characterized a novel porcine model of TS1 carrying the causative p.Gly406Arg mutation in CACNA1C, known to impair CaV1.2 channel inactivation. Our model fully recapitulated the human disease with prolonged QT interval and arrhythmic mortality. Electroanatomical mapping revealed the presence of a functional substrate vulnerable to reentry, stemming from an unforeseen constitutional slowing of cardiac activation. This signature substrate of TS1 was reliably identified using the reentry vulnerability index, which, we further demonstrate, can be used as a benchmark for assessing treatment efficacy, as shown by testing of multiple clinical and preclinical anti-arrhythmic compounds. Notably, in vitro experiments showed that TS1 cardiomyocytes display Ca2+ overload and decreased peak INa current, providing a rationale for the arrhythmogenic slowing of impulse propagation in vivo.
Collapse
Affiliation(s)
- Andreu Porta-Sánchez
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Andrea Mazzanti
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Carmen Tarifa
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Deni Kukavica
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Alessandro Trancuccio
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Muhammad Mohsin
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | | | | | | | - Kevin Hernandez-Lopez
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Valerio Pergola
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Eugenio Fernandez
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Rossana Bongianino
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Elisa Tavazzani
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Patrick Gambelli
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Mirella Memmi
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Simone Scacchi
- Department of Mathematics, University of Milan, Milano, Italy
| | | | - Piero Colli Franzone
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- AVANTEA, Cremona, Italy
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
- Department of Mathematics, University of Milan, Milano, Italy
- Department of Mathematics, University of Pavia, Pavia, Italy
- Department of Pharmacology, University of Bari, Bari, Italy
- Cardiovascular Institute, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | | | - David Filgueiras-Rama
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Cardiovascular Institute, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | | | - Demetrio Julián Santiago
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Silvia G. Priori
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
3
|
Chakraborty P, Aggarwal AK, Nair MKK, Massé S, Riazi S, Nanthakumar K. Restoration of calcium release synchrony: A novel target for heart failure and ventricular arrhythmia. Heart Rhythm 2023; 20:1773-1781. [PMID: 37678492 DOI: 10.1016/j.hrthm.2023.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/13/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
Myocardial calcium (Ca2+) signaling plays a crucial role in contractile function and membrane electrophysiology. An abnormal myocardial Ca2+ transient is linked to heart failure and ventricular arrhythmias. At the subcellular level, the synchronous release of Ca2+ sparks from sarcoplasmic Ca2+ release units determines the configuration and amplitude of the global Ca2+ transient. This narrative review evaluates the role of aberrant Ca2+ release synchrony in the pathophysiology of cardiomyopathies and ventricular arrhythmias. The potential therapeutic benefits of restoration of Ca2+ release synchrony in heart failure and ventricular arrhythmias are also discussed.
Collapse
Affiliation(s)
- Praloy Chakraborty
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; Heart Rhythm Institute, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Arjun K Aggarwal
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Madhav Krishna Kumar Nair
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Stéphane Massé
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Sheila Riazi
- Malignant Hyperthermia Investigation Unit, Department of Anesthesia and Pain Management, University Health Network, Toronto, Ontario, Canada
| | - Kumaraswamy Nanthakumar
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Asad ZUA, Krishan S, Roman D, Yousaf AF, Stavrakis S. Same Gene, Different Story (a Case Report of Congenital Long QT Syndrome Subtype 8 With a Novel Mutation). Am J Cardiol 2023; 200:13-17. [PMID: 37271119 DOI: 10.1016/j.amjcard.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/15/2023] [Accepted: 05/07/2023] [Indexed: 06/06/2023]
Abstract
Long QT syndrome (LQTS) 8 is a rare inherited channelopathy caused by CACNA1C gene mutations that affects calcium channels, and when combined with congenital heart defects, musculoskeletal defects, and neurodevelopmental defects, it is referred to as Timothy syndrome. A female patient, aged 17 years, presented with a witnessed episode of syncope secondary to ventricular fibrillation that was successfully cardioverted. Electrocardiogram showed sinus bradycardia 52/min, normal axis, and a QTc of 626 ms. In the hospital, she had another episode of asystole and Torsade de pointes and underwent successful cardiopulmonary resuscitation. Echocardiogram showed severely reduced left ventricular systolic function from postcardiac arrest myocardial dysfunction and no congenital heart defects. Long QT genetic test detected a missense mutation in the CACNA1C gene (NM_199460.3, variant c.2573G>A, p Arg858His, heterozygous, autosomal dominant), resulting in replacement of arginine with histidine at position 858(R858H), leading to the gain of function in the L-type calcium channel. Given the absence of congenital cardiac defects, musculoskeletal deformities, or neurodevelopmental delay a final diagnosis of LQTS subtype 8 was made. A cardioverter defibrillator was implanted. In conclusion, our case highlights the importance of genetic testing in the diagnosis of LQTS. Some CACNA1C mutations, such as R858H described here, cause LQTS without the extracardiac manifestations observed in classic Timothy syndrome and should be included in the genetic testing for LQTS. To the best of our knowledge, our case is the first one from United States with the R585H mutation. Three cases with similar mutations have been reported from Japan and one from New Zealand.
Collapse
Affiliation(s)
- Zain Ul Abideen Asad
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Satyam Krishan
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Darwin Roman
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ali F Yousaf
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Stavros Stavrakis
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| |
Collapse
|
5
|
McCoy MD, Ullah A, Lederer WJ, Jafri MS. Understanding Calmodulin Variants Affecting Calcium-Dependent Inactivation of L-Type Calcium Channels through Whole-Cell Simulation of the Cardiac Ventricular Myocyte. Biomolecules 2022; 13:72. [PMID: 36671457 PMCID: PMC9855640 DOI: 10.3390/biom13010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Mutations in the calcium-sensing protein calmodulin (CaM) have been linked to two cardiac arrhythmia diseases, Long QT Syndrome 14 (LQT14) and Catecholaminergic Polymorphic Ventricular Tachycardia Type 4 (CPVT4), with varying degrees of severity. Functional characterization of the CaM mutants most strongly associated with LQT14 show a clear disruption of the calcium-dependent inactivation (CDI) of the L-Type calcium channel (LCC). CPVT4 mutants on the other hand are associated with changes in their affinity to the ryanodine receptor. In clinical studies, some variants have been associated with both CPVT4 and LQT15. This study uses simulations in a model for excitation-contraction coupling in the rat ventricular myocytes to understand how LQT14 variant might give the functional phenotype similar to CPVT4. Changing the CaM-dependent transition rate by a factor of 0.75 corresponding to the D96V variant and by a factor of 0.90 corresponding to the F142L or N98S variants, in a physiologically based stochastic model of the LCC prolonger, the action potential duration changed by a small amount in a cardiac myocyte but did not disrupt CICR at 1, 2, and 4 Hz. Under beta-adrenergic simulation abnormal excitation-contraction coupling was observed above 2 Hz pacing for the mutant CaM. The same conditions applied under beta-adrenergic stimulation led to the rapid onset of arrhythmia in the mutant CaM simulations. Simulations with the LQT14 mutations under the conditions of rapid pacing with beta-adrenergic stimulation drives the cardiac myocyte toward an arrhythmic state known as Ca2+ overload. These simulations provide a mechanistic link to a disease state for LQT14-associated mutations in CaM to yield a CPVT4 phenotype. The results show that small changes to the CaM-regulated inactivation of LCC promote arrhythmia and underscore the significance of CDI in proper heart function.
Collapse
Affiliation(s)
- Matthew D. McCoy
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
- Innovation Center for Biomedical Informatics, Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, USA
| | - Aman Ullah
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| | - W. Jonathan Lederer
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - M. Saleet Jafri
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| |
Collapse
|
6
|
Li Y, Wan R, Liu J, Liu W, Ma L, Zhang H. In silico mechanisms of arsenic trioxide-induced cardiotoxicity. Front Physiol 2022; 13:1004605. [PMID: 36589437 PMCID: PMC9798418 DOI: 10.3389/fphys.2022.1004605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
It has been found that arsenic trioxide (ATO) is effective in treating acute promyelocytic leukemia (APL). However, long QT syndrome was reported in patients receiving therapy using ATO, which even led to sudden cardiac death. The underlying mechanisms of ATO-induced cardiotoxicity have been investigated in some biological experiments, showing that ATO affects human ether-à-go-go-related gene (hERG) channels, coding rapid delayed rectifier potassium current (I Kr ), as well as L-type calcium (I CaL ) channels. Nevertheless, the mechanism by which these channel reconstitutions induced the arrhythmia in ventricular tissue remains unsolved. In this study, a mathematical model was developed to simulate the effect of ATO on ventricular electrical excitation at cellular and tissue levels by considering ATO's effects on I Kr and I CaL . The ATO-dose-dependent pore block model was incorporated into the I Kr model, and the enhanced degree of ATO to I CaL was based on experimental data. Simulation results indicated that ATO extended the action potential duration of three types of ventricular myocytes (VMs), including endocardial cells (ENDO), midmyocardial cells (MCELL), and epicardial cells (EPI), and exacerbated the heterogeneity among them. ATO could also induce alternans in all three kinds of VMs. In a cable model of the intramural ventricular strand, the effects of ATO are reflected in a prolonged QT interval of simulated pseudo-ECG and a wide vulnerable window, thus increasing the possibility of spiral wave formation in ventricular tissue. In addition to showing that ATO prolonged QT, we revealed that the heterogeneity caused by ATO is also an essential hazard factor. Based on this, a pharmacological intervention of ATO toxicity by resveratrol was undertaken. This study provides a further understanding of ATO-induced cardiotoxicity, which may help to improve the treatment for APL patients.
Collapse
Affiliation(s)
- Yacong Li
- Beijing Academy of Artificial Intelligence, Beijing, China
| | - Runlan Wan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jun Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China,*Correspondence: Jun Liu, ; Weichao Liu, ; Henggui Zhang,
| | - Weichao Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China,*Correspondence: Jun Liu, ; Weichao Liu, ; Henggui Zhang,
| | - Lei Ma
- Beijing Academy of Artificial Intelligence, Beijing, China,National Biomedical Imaging Center, Peking University, Beijing, China
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom,*Correspondence: Jun Liu, ; Weichao Liu, ; Henggui Zhang,
| |
Collapse
|
7
|
Bai J, Lu Y, Wang H, Zhao J. How synergy between mechanistic and statistical models is impacting research in atrial fibrillation. Front Physiol 2022; 13:957604. [PMID: 36111152 PMCID: PMC9468674 DOI: 10.3389/fphys.2022.957604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Atrial fibrillation (AF) with multiple complications, high morbidity and mortality, and low cure rates, has become a global public health problem. Although significant progress has been made in the treatment methods represented by anti-AF drugs and radiofrequency ablation, the therapeutic effect is not as good as expected. The reason is mainly because of our lack of understanding of AF mechanisms. This field has benefited from mechanistic and (or) statistical methodologies. Recent renewed interest in digital twin techniques by synergizing between mechanistic and statistical models has opened new frontiers in AF analysis. In the review, we briefly present findings that gave rise to the AF pathophysiology and current therapeutic modalities. We then summarize the achievements of digital twin technologies in three aspects: understanding AF mechanisms, screening anti-AF drugs and optimizing ablation strategies. Finally, we discuss the challenges that hinder the clinical application of the digital twin heart. With the rapid progress in data reuse and sharing, we expect their application to realize the transition from AF description to response prediction.
Collapse
Affiliation(s)
- Jieyun Bai
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Information Technology, Jinan University, Guangzhou, China
- College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Yaosheng Lu
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Information Technology, Jinan University, Guangzhou, China
- College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Huijin Wang
- College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Jichao Zhao
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Bi X, Zhang S, Jiang H, Wei Z. A Multi-Scale Computational Model for the Rat Ventricle: Construction, Parallelization, and Applications. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 208:106289. [PMID: 34303152 DOI: 10.1016/j.cmpb.2021.106289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Cardiovascular diseases are the top killer of human beings. The ventricular arrhythmia, as a type of malignant cardiac arrhythmias, typically leads to death if not treated within minutes. The multi-scale virtual heart provides an idealized tool for exploring the underlying mechanisms, by means of incorporating abundant experimental data at the level of ion channels and analyzing the subsequent pathological changes at organ levels. However, there are few studies on building a virtual heart model for rats-a species most widely used in experiments. OBJECTIVE To build a multi-scale computational model for rats, with detailed methodology for the model construction, computational optimization, and its applications. METHODS First, approaches for building multi-scale models ranging from cellular to 3-D organ levels are introduced, with detailed descriptions of handling the ventricular myocardium heterogeneity, geometry processing, and boundary conditions, etc. Next, for dealing with the expensive computational costs of 3-D models, optimization approaches including an optimized representation and a GPU-based parallelization method are introduced. Finally, methods for reproducing of some key phenomenon (e.g., electrocardiograph, spiral/scroll waves) are demonstrated. RESULTS Three types of heterogeneity, including the transmural heterogeneity, the interventricular heterogeneity, and the base-apex heterogeneity are incorporated into the model. The normal and reentrant excitation waves, as well as the corresponding pseudo-ECGs are reproduced by the constructed ventricle model. In addition, the temporal and spatial vulnerability to reentry arrhythmias are quantified based on the evaluation experiments of vulnerable window and the critical length. CONCLUSIONS The constructed multi-scale rat ventricle model is able to reproduce both the physiological and the pathological phenomenon in different scales. Evaluation experiments suggest that the apex is the most susceptible area to arrhythmias. The model can be a promising tool for the investigation of arrhythmogenesis and the screening of anti-arrhythmic drugs.
Collapse
Affiliation(s)
- Xiangpeng Bi
- College of Computer Science and Technology, Ocean University of China, Qingdao 266100, China
| | - Shugang Zhang
- College of Computer Science and Technology, Ocean University of China, Qingdao 266100, China; High Performance Computing Center, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Huasen Jiang
- College of Computer Science and Technology, Ocean University of China, Qingdao 266100, China
| | - Zhiqiang Wei
- College of Computer Science and Technology, Ocean University of China, Qingdao 266100, China; High Performance Computing Center, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
9
|
Bai J, Lu Y, Zhu Y, Wang H, Yin D, Zhang H, Franco D, Zhao J. Understanding PITX2-Dependent Atrial Fibrillation Mechanisms through Computational Models. Int J Mol Sci 2021; 22:7681. [PMID: 34299303 PMCID: PMC8307824 DOI: 10.3390/ijms22147681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 01/11/2023] Open
Abstract
Atrial fibrillation (AF) is a common arrhythmia. Better prevention and treatment of AF are needed to reduce AF-associated morbidity and mortality. Several major mechanisms cause AF in patients, including genetic predispositions to AF development. Genome-wide association studies have identified a number of genetic variants in association with AF populations, with the strongest hits clustering on chromosome 4q25, close to the gene for the homeobox transcription PITX2. Because of the inherent complexity of the human heart, experimental and basic research is insufficient for understanding the functional impacts of PITX2 variants on AF. Linking PITX2 properties to ion channels, cells, tissues, atriums and the whole heart, computational models provide a supplementary tool for achieving a quantitative understanding of the functional role of PITX2 in remodelling atrial structure and function to predispose to AF. It is hoped that computational approaches incorporating all we know about PITX2-related structural and electrical remodelling would provide better understanding into its proarrhythmic effects leading to development of improved anti-AF therapies. In the present review, we discuss advances in atrial modelling and focus on the mechanistic links between PITX2 and AF. Challenges in applying models for improving patient health are described, as well as a summary of future perspectives.
Collapse
Affiliation(s)
- Jieyun Bai
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (Y.Z.)
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| | - Yaosheng Lu
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (Y.Z.)
| | - Yijie Zhu
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (Y.Z.)
| | - Huijin Wang
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (Y.Z.)
| | - Dechun Yin
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin 150000, China;
| | - Henggui Zhang
- Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester M13 9PL, UK;
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain;
| | - Jichao Zhao
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
10
|
Santos ARMP, Jang Y, Son I, Kim J, Park Y. Recapitulating Cardiac Structure and Function In Vitro from Simple to Complex Engineering. MICROMACHINES 2021; 12:mi12040386. [PMID: 33916254 PMCID: PMC8067203 DOI: 10.3390/mi12040386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
Cardiac tissue engineering aims to generate in vivo-like functional tissue for the study of cardiac development, homeostasis, and regeneration. Since the heart is composed of various types of cells and extracellular matrix with a specific microenvironment, the fabrication of cardiac tissue in vitro requires integrating technologies of cardiac cells, biomaterials, fabrication, and computational modeling to model the complexity of heart tissue. Here, we review the recent progress of engineering techniques from simple to complex for fabricating matured cardiac tissue in vitro. Advancements in cardiomyocytes, extracellular matrix, geometry, and computational modeling will be discussed based on a technology perspective and their use for preparation of functional cardiac tissue. Since the heart is a very complex system at multiscale levels, an understanding of each technique and their interactions would be highly beneficial to the development of a fully functional heart in cardiac tissue engineering.
Collapse
Affiliation(s)
| | | | | | - Jongseong Kim
- Correspondence: (J.K.); (Y.P.); Tel.: +82-10-8858-7260 (J.K.); +82-10-4260-6460 (Y.P.)
| | - Yongdoo Park
- Correspondence: (J.K.); (Y.P.); Tel.: +82-10-8858-7260 (J.K.); +82-10-4260-6460 (Y.P.)
| |
Collapse
|
11
|
Amuzescu B, Airini R, Epureanu FB, Mann SA, Knott T, Radu BM. Evolution of mathematical models of cardiomyocyte electrophysiology. Math Biosci 2021; 334:108567. [PMID: 33607174 DOI: 10.1016/j.mbs.2021.108567] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/10/2021] [Accepted: 02/04/2021] [Indexed: 12/16/2022]
Abstract
Advanced computational techniques and mathematical modeling have become more and more important to the study of cardiac electrophysiology. In this review, we provide a brief history of the evolution of cardiomyocyte electrophysiology models and highlight some of the most important ones that had a major impact on our understanding of the electrical activity of the myocardium and associated transmembrane ion fluxes in normal and pathological states. We also present the use of these models in the study of various arrhythmogenesis mechanisms, particularly the integration of experimental pharmacology data into advanced humanized models for in silico proarrhythmogenic risk prediction as an essential component of the Comprehensive in vitro Proarrhythmia Assay (CiPA) drug safety paradigm.
Collapse
Affiliation(s)
- Bogdan Amuzescu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest (ICUB), 91-95 Splaiul Independentei, Bucharest 050095, Romania.
| | - Razvan Airini
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest (ICUB), 91-95 Splaiul Independentei, Bucharest 050095, Romania
| | - Florin Bogdan Epureanu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest (ICUB), 91-95 Splaiul Independentei, Bucharest 050095, Romania
| | - Stefan A Mann
- Cytocentrics Bioscience GmbH, Nattermannallee 1, 50829 Cologne, Germany
| | - Thomas Knott
- CytoBioScience Inc., 3463 Magic Drive, San Antonio, TX 78229, USA
| | - Beatrice Mihaela Radu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest (ICUB), 91-95 Splaiul Independentei, Bucharest 050095, Romania
| |
Collapse
|
12
|
Validation of Corrected and Dispersed QT as Predictors of Adverse Outcomes in Acute Cardiotoxicities. Cardiovasc Toxicol 2021; 22:1-13. [PMID: 33400130 DOI: 10.1007/s12012-020-09629-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022]
Abstract
Acute cardiovascular poisoning is a major cause of adverse outcomes in poisoning emergencies. The prognostic validity of corrected QT (QTc) and dispersed QT (QTd) in these outcomes is still limited. The present study aimed to determine the risk factors of mortality, adverse cardiovascular events (ACVE), and intensive care unit (ICU) admission in patients with acute cardiovascular toxicities and assess the validity of QTc and QTd intervals in predicting these outcomes. This study was conducted on adult patients admitted to Tanta University Poison Control Center with a history of acute cardiotoxic drugs or toxins exposure. The demographic and toxicological data of patients were recorded. Clinical examination, routine laboratory investigations, ECG grading, and measurement of QTc and QTd were performed. The patients were grouped according to their adverse outcomes. Among the included patients, 51 (31.48%) patients died, 61 (37.65%) patients had ACVE, and 68 (41.98%) patients required ICU admission. The most common cause of poisoning is aluminum phosphide, followed by cholinesterase inhibitors. QTd and QTdc showed no significant difference among outcome groups. The best cut-off values of QTc to predict mortality, ACVE, and ICU admission were > 491.1 ms, > 497.9 ms, and ≥ 491.9 ms, respectively. The derived cut-off QTc values were independent predictors for all adverse outcomes after adjusting for poison type, serum HCO3, and pulse. The highest odds ratios for all adverse outcomes were observed in aluminum phosphide poisoning and low HCO3 < 18 mmol/L. Thus, serum HCO3 and QTc interval should be monitored for acute cardiotoxicities, especially in aluminum phosphide and cholinesterase inhibitors poisoning.
Collapse
|
13
|
Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B, Baczkó I. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev 2020; 101:1083-1176. [PMID: 33118864 DOI: 10.1152/physrev.00024.2019] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrhythmias are among the leading causes of mortality. They often arise from alterations in the electrophysiological properties of cardiac cells and their underlying ionic mechanisms. It is therefore critical to further unravel the pathophysiology of the ionic basis of human cardiac electrophysiology in health and disease. In the first part of this review, current knowledge on the differences in ion channel expression and properties of the ionic processes that determine the morphology and properties of cardiac action potentials and calcium dynamics from cardiomyocytes in different regions of the heart are described. Then the cellular mechanisms promoting arrhythmias in congenital or acquired conditions of ion channel function (electrical remodeling) are discussed. The focus is on human-relevant findings obtained with clinical, experimental, and computational studies, given that interspecies differences make the extrapolation from animal experiments to human clinical settings difficult. Deepening the understanding of the diverse pathophysiology of human cellular electrophysiology will help in developing novel and effective antiarrhythmic strategies for specific subpopulations and disease conditions.
Collapse
Affiliation(s)
- András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
14
|
Bai J, Zhu Y, Lo A, Lu Y, Zhao J. In Silico Assessment of Genetic Variation in PITX2 Reveals the Molecular Mechanisms of Calcium-Mediated Cellular Triggered Activity in Atrial Fibrillation .. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:2353-2356. [PMID: 33018479 DOI: 10.1109/embc44109.2020.9175466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Genome-wide association studies have identified genetic variants including rs13143308T in the homeobox gene Pitx2 associated with atrial fibrillation (AF) populations. However, the molecular mechanisms leading to AF due to the rs13143308T variant are poorly understood. Therefore, this study aims to investigate the effects of this variant-induced alteration in calcium handling on properties of Ca2+-transients (CaT) and spontaneous calcium-release events (SCaEs). Based on recent experimental data on variants-induced alterations in ryanodine receptor channels (RyR) and sarcoplasmic reticulum (SR) calcium ATPase 2a (SERCA2a), we incorporated modifications to calcium handling into a previously published model of the human atrial cardiomyocyte with a spatial representation of calcium wave propagation. We identified that the rs13143308T variant has a higher incidence of spontaneous membrane depolarizations and amplitude of CaT than atrial myocytes without this variant. We showed a higher density of SCaEs and content of SR Ca2+ in atrial myocytes with the rs13143308T risk variant. Further computational analysis revealed that these calcium-mediated triggered activities were mainly linked to the gain of SERCA2a function but not the RyR2 dysfunction. Taken together, our model provides a powerful tool for assessing the impact of genetic variants in Pitx2, and these simulated results enhance our understanding of the molecular mechanisms underlying Pitx2-induced AF.
Collapse
|
15
|
Li J, Wang S, Zhang J, Liu Y, Zheng X, Ding F, Sun X, Zhao M, Hao L. The CaMKII phosphorylation site Thr1604 in the Ca V1.2 channel is involved in pathological myocardial hypertrophy in rats. Channels (Austin) 2020; 14:151-162. [PMID: 32290730 PMCID: PMC7188351 DOI: 10.1080/19336950.2020.1750189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Residue Thr1604 in the CaV1.2 channel is a Ca2+/calmodulin dependent protein kinase II (CaMKII) phosphorylation site, and its phosphorylation status maintains the basic activity of the channel. However, the role of CaV1.2 phosphorylation at Thr1604 in myocardial hypertrophy is incompletely understood. Isoproterenol (ISO) was used to induce cardiomyocyte hypertrophy, and autocamtide-2-related inhibitory peptide (AIP) was added as a treatment. Rats in a myocardial hypertrophy development model were subcutaneously injected with ISO for two or three weeks. The heart and left ventricle weights, each of which were normalized to the body weight and cross-sectional area of the myocardial cells, were used to describe the degree of hypertrophy. Protein expression levels were detected by western blotting. CaMKII-induced CaV1.2 (Thr1604) phosphorylation (p-CaV1.2) was assayed by coimmunoprecipitation. The results showed that CaMKII, HDAC, MEF2 C, and atrial natriuretic peptide (ANP) expression was increased in the ISO group and downregulated by AIP treatment in vitro. There was no difference in the expression of these proteins between the ISO 2-week group and the ISO 3-week group in vivo. CaV1.2 channel expression did not change, but p-CaV1.2 expression was increased after ISO stimulation and decreased by AIP. In the rat model, p-CaV1.2 levels and CaMKII activity were much higher in the ISO 3-week group than in the ISO 2-week group. CaMKII-induced CaV1.2 channel phosphorylation at residue Thr1604 may be one of the key features of myocardial hypertrophy and disease development.Abbreviations: CaMKII: Ca2+/calmodulin dependent protein kinase II; p-CaMKII: autophosphorylated Ca2+/calmodulin dependent protein kinase II; CaM: calmodulin; AIP: autocamtide-2-related inhibitory peptide; ECC: excitation-contraction coupling; ISO: isoproterenol; BW: body weight; HW: heart weight; LVW: left ventricle weight; HDAC: histone deacetylase; p-HDAC: phosphorylated histone deacetylase; MEF2C: myocyte-specific enhancer factor 2C; ANP: atrial natriuretic peptide; PKC: protein kinase C
Collapse
Affiliation(s)
- Jingyuan Li
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Siqi Wang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Jie Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Yan Liu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Xi Zheng
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Fan Ding
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Xuefei Sun
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Meimi Zhao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
16
|
Bai J, Lu Y, Lo A, Zhao J, Zhang H. PITX2 upregulation increases the risk of chronic atrial fibrillation in a dose-dependent manner by modulating IKs and ICaL -insights from human atrial modelling. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:191. [PMID: 32309338 PMCID: PMC7154416 DOI: 10.21037/atm.2020.01.90] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Functional analysis has shown that the paired-like homeodomain transcription factor 2 (PITX2) overexpression associated with atrial fibrillation (AF) leads to the slow delayed rectifier K+ current (IKs) increase and the L-type Ca2+ current (ICaL) reduction observed in isolated right atrial myocytes from chronic AF (CAF) patients. Through multiscale computational models, this study aimed to investigate the functional impact of the PITX2 overexpression on atrial electrical activity. Methods The well-known Courtemanche-Ramirez-Nattel (CRN) model of human atrial action potentials (APs) was updated to incorporate experimental data on alterations in IKs and ICaL due to the PITX2 overexpression. These cell models for sinus rhythm (SR) and CAF were then incorporated into homogeneous multicellular one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) tissue models. The proarrhythmic effects of the PITX2 overexpression were quantified with ion current profiles, AP morphology, AP duration (APD) restitution, conduction velocity restitution (CVR), wavelength (WL), vulnerable window (VW) for unidirectional conduction block, and minimal substrate size required to induce re-entry. Dynamic behaviors of spiral waves were characterized by measuring lifespan (LS), tip patterns and dominant frequencies. Results The IKs increase and the ICaL decrease arising from the PITX2 overexpression abbreviated APD and flattened APD restitution (APDR) curves in single cells. It reduced WL and increased CV at high excitation rates at the 1D tissue level. Although it had no effects on VW for initiating spiral waves, it decreased the minimal substrate size necessary to sustain re-entry. It also stabilized and accelerated spiral waves in 2D and 3D tissue models. Conclusions Electrical remodeling (IKs and ICaL) due to the PITX2 overexpression increases susceptibility to AF due to increased tissue vulnerability, abbreviated APD, shortened WL and altered CV, which, in combination, facilitate initiation and maintenance of spiral waves.
Collapse
Affiliation(s)
- Jieyun Bai
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yaosheng Lu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China
| | - Andy Lo
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Henggui Zhang
- Biological Physics Group, School of Physics & Astronomy, University of Manchester, Manchester, UK
| |
Collapse
|
17
|
Wang K, Parrott N, Olivares-Morales A, Dudal S, Singer T, Lavé T, Ribba B. Real-World Data and Physiologically-Based Mechanistic Models for Precision Medicine. Clin Pharmacol Ther 2020; 107:694-696. [PMID: 32090313 DOI: 10.1002/cpt.1780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/20/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Ken Wang
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Neil Parrott
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Andres Olivares-Morales
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Sherri Dudal
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Thomas Singer
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Thierry Lavé
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Benjamin Ribba
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
18
|
Bai J, Lo A, Gladding PA, Stiles MK, Fedorov VV, Zhao J. In silico investigation of the mechanisms underlying atrial fibrillation due to impaired Pitx2. PLoS Comput Biol 2020; 16:e1007678. [PMID: 32097431 PMCID: PMC7059955 DOI: 10.1371/journal.pcbi.1007678] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 03/06/2020] [Accepted: 01/22/2020] [Indexed: 01/04/2023] Open
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and is a major cause of stroke and morbidity. Recent genome-wide association studies have shown that paired-like homeodomain transcription factor 2 (Pitx2) to be strongly associated with AF. However, the mechanisms underlying Pitx2 modulated arrhythmogenesis and variable effectiveness of antiarrhythmic drugs (AADs) in patients in the presence or absence of impaired Pitx2 expression remain unclear. We have developed multi-scale computer models, ranging from a single cell to tissue level, to mimic control and Pitx2-knockout atria by incorporating recent experimental data on Pitx2-induced electrical and structural remodeling in humans, as well as the effects of AADs. The key findings of this study are twofold. We have demonstrated that shortened action potential duration, slow conduction and triggered activity occur due to electrical and structural remodelling under Pitx2 deficiency conditions. Notably, the elevated function of calcium transport ATPase increases sarcoplasmic reticulum Ca2+ concentration, thereby enhancing susceptibility to triggered activity. Furthermore, heterogeneity is further elevated due to Pitx2 deficiency: 1) Electrical heterogeneity between left and right atria increases; and 2) Increased fibrosis and decreased cell-cell coupling due to structural remodelling slow electrical propagation and provide obstacles to attract re-entry, facilitating the initiation of re-entrant circuits. Secondly, our study suggests that flecainide has antiarrhythmic effects on AF due to impaired Pitx2 by preventing spontaneous calcium release and increasing wavelength. Furthermore, our study suggests that Na+ channel effects alone are insufficient to explain the efficacy of flecainide. Our study may provide the mechanisms underlying Pitx2-induced AF and possible explanation behind the AAD effects of flecainide in patients with Pitx2 deficiency.
Collapse
Affiliation(s)
- Jieyun Bai
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Andy Lo
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Patrick A. Gladding
- Department of Cardiology, Waitemata District Health Board, Auckland, New Zealand
| | - Martin K. Stiles
- Waikato Clinical School, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Vadim V. Fedorov
- Department of Physiology & Cell Biology and Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Jichao Zhao
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
Bai J, Lu Y, Zhang H. In silico study of the effects of anti-arrhythmic drug treatment on sinoatrial node function for patients with atrial fibrillation. Sci Rep 2020; 10:305. [PMID: 31941982 PMCID: PMC6962222 DOI: 10.1038/s41598-019-57246-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022] Open
Abstract
Sinus node dysfunction (SND) is often associated with atrial fibrillation (AF). Amiodarone is the most frequently used agent for maintaining sinus rhythm in patients with AF, but it impairs the sinoatrial node (SAN) function in one-third of AF patients. This study aims to gain mechanistic insights into the effects of the antiarrhythmic agents in the setting of AF-induced SND. We have adapted a human SAN model to characterize the SND conditions by incorporating experimental data on AF-induced electrical remodelling, and then integrated actions of drugs into the modified model to assess their efficacy. Reductions in pacing rate upon the implementation of AF-induced electrical remodelling associated with SND agreed with the clinical observations. And the simulated results showed the reduced funny current (If) in these remodelled targets mainly contributed to the heart rate reduction. Computational drug treatment simulations predicted a further reduction in heart rate during amiodarone administration, indicating that the reduction was the result of actions of amiodarone on INa, IKur, ICaL, ICaT, If and beta-adrenergic receptors. However, the heart rate was increased in the presence of disopyramide. We concluded that disopyramide may be a desirable choice in reversing the AF-induced SND phenotype.
Collapse
Affiliation(s)
- Jieyun Bai
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China.
| | - Yaosheng Lu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Henggui Zhang
- Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
20
|
Bai J, Lu Y, Lo A, Zhao J, Zhang H. Proarrhythmia in the p.Met207Val PITX2c-Linked Familial Atrial Fibrillation-Insights From Modeling. Front Physiol 2019; 10:1314. [PMID: 31695623 PMCID: PMC6818469 DOI: 10.3389/fphys.2019.01314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022] Open
Abstract
Functional analysis has shown that the p.Met207Val mutation was linked to atrial fibrillation and caused an increase in transactivation activity of PITX2c, which caused changes in mRNA synthesis related to ionic channels and intercellular electrical coupling. We assumed that these changes were quantitatively translated to the functional level. This study aimed to investigate the potential impact of the PITX2c p.Met207Val mutation on atrial electrical activity through multiscale computational models. The well-known Courtemanche-Ramirez-Nattel (CRN) model of human atrial cell action potentials (APs) was modified to incorporate experimental data on the expected p.Met207Val mutation-induced changes in ionic channel currents (INaL, IKs, and IKr) and intercellular electrical coupling. The cell models for wild-type (WT), heterozygous (Mutant/Wild type, MT/WT), and homozygous (Mutant, MT) PITX2c cases were incorporated into homogeneous multicellular 1D and 2D tissue models. Effects of this mutation-induced remodeling were quantified as changes in AP profile, AP duration (APD) restitution, conduction velocity (CV) restitution and wavelength (WL). Temporal and spatial vulnerabilities of atrial tissue to the genesis of reentry were computed. Dynamic behaviors of re-entrant excitation waves (Life span, tip trajectory and dominant frequency) in a homogeneous 2D tissue model were characterized. Our results suggest that the PITX2c p.Met207Val mutation abbreviated atrial APD and flattened APD restitution curves. It reduced atrial CV and WL that facilitated the conduction of high rate atrial excitation waves. It increased the tissue's temporal vulnerability by increasing the vulnerable window for initiating reentry and increased the tissue spatial vulnerability by reducing the substrate size necessary to sustain reentry. In the 2D models, the mutation also stabilized and accelerated re-entrant excitation waves, leading to rapid and sustained reentry. In conclusion, electrical and structural remodeling arising from the PITX2c p.Met207Val mutation may increase atrial susceptibility to arrhythmia due to shortened APD, reduced CV and increased tissue vulnerability, which, in combination, facilitate initiation and maintenance of re-entrant excitation waves.
Collapse
Affiliation(s)
- Jieyun Bai
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Yaosheng Lu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Andy Lo
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Henggui Zhang
- Biological Physics Group, School of Physics & Astronomy, University of Manchester, Manchester, United Kingdom.,Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
21
|
Han D, Xue X, Yan Y, Li G. Dysfunctional Cav1.2 channel in Timothy syndrome, from cell to bedside. Exp Biol Med (Maywood) 2019; 244:960-971. [PMID: 31324123 DOI: 10.1177/1535370219863149] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Timothy syndrome is a rare disorder caused by CACNA1C gene mutations and characterized by multi-organ system dysfunctions, including ventricular arrhythmias, syndactyly, dysmorphic facial features, intermittent hypoglycemia, immunodeficiency, developmental delay, and autism. Because of the low morbidity and high mortality at a young age, it remains a huge challenge to establish a diagnosis and treatment system to manage Timothy syndrome patients. Here, we aim to provide a detailed review of Timothy syndrome, discuss the mechanisms underlying dysfunctional Cav1.2 due to CACNA1C mutations, and provide some new emerging evidences in treating Timothy syndrome from cell to bedside, promoting the management of this rare disease. Impact statement The knowledge of Timothy syndrome (TS) caused by dysfunctional Cav1.2 channel due to CACNA1C mutations is rapidly evolving as novel technologies of electrophysiology are introduced and our understanding of the mechanisms of TS develops. In this review, we focus on the TS-related dysfunctional Cav1.2 and the underlying mechanisms. We update TS-related CACNA1C mutations in a precise way over the past 20 years and summarize all reported TS patients based on their clinical presentations and molecular mechanisms, respectively. We hope this review will provide a new comprehensive way to better understand the electrophysiological mechanisms underlying TS from cell to bedside, promoting the management of TS in practice.
Collapse
Affiliation(s)
- Dan Han
- 1 Department of Cardiology, the First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, P. R. China.,2 Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, P.R. China*These authors contributed equally to this work and should be considered to share first authorship
| | - Xiaolin Xue
- 1 Department of Cardiology, the First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, P. R. China
| | - Yang Yan
- 2 Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, P.R. China*These authors contributed equally to this work and should be considered to share first authorship
| | - Guoliang Li
- 1 Department of Cardiology, the First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, P. R. China
| |
Collapse
|
22
|
Bai J, Gladding PA, Stiles MK, Fedorov VV, Zhao J. Ionic and cellular mechanisms underlying TBX5/PITX2 insufficiency-induced atrial fibrillation: Insights from mathematical models of human atrial cells. Sci Rep 2018; 8:15642. [PMID: 30353147 PMCID: PMC6199257 DOI: 10.1038/s41598-018-33958-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/24/2018] [Indexed: 12/16/2022] Open
Abstract
Transcription factors TBX5 and PITX2 involve in the regulation of gene expression of ion channels and are closely associated with atrial fibrillation (AF), the most common cardiac arrhythmia in developed countries. The exact cellular and molecular mechanisms underlying the increased susceptibility to AF in patients with TBX5/PITX2 insufficiency remain unclear. In this study, we have developed and validated a novel human left atrial cellular model (TPA) based on the ten Tusscher-Panfilov ventricular cell model to systematically investigate how electrical remodeling induced by TBX5/PITX2 insufficiency leads to AF. Using our TPA model, we have demonstrated that spontaneous diastolic depolarization observed in atrial myocytes with TBX5-deletion can be explained by altered intracellular calcium handling and suppression of inward-rectifier potassium current (IK1). Additionally, our computer simulation results shed new light on the novel cellular mechanism underlying AF by indicating that the imbalance between suppressed outward current IK1 and increased inward sodium-calcium exchanger current (INCX) resulted from SR calcium leak leads to spontaneous depolarizations. Furthermore, our simulation results suggest that these arrhythmogenic triggers can be potentially suppressed by inhibiting sarcoplasmic reticulum (SR) calcium leak and reversing remodeled IK1. More importantly, this study has clinically significant implications on the drugs used for maintaining SR calcium homeostasis, whereby drugs such as dantrolene may confer significant improvement for the treatment of AF patients with TBX5/PITX2 insufficiency.
Collapse
Affiliation(s)
- Jieyun Bai
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
- School of Computer Science and Technology, Harbin Institute Technology, Harbin, China.
| | - Patrick A Gladding
- Department of Cardiology, Waitemata District Health Board, Auckland, New Zealand
| | | | - Vadim V Fedorov
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, United States of America
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
23
|
Gardner RJM, Crozier IG, Binfield AL, Love DR, Lehnert K, Gibson K, Lintott CJ, Snell RG, Jacobsen JC, Jones PP, Waddell-Smith KE, Kennedy MA, Skinner JR. Penetrance and expressivity of the R858H CACNA1C variant in a five-generation pedigree segregating an arrhythmogenic channelopathy. Mol Genet Genomic Med 2018; 7:e00476. [PMID: 30345660 PMCID: PMC6382452 DOI: 10.1002/mgg3.476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Isolated cardiac arrhythmia due to a variant in CACNA1C is of recent knowledge. Most reports have been of singleton cases or of quite small families, and estimates of penetrance and expressivity have been difficult to obtain. We here describe a large pedigree, from which such estimates have been calculated. METHODS We studied a five-generation family, in which a CACNA1C variant c.2573G>A p.Arg858His co-segregates with syncope and cardiac arrest, documenting electrocardiographic data and cardiac symptomatology. The reported patients/families from the literature with CACNA1C gene variants were reviewed, and genotype-phenotype correlations are drawn. RESULTS The range of phenotype in the studied family is wide, from no apparent effect, through an asymptomatic QT interval prolongation on electrocardiography, to episodes of presyncope and syncope, ventricular fibrillation, and sudden death. QT prolongation showed inconsistent correlation with functional cardiology. Based upon analysis of 28 heterozygous family members, estimates of penetrance and expressivity are derived. CONCLUSIONS These estimates of penetrance and expressivity, for this specific variant, may be useful in clinical practice. Review of the literature indicates that individual CACNA1C variants have their own particular genotype-phenotype correlations. We suggest that, at least in respect of the particular variant reported here, "arrhythmogenic channelopathy" may be a more fitting nomenclature than long QT syndrome.
Collapse
Affiliation(s)
- R J McKinlay Gardner
- Cardiac Inherited Disease Group, Auckland, New Zealand.,Genetic Health Service New Zealand (South Island Hub), Christchurch Hospital, Christchurch, New Zealand.,Clinical Genetics Group, Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand
| | - Ian G Crozier
- Cardiac Inherited Disease Group, Auckland, New Zealand.,Department of Cardiology, Christchurch Hospital, Christchurch, New Zealand
| | - Alex L Binfield
- Cardiac Inherited Disease Group, Auckland, New Zealand.,Department of Paediatrics, Christchurch Hospital, Christchurch, New Zealand.,Department of Paediatrics, University of Otago, Christchurch, New Zealand
| | - Donald R Love
- Cardiac Inherited Disease Group, Auckland, New Zealand.,LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Klaus Lehnert
- Cardiac Inherited Disease Group, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Kate Gibson
- Cardiac Inherited Disease Group, Auckland, New Zealand.,Genetic Health Service New Zealand (South Island Hub), Christchurch Hospital, Christchurch, New Zealand
| | - Caroline J Lintott
- Cardiac Inherited Disease Group, Auckland, New Zealand.,Genetic Health Service New Zealand (South Island Hub), Christchurch Hospital, Christchurch, New Zealand
| | - Russell G Snell
- Cardiac Inherited Disease Group, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Jessie C Jacobsen
- Cardiac Inherited Disease Group, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Peter P Jones
- Cardiac Inherited Disease Group, Auckland, New Zealand.,Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
| | - Kathryn E Waddell-Smith
- Cardiac Inherited Disease Group, Auckland, New Zealand.,Department of Cardiology, Auckland City Hospital, Auckland, New Zealand
| | - Martin A Kennedy
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Jonathan R Skinner
- Cardiac Inherited Disease Group, Auckland, New Zealand.,Department of Cardiology, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
24
|
Monasky MM, Pappone C, Piccoli M, Ghiroldi A, Micaglio E, Anastasia L. Calcium in Brugada Syndrome: Questions for Future Research. Front Physiol 2018; 9:1088. [PMID: 30147658 PMCID: PMC6095984 DOI: 10.3389/fphys.2018.01088] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022] Open
Abstract
The Brugada syndrome (BrS) is characterized by coved-type ST-segment elevation in the right precordial leads on the electrocardiogram (ECG) and increased risk of sudden cardiac death (SCD). While it is an inheritable disease, determining the true prevalence is a challenge, since patients may report no known family history of the syndrome, present with a normal spontaneous ECG pattern at the time of examination, and test negative for all known BrS-causative genes. In fact, SCD is often the first indication that a person is affected by the syndrome. Men are more likely to be symptomatic than women. Abnormal, low-voltage, fractionated electrograms have been found in the epicardium of the right ventricular outflow tract (RVOT). Ablation of this area abolishes the abnormal electrograms and helps to prevent arrhythmic recurrences. BrS patients are more likely to experience ventricular tachycardia/fibrillation (VT/VF) during fever or during an increase in vagal tone. Isoproterenol helps to reverse the ECG BrS phenotype. In this review, we discuss roles of calcium in various conditions that are relevant to BrS, such as changes in temperature, heart rate, and vagal tone, and the effects of gender and isoproterenol on calcium handling. Studies are warranted to further investigate these mechanisms in models of BrS.
Collapse
Affiliation(s)
| | - Carlo Pappone
- Arrhythmology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Marco Piccoli
- Stem Cells for Tissue Engineering Lab, IRCCS Policlinico San Donato, Milan, Italy
| | - Andrea Ghiroldi
- Stem Cells for Tissue Engineering Lab, IRCCS Policlinico San Donato, Milan, Italy
| | - Emanuele Micaglio
- Arrhythmology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Luigi Anastasia
- Stem Cells for Tissue Engineering Lab, IRCCS Policlinico San Donato, Milan, Italy.,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|