1
|
Yu M, Xu M, Wang G, Feng J, Zhang M. Effects of Different Photoperiods on Peripheral 5-Hydroxytryptamine Metabolism, Breast Muscle Glucose Metabolism, and Myopathies in Broilers. Metabolites 2024; 14:567. [PMID: 39452948 PMCID: PMC11509524 DOI: 10.3390/metabo14100567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024] Open
Abstract
Background: There is a close relationship between breast muscle glucose metabolism, peripheral 5-hydroxytryptamine (5-HT), and myopathies in animals. Here, this study aimed to investigate the effects of different photoperiods on peripheral 5-HT metabolism, white striping (WS), and wooden breast (WB) in broilers. Methods: A total of 216 healthy 5-day-old (d) Arbor Acres (AA) male broilers were randomly assigned to 12L:12D, 18L:6D, and 24L:0D photoperiods for 4 weeks. Results: Compared with the 12L:12D photoperiod, we found the WB score in broilers was significantly increased in the 18L:6D and 24L:0D photoperiod at week 4 (p < 0.05). Muscle glycogen was significantly reduced (p < 0.05) and glycolysis was promoted in the breast muscles of broilers under the 18L:6D and 24L:0D photoperiods at week 2 and 4. Peripheral 5-HT concentrations, the mRNA expression of tryptophan hydroxylase 1 (TPH1) and serotonin transporter (SERT) in the cecal mucosa, and 5-hydroxytryptamine receptor 2A (5-HTR2A) mRNA expression in the breast muscle of broilers significantly up-regulated in the 18L:6D and 24L:0D photoperiod at week 2 and 4 (p < 0.05). Conclusions: Our findings revealed that extending the photoperiod improved the breast muscle growth rate, but up-regulated 5-HT synthesis and secretion to higher peripheral 5-HT, induced breast muscle glucose metabolism disorder, and increased WB incidence rates in broilers.
Collapse
Affiliation(s)
- Miao Yu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing 100193, China; (M.Y.); (M.X.); (G.W.); (J.F.)
| | - Mengjie Xu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing 100193, China; (M.Y.); (M.X.); (G.W.); (J.F.)
| | - Guangju Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing 100193, China; (M.Y.); (M.X.); (G.W.); (J.F.)
- Adaptation Physiology Group, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Jinghai Feng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing 100193, China; (M.Y.); (M.X.); (G.W.); (J.F.)
| | - Minhong Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing 100193, China; (M.Y.); (M.X.); (G.W.); (J.F.)
| |
Collapse
|
2
|
Rodríguez RM, Colom-Pellicer M, Hernández-Baixauli J, Calvo E, Suárez M, Arola-Arnal A, Torres-Fuentes C, Aragonès G, Mulero M. Grape Seed Proanthocyanidin Extract Attenuates Cafeteria-Diet-Induced Liver Metabolic Disturbances in Rats: Influence of Photoperiod. Int J Mol Sci 2024; 25:7713. [PMID: 39062955 PMCID: PMC11276873 DOI: 10.3390/ijms25147713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
This study investigated the influence of photoperiod (day length) on the efficacy of grape seed proanthocyanidin extract (GSPE) in mitigating metabolic disorders in obese rats fed a cafeteria diet. Rats were exposed to standard (L12), long (L18), or short (L6) photoperiods and treated with GSPE or vehicle. In the standard photoperiod, GSPE reduced body weight gain (50.5%), total cholesterol (37%), and triglycerides (34.8%), while increasing the expression of hepatic metabolic genes. In the long photoperiod, GSPE tended to decrease body weight gain, increased testosterone levels (68.3%), decreased liver weight (12.4%), and decreased reverse serum amino acids. In the short photoperiod, GSPE reduced glycemia (~10%) and lowered triglyceride levels (38.5%), with effects modified by diet. The standard photoperiod showed the greatest efficacy against metabolic syndrome-associated diseases. The study showed how day length affects GSPE's benefits and underscores considering biological rhythms in metabolic disease therapies.
Collapse
Affiliation(s)
- Romina M. Rodríguez
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili (URV), Campus de Sescelades, 43007 Tarragona, Spain; (R.M.R.); (M.C.-P.); (E.C.); (M.S.); (A.A.-A.); (C.T.-F.); (G.A.)
| | - Marina Colom-Pellicer
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili (URV), Campus de Sescelades, 43007 Tarragona, Spain; (R.M.R.); (M.C.-P.); (E.C.); (M.S.); (A.A.-A.); (C.T.-F.); (G.A.)
| | - Julia Hernández-Baixauli
- Laboratory of Metabolism and Obesity, Vall d’Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
| | - Enrique Calvo
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili (URV), Campus de Sescelades, 43007 Tarragona, Spain; (R.M.R.); (M.C.-P.); (E.C.); (M.S.); (A.A.-A.); (C.T.-F.); (G.A.)
- Center of Environmental, Food and Toxicological Technology-TecnATox, Rovira i Virgili University, 43201 Reus, Spain
| | - Manuel Suárez
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili (URV), Campus de Sescelades, 43007 Tarragona, Spain; (R.M.R.); (M.C.-P.); (E.C.); (M.S.); (A.A.-A.); (C.T.-F.); (G.A.)
- Center of Environmental, Food and Toxicological Technology-TecnATox, Rovira i Virgili University, 43201 Reus, Spain
| | - Anna Arola-Arnal
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili (URV), Campus de Sescelades, 43007 Tarragona, Spain; (R.M.R.); (M.C.-P.); (E.C.); (M.S.); (A.A.-A.); (C.T.-F.); (G.A.)
- Center of Environmental, Food and Toxicological Technology-TecnATox, Rovira i Virgili University, 43201 Reus, Spain
| | - Cristina Torres-Fuentes
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili (URV), Campus de Sescelades, 43007 Tarragona, Spain; (R.M.R.); (M.C.-P.); (E.C.); (M.S.); (A.A.-A.); (C.T.-F.); (G.A.)
- Center of Environmental, Food and Toxicological Technology-TecnATox, Rovira i Virgili University, 43201 Reus, Spain
| | - Gerard Aragonès
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili (URV), Campus de Sescelades, 43007 Tarragona, Spain; (R.M.R.); (M.C.-P.); (E.C.); (M.S.); (A.A.-A.); (C.T.-F.); (G.A.)
- Center of Environmental, Food and Toxicological Technology-TecnATox, Rovira i Virgili University, 43201 Reus, Spain
| | - Miquel Mulero
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili (URV), Campus de Sescelades, 43007 Tarragona, Spain; (R.M.R.); (M.C.-P.); (E.C.); (M.S.); (A.A.-A.); (C.T.-F.); (G.A.)
- Center of Environmental, Food and Toxicological Technology-TecnATox, Rovira i Virgili University, 43201 Reus, Spain
| |
Collapse
|
3
|
Gassen J, Mengelkoch S, Slavich GM. Human immune and metabolic biomarker levels, and stress-biomarker associations, differ by season: Implications for biomedical health research. Brain Behav Immun Health 2024; 38:100793. [PMID: 38813082 PMCID: PMC11133497 DOI: 10.1016/j.bbih.2024.100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
Although seasonal changes in physiology are well documented, little is known about how human immune and metabolic markers vary across seasons, and no studies have examined how stress → health biomarker associations differ across the year. To investigate these issues, we analyzed data from 2118 participants of the Midlife in the United States (MIDUS) study to determine whether there were differences in (a) levels of 19 immune and metabolic markers, and (b) the association between perceived stress and each biomarker across the year. Results of component-wide boosted generalized additive models revealed seasonal patterning for most biomarkers, with immune proteins generally peaking when days were shorter. Moreover, whereas levels of hemoglobin A1C rose from late fall to spring, triglycerides were elevated in the summer and fall, and high-density lipoprotein decreased steadily from January to December. Urinary cortisol and cortisone exhibited opposite patterns, peaking at the beginning and end of the year, respectively. Most critically, we found that the effects of perceived stress on 18 of the 19 health biomarkers assessed varied by month of measurement. In some cases, these differences involved the magnitude of the stress → biomarker association but, in other cases, it was the direction of the effect that changed. Studies that do not account for month of biomarker assessment may thus yield misleading or unreproducible results.
Collapse
Affiliation(s)
- Jeffrey Gassen
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Summer Mengelkoch
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - George M. Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Regmi P, Young M, Minigo G, Milic N, Gyawali P. Photoperiod and metabolic health: evidence, mechanism, and implications. Metabolism 2024; 152:155770. [PMID: 38160935 DOI: 10.1016/j.metabol.2023.155770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Circadian rhythms are evolutionarily programmed biological rhythms that are primarily entrained by the light cycle. Disruption of circadian rhythms is an important risk factor for several metabolic disorders. Photoperiod is defined as total duration of light exposure in a day. With the extended use of indoor/outdoor light, smartphones, television, computers, and social jetlag people are exposed to excessive artificial light at night increasing their photoperiod. Importantly long photoperiod is not limited to any geographical region, season, age, or socioeconomic group, it is pervasive. Long photoperiod is an established disrupter of the circadian rhythm and can induce a range of chronic health conditions including adiposity, altered hormonal signaling and metabolism, premature ageing, and poor psychological health. This review discusses the impact of exposure to long photoperiod on circadian rhythms, metabolic and mental health, hormonal signaling, and ageing and provides a perspective on possible preventive and therapeutic approaches for this pervasive challenge.
Collapse
Affiliation(s)
- Prashant Regmi
- Faculty of Health, Charles Darwin University, Australia.
| | - Morag Young
- Cardiovascular Endocrinology Laboratory, Baker IDI Heart and Diabetes Institute, Australia
| | | | - Natalie Milic
- Faculty of Health, Charles Darwin University, Australia
| | - Prajwal Gyawali
- Centre of Health Research and School of Health and Medical Sciences, University of Southern Queensland, Australia
| |
Collapse
|
5
|
Small L, Lundell LS, Iversen J, Ehrlich AM, Dall M, Basse AL, Dalbram E, Hansen AN, Treebak JT, Barrès R, Zierath JR. Seasonal light hours modulate peripheral clocks and energy metabolism in mice. Cell Metab 2023; 35:1722-1735.e5. [PMID: 37689069 DOI: 10.1016/j.cmet.2023.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/16/2023] [Accepted: 08/10/2023] [Indexed: 09/11/2023]
Abstract
Except for latitudes close to the equator, seasonal variation in light hours can change dramatically between summer and winter. Yet investigations into the interplay between energy metabolism and circadian rhythms typically use a 12 h light:12 h dark photoperiod corresponding to the light duration at the equator. We hypothesized that altering the seasonal photoperiod affects both the rhythmicity of peripheral tissue clocks and energy homeostasis. Mice were housed at photoperiods representing either light hours in summer, winter, or the equinox. Mice housed at a winter photoperiod exhibited an increase in the amplitude of rhythmic lipid metabolism and a modest reduction in fat mass and liver triglyceride content. Comparing melatonin-proficient and -deficient mice, the effect of seasonal light on energy metabolism was largely driven by differences in the rhythmicity of food intake and not melatonin. Together, these data indicate that seasonal light impacts energy metabolism by modulating the timing of eating.
Collapse
Affiliation(s)
- Lewin Small
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leonidas S Lundell
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jo Iversen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amy M Ehrlich
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Dall
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Astrid L Basse
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emilie Dalbram
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ann N Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur and CNRS, Nice, France.
| | - Juleen R Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Physiology and Pharmacology and Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
6
|
Navarro-Masip È, Colom-Pellicer M, Manocchio F, Arola-Arnal A, Bravo FI, Muguerza B, Aragonès G. Grape-Seed Proanthocyanidins Modulate Adipose Tissue Adaptations to Obesity in a Photoperiod-Dependent Manner in Fischer 344 Rats. Nutrients 2023; 15:nu15041037. [PMID: 36839395 PMCID: PMC9967183 DOI: 10.3390/nu15041037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Seasonal rhythms drive metabolic adaptations that influence body weight and adiposity. Adipose tissue is a key regulator of energy homeostasis in the organism, and its healthiness is needed to prevent the major consequences of overweight and obesity. In this context, supplementation with proanthocyanidins has been postulated as a potential strategy to prevent the alterations caused by obesity. Moreover, the effects of these (poly)phenols on metabolism are photoperiod dependent. In order to describe the impact of grape-seed proanthocyanidins extract (GSPE) on important markers of adipose tissue functionality under an obesogenic environment, we exposed Fischer 344 rats to three different photoperiods and fed them a cafeteria diet for five weeks. Afterwards, we supplemented them with 25 mg GSPE/kg/day for four weeks. Our results revealed that GSPE supplementation prevented excessive body weight gain under a long photoperiod, which could be explained by increased lipolysis in the adipose tissue. Moreover, cholesterol and non-esterified fatty acids (NEFAs) serum concentrations were restored by GSPE under standard photoperiod. GSPE consumption slightly helped combat the obesity-induced hypertrophy in adipocytes, and adiponectin mRNA levels were upregulated under all photoperiods. Overall, the administration of GSPE helped reduce the impact of obesity in the adipose tissue, depending on the photoperiod at which GSPE was consumed and on the type of adipose depots.
Collapse
|
7
|
Navarro-Masip È, Caron A, Mulero M, Arola L, Aragonès G. Photoperiodic Remodeling of Adiposity and Energy Metabolism in Non-Human Mammals. Int J Mol Sci 2023; 24:ijms24021008. [PMID: 36674520 PMCID: PMC9865556 DOI: 10.3390/ijms24021008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
Energy homeostasis and metabolism in mammals are strongly influenced by seasonal changes. Variations in photoperiod patterns drive adaptations in body weight and adiposity, reflecting changes in the regulation of food intake and energy expenditure. Humans also show distinct patterns of energy balance depending on the season, being more susceptible to gaining weight during a specific time of the year. Changes in body weight are mainly reflected by the adipose tissue, which is a key metabolic tissue and is highly affected by circannual rhythms. Mostly, in summer-like (long-active) photoperiod, adipocytes adopt a rather anabolic profile, more predisposed to store energy, while food intake increases and energy expenditure is reduced. These metabolic adaptations involve molecular modifications, some of which have been studied during the last years and are summarized in this review. In addition, there is a bidirectional relation between obesity and the seasonal responses, with obesity disrupting some of the seasonal responses observed in healthy mammals, and altered seasonality being highly associated with increased risk of developing obesity. This suggests that changes in photoperiod produce important metabolic alterations in healthy organisms. Biological rhythms impact the regulation of metabolism to different extents, some of which are already known, but further research is needed to fully understand the relationship between energy balance and seasonality.
Collapse
Affiliation(s)
- Èlia Navarro-Masip
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Alexandre Caron
- Faculty of Pharmacy, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Miquel Mulero
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Lluís Arola
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Gerard Aragonès
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Correspondence:
| |
Collapse
|
8
|
Fatty acid metabolism in liver and muscle is strongly modulated by photoperiod in Fischer 344 rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 238:112621. [PMID: 36525774 DOI: 10.1016/j.jphotobiol.2022.112621] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/16/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Circadian and seasonal variations produce variations in physiological processes throughout the day and the year, respectively. In this sense, both the light and the moment of feeding are strong modulators of the central and peripheral clocks. However, little is known about its influence on certain metabolic parameters and on the composition of liver and muscle fatty acids (FA). In the present study, 24 Fischer 344 rats were exposed for 11 weeks to different photoperiods, L6, L12 and L18, with 6, 12 and 18 h of light/day, respectively. They were fed a standard diet. Serum metabolic parameters, gene expression of liver enzymes and gastrocnemius muscle involved in the synthesis, elongation, desaturation and β-oxidation of FA were analyzed. We have found that exposure to different hours of light has a clear effect on FA composition and gene expression in the liver. Mainly, the biosynthesis of unsaturated FA was altered in the L18 animals with respect to those exposed to L12, while the L6 did not show significant changes. At the muscle level, differences were observed in the concentration of mono and polyunsaturated FA. A multivariate analysis confirmed the differences between L12 and L18 in a significant way. We conclude that exposure to long days produces changes in the composition of liver and muscle FA, as well as changes in the gene expression of oxidative enzymes compared to exposure to L12, which could be a consequence of different seasonal eating patterns.
Collapse
|
9
|
Identification of the Differentially Expressed Genes in the leg muscles of Zhedong White Geese (Anser cygnoides) reared under different photoperiods. Poult Sci 2022; 101:102193. [PMID: 36257072 PMCID: PMC9579406 DOI: 10.1016/j.psj.2022.102193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
Light is a factor affecting muscle development and meat quality in poultry production. However, few studies have reported on the role of light in muscle development and meat quality in geese. In this experiment, 10 healthy 220-day-old Zhedong white geese were reared for 60 d under a long photoperiod (15L:9D, LL) and short photoperiod (9L:15D, SL). The gastrocnemius muscles were collected after slaughter to evaluate muscle fiber characteristics and meat color, and RNA-seq analysis. The results showed that compared to the LL group, the SL group had large muscle fiber diameter and cross-sectional area, few muscle fibers per unit area, high meat color a* value, and low L* value at 24 h postmortem. On comparing the 2 groups, 70 differentially expressed genes (DEGs) were identified. Compared to the SL group, the LL group had 25 upregulated and 45 downregulated genes. Gene Ontology (GO) enrichment analysis showed that these DEGs were mainly involved in cell, cell part, binding, cellular processes, and single-organism processes. Several significantly enriched athways were identified in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, such as the calcium and PI3k-Akt signaling pathways. The expression of five randomly selected DEGs was verified using quantitative real-time PCR, and the results were consistent with the RNA-seq data. This study provides a theoretical basis for studying the molecular mechanisms by which light affects muscle development and meat color in geese.
Collapse
|
10
|
Grape-Seed Procyanidin Extract (GSPE) Seasonal-Dependent Modulation of Glucose and Lipid Metabolism in the Liver of Healthy F344 Rats. Biomolecules 2022; 12:biom12060839. [PMID: 35740964 PMCID: PMC9221469 DOI: 10.3390/biom12060839] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
Seasonality is gaining attention in the modulation of some physiological and metabolic functions in mammals. Furthermore, the consumption of natural compounds, such as GSPE, is steadily increasing. Consequently, in order to study the interaction of seasonal variations in day length over natural compounds’ molecular effects, we carried out an animal study using photo-sensitive rats which were chronically exposed for 9 weeks to three photoperiods (L6, L18, and L12) in order to mimic the day length of different seasons (winter/summer/and autumn-spring). In parallel, animals were also treated either with GSPE 25 (mg/kg) or vehicle (VH) for 4 weeks. Interestingly, a seasonal-dependent GSPE modulation on the hepatic glucose and lipid metabolism was observed. For example, some metabolic genes from the liver (SREBP-1c, Gk, Acacα) changed their expression due to seasonality. Furthermore, the metabolomic results also indicated a seasonal influence on the GSPE effects associated with glucose-6-phosphate, D-glucose, and D-ribose, among others. These differential effects, which were also reflected in some plasmatic parameters (i.e., glucose and triglycerides) and hormones (corticosterone and melatonin), were also associated with significant changes in the expression of several hepatic circadian clock genes (Bmal1, Cry1, and Nr1d1) and ER stress genes (Atf6, Grp78, and Chop). Our results point out the importance of circannual rhythms in regulating metabolic homeostasis and suggest that seasonal variations (long or short photoperiods) affect hepatic metabolism in rats. Furthermore, they suggest that procyanidin consumption could be useful for the modulation of the photoperiod-dependent changes on glucose and lipid metabolism, whose alterations could be related to metabolic diseases (e.g., diabetes, obesity, and cardiovascular disease). Furthermore, even though the GSPE effect is not restricted to a specific photoperiod, our results suggest a more significant effect in the L18 condition.
Collapse
|
11
|
Gut Seasons: Photoperiod Effects on Fecal Microbiota in Healthy and Cafeteria-Induced Obese Fisher 344 Rats. Nutrients 2022; 14:nu14030722. [PMID: 35277081 PMCID: PMC8839759 DOI: 10.3390/nu14030722] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/01/2022] [Accepted: 02/06/2022] [Indexed: 12/16/2022] Open
Abstract
Gut microbiota and biological rhythms are emerging as key factors in the modulation of several physiological and metabolic processes. However, little is known about their interaction and how this may affect host physiology and metabolism. Several studies have shown oscillations of gut microbiota that follows a circadian rhythmicity, but, in contrast, variations due to seasonal rhythms have not been sufficiently investigated yet. Thus, the goal of this study was to investigate the impact of different photoperiods, which mimic seasonal changes, on fecal microbiota composition and how this interaction affects diet-induced obesity development. To this aim, Fisher 344 male rats were housed under three photoperiods (L6, L12 and L18) and fed with standard chow diet or cafeteria diet (CAF) for 9 weeks. The 16S ribosomal sequencing of collected fecal samples was performed. The photoperiod exposure significantly altered the fecal microbiota composition under L18, especially in CAF-fed rats. Moreover, these alterations were associated with changes in body weight gain and different fat parameters. These findings suggest a clear impact of seasonal rhythms on gut microbiota, which ultimately translates into different susceptibilities to diet-induced obesity development. This is the first time to our knowledge that the photoperiod impact on gut microbiota composition has been described in an obesity context although further studies are needed in order to elucidate the mechanisms involved.
Collapse
|
12
|
Ruiz de Azua MJ, Cruz-Carrión Á, Muguerza B, Arola-Arnal A, Suarez M. Seasonal Consumption of Cherries from Different Origins Affects Metabolic Markers and Gene Expression of Lipogenic Enzymes in Rat Liver: A Preliminary Study. Nutrients 2021; 13:3643. [PMID: 34684644 PMCID: PMC8537345 DOI: 10.3390/nu13103643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
The phytochemical composition of fruits, especially polyphenols, depends on the environmental conditions under which these fruits are cultivated and the agronomic practices followed. Therefore, the consumption of fruits from different origins, with different polyphenol signatures, could have differential effects on health. In addition, recent studies have shown that variation in the biological rhythms due to changes in the photoperiod in the different seasons differentially affect the metabolism in animal models, thus conditioning their response to food consumption. Considering all, this article evaluates the effects of consumption of sweet cherry from different sources, local (LC) and non-local (nLC), on plasma metabolic parameters and the gene expression of key enzymes of lipid metabolism in Fischer 344 rats under photoperiods simulating different seasons. Animals were classified into three photoperiods (L6, L12 and L18) and three treatments (LC, nLC and VH). Both the photoperiod and the treatments significantly affected the evaluated parameters. An effect of the photoperiod on triacylglycerides, non-esterified fatty acids and the mRNA concentration of crucial enzymes from the hepatic lipid metabolism was observed. Furthermore, the consumption of fruit in L12 lowered blood glucose, while the different treatments affected the hepatic expression of genes related with lipidic enzymes.
Collapse
Affiliation(s)
| | | | | | | | - Manuel Suarez
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (M.J.R.d.A.); (Á.C.-C.); (B.M.); (A.A.-A.)
| |
Collapse
|
13
|
Kurhaluk N, Tkachenko H, Lukash O. Photoperiod-induced alterations in biomarkers of oxidative stress and biochemical pathways in rats of different ages: Focus on individual physiological reactivity. Chronobiol Int 2021; 38:1673-1691. [PMID: 34121553 DOI: 10.1080/07420528.2021.1939364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Effects of photoperiodicity caused by both the age and individual physiological reactivity estimated by resistance to hypobaric hypoxia on the levels of lipid peroxidation, protein oxidation (aldehydic and ketonic derivatives), total antioxidant capacity, activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase), and biochemical parameters of aerobic and anaerobic pathways in hepatic tissue depending on the blood melatonin level were studied. The study was carried out on 96 6- and 21-month-old male rats divided into hypoxia resistance groups (LR, low resistance, HR, high resistance). The analyses were conducted at four photoperiods: winter (January), spring (March), summer (July), and autumn (October). Our results indicate a significant effect of melatonin, i.e. over 80%, revealed by the complete statistical model of the studied biomarkers of oxidative stress and oxygen-dependent parameters of metabolism. The effects of melatonin vary with age and between photoperiods, which in turn was determined by individual physiological reactivity. In terms of the photoperiods, the melatonin content in the group of the adult animals with low resistance to hypoxia decreased from winter to summer. In a group of old animals in comparison with adults, the melatonin content in all the studied photoperiods was much lower as well, regardless of their hypoxia resistance. In the group of old animals with low resistance to hypoxia, the melatonin content decreased throughout the photoperiods as follows: winter, autumn, summer, and spring. As can be concluded, spring is a critical period for old animals, particularly those with low hypoxia resistance. The important role of melatonin in these processes was also confirmed by our correlation analysis between oxidative stress biomarkers, energy-related metabolites, and antioxidant enzymes in the hepatic tissue of rats of different ages, with different resistance to hypoxia, and in different photoperiods. The melatonin concentration in the blood of highly resistant rats was higher than in those with low resistance to hypoxia. Melatonin determines the individual constitutional level of resistance to hypoxia and is responsible for individual enzymatic antioxidative responses, depending on the four photoperiods. Our studies have shown that melatonin levels are related to the redox characteristics of antioxidant defenses against lipid peroxidation and oxidative modification of proteins in old rats with low resistance to hypoxia, compared to a group of highly resistant adults. Finally, the melatonin-related mechanisms of antioxidative protection depend on metabolic processes in hepatic tissue and exhibit photoperiodical variability in adult and old rats.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Zoology and Animal Physiology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk, Poland
| | - Halyna Tkachenko
- Department of Zoology and Animal Physiology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk, Poland
| | - Oleksandr Lukash
- Department of Ecology and Nature Protection, T.G. Shevchenko National University "Chernihiv Collegium", Chernihiv, Ukraine
| |
Collapse
|
14
|
Yu Y, Qiu J, Cao J, Guo Y, Bai H, Wei S, Yan P. Effects of prolonged photoperiod on growth performance, serum lipids and meat quality of Jinjiang cattle in winter. Anim Biosci 2021; 34:1569-1578. [PMID: 33677914 PMCID: PMC8495339 DOI: 10.5713/ab.20.0750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/02/2021] [Indexed: 02/04/2023] Open
Abstract
Objective This study was conducted to investigate the potential effects of prolonged photoperiod on the serum lipids, carcass traits, and meat quality of Jinjiang cattle during winter. Methods Thirty-four Jinjiang bulls aged between 14 and 16 months were randomly assigned to two groups that were alternatively subjected to either natural daylight +4 h supplemental light (long photoperiod, LP) or natural daylight (natural photoperiod, NP) for 96 days. The potential effects on the levels of serum lipids, carcass traits, meat quality, and genes regulating lipid metabolism in the intramuscular fat (IMF) of the cattle were evaluated. Results Jinjiang cattle kept under LP showed significant increase in both dry matter intake and backfat thickness. the serum glucose and the plasma leptin levels were significantly reduced, while that of melatonin and insulin were observed to be increased. The crude fat contents of biceps femoris muscle and longissimus dorsi muscle were higher in LP than in NP group. In longissimus dorsi muscle, the proportions of C17:0 and C18:0 were significantly higher but that of the C16:1 was found to be significantly lower in LP group. The relative mRNA expressions in IMF of longissimus dorsi muscle, the lipid synthesis genes (proliferator-activated receptor gamma, fatty acid-binding protein) and the fatty acid synthesis genes (acetyl-coa carboxylase, fatty acid synthetase, 1-acylglycerol-3-phosphate acyltransferase) were significantly up-regulated in LP group (p<0.05); whereas the hormone-sensitive lipase and stearoyl-CoA desaturase 1 were significantly down-regulated in LP than in NP group. Conclusion Prolonged photoperiod significantly altered the growth performance, hormonal levels, gene expression and fat deposition in Jinjiang cattle. It suggested that the LP improved the fat deposition by regulating the levels of different hormones and genes related to lipid metabolism, thereby improving the fattening of Jinjiang cattle during winter.
Collapse
Affiliation(s)
- Yan Yu
- Department of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingyun Qiu
- Department of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jincheng Cao
- Department of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingying Guo
- Department of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Bai
- Department of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengjuan Wei
- Department of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Peishi Yan
- Department of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
Seasonal Variation in the Brain μ-Opioid Receptor Availability. J Neurosci 2021; 41:1265-1273. [PMID: 33361461 PMCID: PMC7888218 DOI: 10.1523/jneurosci.2380-20.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/19/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023] Open
Abstract
Seasonal rhythms influence mood and sociability. The brain μ-opioid receptor (MOR) system modulates a multitude of seasonally varying socioemotional functions, but its seasonal variation remains elusive with no previously reported in vivo evidence. Here, we first conducted a cross-sectional study with previously acquired human [11C]carfentanil PET imaging data (132 male and 72 female healthy subjects) to test whether there is seasonal variation in MOR availability. We then investigated experimentally whether seasonal variation in daylength causally influences brain MOR availability in rats. Rats (six male and three female rats) underwent daylength cycle simulating seasonal changes; control animals (two male and one female rats) were kept under constant daylength. Animals were scanned repeatedly with [11C]carfentanil PET imaging. Seasonally varying daylength had an inverted U-shaped functional relationship with brain MOR availability in humans. Brain regions sensitive to daylength spanned the socioemotional brain circuits, where MOR availability peaked during spring. In rats, MOR availabilities in the brain neocortex, thalamus, and striatum peaked at intermediate daylength. Varying daylength also affected the weight gain and stress hormone levels. We conclude that cerebral MOR availability in humans and rats shows significant seasonal variation, which is predominately associated with seasonal photoperiodic variation. Given the intimate links between MOR signaling and socioemotional behavior, these results suggest that the MOR system might underlie seasonal variation in human mood and social behavior.SIGNIFICANCE STATEMENT Seasonal rhythms influence emotion and sociability. The central μ-opioid receptor (MOR) system modulates numerous seasonally varying socioemotional functions, but its seasonal variation remains elusive. Here we used positron emission tomography to show that MOR levels in both human and rat brains show daylength-dependent seasonal variation. The highest MOR availability was observed at intermediate daylengths. Given the intimate links between MOR signaling and socioemotional behavior, these results suggest that the MOR system might underlie seasonal variation in human mood and social behavior.
Collapse
|
16
|
Taniguchi E, Tashiro A, Hattori A, Furuse M, Yasuo S. Photoperiodic changes in hippocampal neurogenesis and plasma metabolomic profiles in relation to depression-like behavior in mice. Behav Brain Res 2021; 403:113136. [PMID: 33482168 DOI: 10.1016/j.bbr.2021.113136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 01/01/2023]
Abstract
Photoperiod alters affective behaviors and brain neuroplasticity in several mammalian species. We addressed whether neurogenesis and signaling pathways of insulin-like growth factor-I (IGF-I), a key modulator of neuroplasticity, are regulated by photoperiod in C57BL/6 J mice, a putative model of seasonal affective disorder. We also examined the effects of photoperiod on plasma metabolomic profiles in relation to depression-like behavior to understand a possible linkage between peripheral metabolism and behavior. Mice that were maintained under long-day conditions (LD) exhibited a higher number of 5-bromo-2'-deoxyuridine-positive cells and higher levels of astrocyte marker in the dentate gyrus of the hippocampus compared to that of mice under short-day conditions (SD). Plasma IGF-I levels and levels/expression of IGF-I signaling molecules in the hippocampus (Brn-4, NeuroD1, and phospho-Akt) involved in neuronal proliferation and differentiation were higher in the mice under LD. Metabolome analysis using plasma of the mice under LD and SD identified several metabolites that were highly correlated with immobility in the forced swim test, a depression-like behavior. Negative correlations with behavior occurred in the levels of 23 metabolites, including metabolites related to neurogenesis and antidepressant-like effects of exercise, metabolites in the biosynthesis of arginine, and the occurrence of branched chain amino acids. Three metabolites had positive correlations with the behavior, including guanidinosuccinic acid, a neurotoxin. Taken together, photoperiodic responses of neurogenesis and neuro-glial organization in the hippocampus may be involved in photoperiodic alteration of depression-like behavior, mediated through multiple pathways, including IGF-I and peripheral metabolites.
Collapse
Affiliation(s)
- Emi Taniguchi
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ayako Tashiro
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ayumi Hattori
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shinobu Yasuo
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
17
|
Oxidative Stress in Rats is Modulated by Seasonal Consumption of Sweet Cherries from Different Geographical Origins: Local vs. Non-Local. Nutrients 2020; 12:nu12092854. [PMID: 32961863 PMCID: PMC7551698 DOI: 10.3390/nu12092854] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 11/19/2022] Open
Abstract
Sweet cherries (Prunus avium L.) are a source of bioactive compounds, including phenolic compounds, which are antioxidants that contribute to protection against oxidative stress. It is known that the composition of cherries is influenced by external conditions, such as the geographic origin of cultivation, and that biological rhythms have a significant effect on oxidative stress. Therefore, in this study, Fischer 344 rats were exposed to various photoperiods and were supplemented with Brooks sweet cherries from two different geographical origins, local (LC) and non-local (NLC), to evaluate the interaction of supplementation and biological rhythms with regard to the oxidative stress status. The results indicate that the two fruits generated specific effects and that these effects were modulated by the photoperiod. Consumption of sweet cherries in-season, independently of their origin, may promote health by preventing oxidative stress, tending to: enhance antioxidant status, decrease alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, reduce liver malondialdehyde (MDA) levels, and maintain constant serum MDA values and reactive oxygen species (ROS) generation.
Collapse
|
18
|
Basili D, Lutfi E, Falcinelli S, Balbuena-Pecino S, Navarro I, Bertolucci C, Capilla E, Carnevali O. Photoperiod Manipulation Affects Transcriptional Profile of Genes Related to Lipid Metabolism and Apoptosis in Zebrafish (Danio rerio) Larvae: Potential Roles of Gut Microbiota. MICROBIAL ECOLOGY 2020; 79:933-946. [PMID: 31820072 DOI: 10.1007/s00248-019-01468-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
Gut microbiota plays a fundamental role in maintaining host's health by controlling a wide range of physiological processes. Administration of probiotics and manipulation of photoperiod have been suggested as modulators of microbial composition and are currently undergoing an extensive research in aquaculture as a way to improve health and quality of harvested fish. However, our understanding regarding their effects on physiological processes is still limited. In the present study we investigated whether manipulation of photoperiod and/or probiotic administration was able to alter microbial composition in zebrafish larvae at hatching stage. Our findings show that probiotic does not elicit effects while photoperiod manipulation has a significant impact on microbiota composition. Moreover, we successfully predicted lipid biosynthesis and apoptosis to be modulated by microbial communities undergoing continuous darkness. Interestingly, expression levels of caspase 3 gene (casp3) and lipid-related genes (hnf4a, npc1l1, pparγ, srebf1, agpat4 and fitm2) were found to be significantly overexpressed in dark-exposed larvae, suggesting an increase in the occurrence of apoptotic processes and a lipid metabolism impairment, respectively (p < 0.05). Our results provide the evidence that microbial communities in zebrafish at early life stages are not modulated by a short administration of probiotics and highlight the significant effect that dark photoperiod elicits on zebrafish microbiota and potentially on health.
Collapse
Affiliation(s)
- Danilo Basili
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Esmail Lutfi
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Norwegian Institute of Food, Fisheries and Aquaculture Research, P.O. Box 210, 1431, Ås, Norway
| | - Silvia Falcinelli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Sara Balbuena-Pecino
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Isabel Navarro
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Cristiano Bertolucci
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, Ferrara, Italy
| | - Encarnación Capilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Oliana Carnevali
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
19
|
Raitiere MN. Does photoperiodism involve a seasonal and non-pathological Warburg effect? Med Hypotheses 2020; 135:109447. [DOI: 10.1016/j.mehy.2019.109447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/20/2019] [Indexed: 12/15/2022]
|
20
|
Arola-Arnal A, Cruz-Carrión Á, Torres-Fuentes C, Ávila-Román J, Aragonès G, Mulero M, Bravo FI, Muguerza B, Arola L, Suárez M. Chrononutrition and Polyphenols: Roles and Diseases. Nutrients 2019; 11:E2602. [PMID: 31671606 PMCID: PMC6893786 DOI: 10.3390/nu11112602] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022] Open
Abstract
Biological rhythms can influence the activity of bioactive compounds, and at the same time, the intake of these compounds can modulate biological rhythms. In this context, chrononutrition has appeared as a research field centered on the study of the interactions among biological rhythms, nutrition, and metabolism. This review summarizes the role of phenolic compounds in the modulation of biological rhythms, focusing on their effects in the treatment or prevention of chronic diseases. Heterotrophs are able to sense chemical cues mediated by phytochemicals such as phenolic compounds, promoting their adaptation to environmental conditions. This is called xenohormesis. Hence, the consumption of fruits and vegetables rich in phenolic compounds exerts several health benefits, mainly attributed to the product of their metabolism. However, the profile of phenolic compounds present in plants differs among species and is highly variable depending on agricultural and technological factors. In this sense, the seasonal consumption of polyphenol-rich fruits could induce important changes in the regulation of physiology and metabolism due to the particular phenolic profile that the fruits contain. This fact highlights the need for studies that evaluate the impact of these specific phenolic profiles on health to establish more accurate dietary recommendations.
Collapse
Affiliation(s)
- Anna Arola-Arnal
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnología, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Álvaro Cruz-Carrión
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnología, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Cristina Torres-Fuentes
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnología, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Javier Ávila-Román
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnología, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Gerard Aragonès
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnología, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Miquel Mulero
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnología, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Francisca Isabel Bravo
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnología, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Begoña Muguerza
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnología, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Lluís Arola
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnología, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
- Technological Unit of Nutrition and Health, EURECAT-Technology Centre of Catalonia, 43204 Reus, Spain.
| | - Manuel Suárez
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnología, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| |
Collapse
|
21
|
Cherry consumption out of season alters lipid and glucose homeostasis in normoweight and cafeteria-fed obese Fischer 344 rats. J Nutr Biochem 2019; 63:72-86. [DOI: 10.1016/j.jnutbio.2018.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/30/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023]
|
22
|
Mariné-Casadó R, Domenech-Coca C, Del Bas JM, Bladé C, Arola L, Caimari A. Intake of an Obesogenic Cafeteria Diet Affects Body Weight, Feeding Behavior, and Glucose and Lipid Metabolism in a Photoperiod-Dependent Manner in F344 Rats. Front Physiol 2018; 9:1639. [PMID: 30534077 PMCID: PMC6275206 DOI: 10.3389/fphys.2018.01639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/30/2018] [Indexed: 12/14/2022] Open
Abstract
We previously demonstrated that chronic exposure to different photoperiods induced marked variations in several glucose and lipid metabolism-related parameters in normoweight Fischer 344 (F344) rats. Here, we examined the effects of the combination of an obesogenic cafeteria diet (CAF) and the chronic exposure to three different day lengths (L12, 12 h light/day; L18, 18 h light/day; and L6, 6 h light/day) in this rat strain. Although no changes were observed during the first 4 weeks of adaptation to the different photoperiods in which animals were fed a standard diet, the addition of the CAF for the subsequent 7 weeks triggered profound physiologic and metabolic alterations in a photoperiod-dependent manner. Compared with L12 rats, both L6 and L18 animals displayed lower body weight gain and cumulative food intake in addition to decreased energy expenditure and locomotor activity. These changes were accompanied by differences in food preferences and by a sharp upregulation of the orexigenic genes Npy and Ghsr in the hypothalamus, which could be understood as a homeostatic mechanism for increasing food consumption to restore body weight control. L18 rats also exhibited higher glycemia than the L6 group, which could be partly attributed to the decreased pAkt2 levels in the soleus muscle and the downregulation of Irs1 mRNA levels in the gastrocnemius muscle. Furthermore, L6 animals displayed lower whole-body lipid utilization than the L18 group, which could be related to the lower lipid intake and to the decreased mRNA levels of the fatty acid transporter gene Fatp1 observed in the soleus muscle. The profound differences observed between L6 and L18 rats could be related with hepatic and muscular changes in the expression of circadian rhythm-related genes Cry1, Bmal1, Per2, and Nr1d1. Although further research is needed to elucidate the pathophysiologic relevance of these findings, our study could contribute to emphasize the impact of the consumption of highly palatable and energy dense foods regularly consumed by humans on the physiological and metabolic adaptations that occur in response to seasonal variations of day length, especially in diseases associated with changes in food intake and preference such as obesity and seasonal affective disorder.
Collapse
Affiliation(s)
- Roger Mariné-Casadó
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain
| | - Cristina Domenech-Coca
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Josep Maria Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain
| | - Cinta Bladé
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Lluís Arola
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain.,Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain
| |
Collapse
|