1
|
Umar S, Debnath K, Leung K, Huang CC, Lu Y, Gajendrareddy P, Ravindran S. Immunomodulatory properties of naïve and inflammation-informed dental pulp stem cell derived extracellular vesicles. Front Immunol 2024; 15:1447536. [PMID: 39224602 PMCID: PMC11366660 DOI: 10.3389/fimmu.2024.1447536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Mesenchymal stem cell derived extracellular vesicles (MSC EVs) are paracrine modulators of macrophage function. Scientific research has primarily focused on the immunomodulatory and regenerative properties MSC EVs derived from bone marrow. The dental pulp is also a source for MSCs, and their anatomical location and evolutionary function has primed them to be potent immunomodulators. In this study, we demonstrate that extracellular vesicles derived from dental pulp stem cells (DPSC EVs) have pronounced immunomodulatory effect on primary macrophages by regulating the NFκb pathway. Notably, the anti-inflammatory activity of DPSC-EVs is enhanced following exposure to an inflammatory stimulus (LPS). These inhibitory effects were also observed in vivo. Sequencing of the naïve and LPS preconditioned DPSC-EVs and comparison with our published results from marrow MSC EVs revealed that Naïve and LPS preconditioned DPSC-EVs are enriched with anti-inflammatory miRNAs, particularly miR-320a-3p, which appears to be unique to DPSC-EVs and regulates the NFκb pathway. Overall, our findings highlight the immunomodulatory properties of DPSC-EVs and provide vital clues that can stimulate future research into miRNA-based EV engineering as well as therapeutic approaches to inflammation control and disease treatment.
Collapse
Affiliation(s)
- Sadiq Umar
- Department of Oral Biology, University of Illinois, Chicago, IL, United States
| | - Koushik Debnath
- Department of Oral Biology, University of Illinois, Chicago, IL, United States
| | - Kasey Leung
- Department of Oral Biology, University of Illinois, Chicago, IL, United States
| | - Chun-Chieh Huang
- Department of Oral Biology, University of Illinois, Chicago, IL, United States
| | - Yu Lu
- Department of Oral Biology, University of Illinois, Chicago, IL, United States
| | | | - Sriram Ravindran
- Department of Oral Biology, University of Illinois, Chicago, IL, United States
| |
Collapse
|
2
|
Khomeijani-Farahani M, Karami J, Farhadi E, Soltani S, Delbandi AA, Shekarabi M, Tahmasebi MN, Vaziri AS, Jamshidi A, Mahmoudi M, Akhlaghi M. TAK-242 (Resatorvid) inhibits proinflammatory cytokine production through the inhibition of NF-κB signaling pathway in fibroblast-like synoviocytes in osteoarthritis patients. Adv Rheumatol 2024; 64:46. [PMID: 38849923 DOI: 10.1186/s42358-024-00385-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Fibroblast-like synoviocytes (FLSs) are involved in osteoarthritis (OA) pathogenesis through pro-inflammatory cytokine production. TAK-242, a TLR4 blocker, has been found to have a significant impact on the gene expression profile of pro-inflammatory cytokines such as IL1-β, IL-6, TNF-α, and TLR4, as well as the phosphorylation of Ikβα, a regulator of the NF-κB signaling pathway, in OA-FLSs. This study aims to investigate this effect because TLR4 plays a crucial role in inflammatory responses. MATERIALS AND METHODS Ten OA patients' synovial tissues were acquired, and isolated FLSs were cultured in DMEM in order to assess the effectiveness of TAK-242. The treated FLSs with TAK-242 and Lipopolysaccharides (LPS) were analyzed for the mRNA expression level of IL1-β, IL-6, TNF-α, and TLR4 levels by Real-Time PCR. Besides, we used western blot to assess the protein levels of Ikβα and pIkβα. RESULTS The results represented that TAK-242 effectively suppressed the gene expression of inflammatory cytokines IL1-β, IL-6, TNF-α, and TLR4 which were overexpressed upon LPS treatment. Additionally, TAK-242 inhibited the phosphorylation of Ikβα which was increased by LPS treatment. CONCLUSION According to our results, TAK-242 shows promising inhibitory effects on TLR4-mediated inflammatory responses in OA-FLSs by targeting the NF-κB pathway. TLR4 inhibitors, such as TAK-242, may be useful therapeutic agents to reduce inflammation and its associated complications in OA patients, since traditional and biological treatments may not be adequate for all of them.
Collapse
Affiliation(s)
- Mohammadreza Khomeijani-Farahani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Karami
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Soltani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shekarabi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Naghi Tahmasebi
- Department of Orthopedics, Division of Knee Surgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Sharafat Vaziri
- Department of Orthopedics, Division of Knee Surgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran.
| | - Masoomeh Akhlaghi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran.
- Rheumatology Research Center, Shariati Hospital, Kargar Ave., Tehran, Iran.
| |
Collapse
|
3
|
Kundu A, Ghosh P, Bishayi B. Verapamil and tangeretin enhances the M1 macrophages to M2 type in lipopolysaccharide-treated mice and inhibits the P-glycoprotein expression by downregulating STAT1/STAT3 and upregulating SOCS3. Int Immunopharmacol 2024; 133:112153. [PMID: 38678669 DOI: 10.1016/j.intimp.2024.112153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
LPS induced sepsis is a complex process involving various immune cells and signaling molecules. Dysregulation of macrophage polarization and ROS production contributed to the pathogenesis of sepsis. PGP is a transmembrane transporter responsible for the efflux of a number of drugs and also expressed in murine macrophages. Natural products have been shown to decrease inflammation and expression of efflux transporters. However, no treatment is currently available to treat LPS induced sepsis. Verapamil and Tangeretin also reported to attenuate lipopolysaccharide-induced inflammation. However, the effects of verapamil or tangeretin on lipopolysaccharide (LPS)-induced sepsis and its detailed anti-inflammatory mechanism have not been reported. Here, we have determined that verapamil and tangeretin protects against LPS-induced sepsis by suppressing M1 macrophages populations and also through the inhibition of P-glycoprotein expression via downregulating STAT1/STAT3 and upregulating SOCS3 expression in macrophages. An hour before LPS (10 mg/kg) was administered; mice were given intraperitoneal injections of either verapamil (5 mg/kg) or tangeretin (5 mg/kg). The peritoneal macrophages from different experimental groups of mice were isolated. Hepatic, pulmonary and splenic morphometric analyses revealed that verapamil and tangeretin decreased the infiltration of neutrophils into the tissues. Verapamil and tangeritin also enhanced the activity of SOD, CAT, GRX and GSH level in all the tissues tested. verapamil or tangeretin pre-treated mice shifted M1 macrophages to M2 type possibly through the inhibition of P-glycoprotein expression via downregulating STAT1/STAT3 and upregulating SOCS3 expression. Hence, both these drugs have shown protective effects in sepsis via suppressing iNOS, COX-2, oxidative stress and NF-κB signaling in macrophages. Therefore, in our study we can summarize that mice were treated with either Vera or Tan before LPS administration cause an elevated IL-10 by the macrophages which enhances the SOCS3 expression, and thereby able to limits STAT1/STAT3 inter-conversion in the macrophages. As a result, NF-κB activity is also getting down regulated and ultimately mitigating the adverse effect of inflammation caused by LPS in resident macrophages. Whether verapamil or tangeretin offers such protection possibly through the inhibition of P-glycoprotein expression in macrophages needs clarification with the bio availability of these drugs under PGP inhibited conditions is a limitation of this study.
Collapse
Affiliation(s)
- Ayantika Kundu
- Department of Physiology, Immunology laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, INDIA
| | - Pratiti Ghosh
- Lab of Lifestyle and Stress Physiology, Head, Department of Physiology, West Bengal State University, North 24 Parganas, Malikapur, Berunanpukuria, Barasat, Kolkata, West Bengal 700126, INDIA.
| | - Biswadev Bishayi
- Professor, Department of Physiology, University of Calcutta. West Bengal, INDIA.
| |
Collapse
|
4
|
Zhao Z, Du Y, Yan K, Zhang L, Guo Q. Exercise and osteoimmunology in bone remodeling. FASEB J 2024; 38:e23554. [PMID: 38588175 DOI: 10.1096/fj.202301508rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 04/10/2024]
Abstract
Bones can form the scaffolding of the body, support the organism, coordinate somatic movements, and control mineral homeostasis and hematopoiesis. The immune system plays immune supervisory, defensive, and regulatory roles in the organism, which mainly consists of immune organs (spleen, bone marrow, tonsils, lymph nodes, etc.), immune cells (granulocytes, platelets, lymphocytes, etc.), and immune molecules (immune factors, interferons, interleukins, tumor necrosis factors, etc.). Bone and the immune system have long been considered two distinct fields of study, and the bone marrow, as a shared microenvironment between the bone and the immune system, closely links the two. Osteoimmunology organically combines bone and the immune system, elucidates the role of the immune system in bone, and creatively emphasizes its interdisciplinary characteristics and the function of immune cells and factors in maintaining bone homeostasis, providing new perspectives for skeletal-related field research. In recent years, bone immunology has gradually become a hot spot in the study of bone-related diseases. As a new branch of immunology, bone immunology emphasizes that the immune system can directly or indirectly affect bones through the RANKL/RANK/OPG signaling pathway, IL family, TNF-α, TGF-β, and IFN-γ. These effects are of great significance for understanding inflammatory bone loss caused by various autoimmune or infectious diseases. In addition, as an external environment that plays an important role in immunity and bone, this study pays attention to the role of exercise-mediated bone immunity in bone reconstruction.
Collapse
Affiliation(s)
- Zhonghan Zhao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yuxiang Du
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Kai Yan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Lingli Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Qiang Guo
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Zhu X, Du L, Zhang L, Ding L, Xu W, Lin X. The critical role of toll-like receptor 4 in bone remodeling of osteoporosis: from inflammation recognition to immunity. Front Immunol 2024; 15:1333086. [PMID: 38504994 PMCID: PMC10948547 DOI: 10.3389/fimmu.2024.1333086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
Osteoporosis is a common chronic metabolic bone disorder. Recently, increasing numbers of studies have demonstrated that Toll-like receptor 4 (TLR4, a receptor located on the surface of osteoclasts and osteoblasts) plays a pivotal role in the development of osteoporosis. Herein, we performed a comprehensive review to summarize the findings from the relevant studies within this topic. Clinical data showed that TLR4 polymorphisms and aberrant TLR4 expression have been associated with the clinical significance of osteoporosis. Mechanistically, dysregulation of osteoblasts and osteoclasts induced by abnormal expression of TLR4 is the main molecular mechanism underlying the pathological processes of osteoporosis, which may be associated with the interactions between TLR4 and NF-κB pathway, proinflammatory effects, ncRNAs, and RUNX2. In vivo and in vitro studies demonstrate that many promising substances or agents (i.e., methionine, dioscin, miR-1906 mimic, artesunate, AEG-1 deletion, patchouli alcohol, and Bacteroides vulgatus) have been able to improve bone metabolism (i.e., inhibits bone resorption and promotes bone formation), which may partially attribute to the inhibition of TLR4 expression. The present review highlights the important role of TLR4 in the clinical significance and the pathogenesis of osteoporosis from the aspects of inflammation and immunity. Future therapeutic strategies targeting TLR4 may provide a new insight for osteoporosis treatment.
Collapse
Affiliation(s)
- Xianping Zhu
- Department of Orthopedics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Li Du
- Educational Administration Department, Chongqing University Cancer Hospital, Chongqing, China
| | - Lai Zhang
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Lingzhi Ding
- Department of Orthopedics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Weifang Xu
- Department of Orthopedics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Xuezheng Lin
- Department of Anesthesia Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
6
|
Luo Y, Li C. Advances in Research Related to MicroRNA for Diabetic Retinopathy. J Diabetes Res 2024; 2024:8520489. [PMID: 38375094 PMCID: PMC10876316 DOI: 10.1155/2024/8520489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/21/2023] [Accepted: 01/27/2024] [Indexed: 02/21/2024] Open
Abstract
Diabetic retinopathy (DR) is a severe microvascular complication of diabetes and is one of the primary causes of blindness in the working-age population in Europe and the United States. At present, no cure is available for DR, but early detection and timely intervention can prevent the rapid progression of the disease. Several treatments for DR are known, primarily ophthalmic treatment based on glycemia, blood pressure, and lipid control, which includes laser photocoagulation, glucocorticoids, vitrectomy, and antivascular endothelial growth factor (anti-VEGF) medications. Despite the clinical efficacy of the aforementioned therapies, none of them can entirely shorten the clinical course of DR or reverse retinopathy. MicroRNAs (miRNAs) are vital regulators of gene expression and participate in cell growth, differentiation, development, and apoptosis. MicroRNAs have been shown to play a significant role in DR, particularly in the molecular mechanisms of inflammation, oxidative stress, and neurodegeneration. The aim of this review is to systematically summarize the signaling pathways and molecular mechanisms of miRNAs involved in the occurrence and development of DR, mainly from the pathogenesis of oxidative stress, inflammation, and neovascularization. Meanwhile, this article also discusses the research progress and application of miRNA-specific therapies for DR.
Collapse
Affiliation(s)
- Yahan Luo
- Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunxia Li
- Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Shanghai, China
| |
Collapse
|
7
|
Pazos-Pérez A, Piñeiro-Ramil M, Franco-Trepat E, Alonso-Pérez A, Guillán-Fresco M, Crespo-Golmar A, López-Fagúndez M, Aranda JC, Bravo SB, Jorge-Mora A, Gómez R. The Hepatokine RBP4 Links Metabolic Diseases to Articular Inflammation. Antioxidants (Basel) 2024; 13:124. [PMID: 38275649 PMCID: PMC10812991 DOI: 10.3390/antiox13010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVES This study investigates the role of retinol binding protein 4 (RBP4) in an articular context. RBP4, a vitamin A transporter, is linked to various metabolic diseases. METHODS Synovial fluid RBP4 levels were assessed in crystalline arthritis (CA) patients using ELISA. RBP4's impact on articular cell types was analysed in vitro through RT-PCR and flow cytometry. Proteomic analysis was conducted on primary human osteoarthritis chondrocytes (hOACs). RESULTS Synovial fluid RBP4 concentrations in CA patients correlated positively with glucose levels and negatively with synovial leukocyte count and were elevated in hypertensive patients. In vitro, these RBP4 concentrations activated neutrophils, induced the expression of inflammatory factors in hOACs as well as synoviocytes, and triggered proteomic changes consistent with inflammation. Moreover, they increased catabolism and decreased anabolism, mitochondrial dysfunction, and glycolysis promotion. Both in silico and in vitro experiments suggested that RBP4 acts through TLR4. CONCLUSIONS This study identifies relevant RBP4 concentrations in CA patients' synovial fluids, linking them to hypertensive patients with a metabolic disruption. Evidence is provided that RBP4 acts as a DAMP at these concentrations, inducing robust inflammatory, catabolic, chemotactic, and metabolic responses in chondrocytes, synoviocytes, and neutrophils. These effects may explain RBP4-related metabolic diseases' contribution to joint destruction in various rheumatic conditions like CA.
Collapse
Affiliation(s)
- Andrés Pazos-Pérez
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain; (A.P.-P.); (M.P.-R.); (E.F.-T.); (A.A.-P.); (M.G.-F.); (A.C.-G.); (M.L.-F.); (S.B.B.); (A.J.-M.)
| | - María Piñeiro-Ramil
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain; (A.P.-P.); (M.P.-R.); (E.F.-T.); (A.A.-P.); (M.G.-F.); (A.C.-G.); (M.L.-F.); (S.B.B.); (A.J.-M.)
| | - Eloi Franco-Trepat
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain; (A.P.-P.); (M.P.-R.); (E.F.-T.); (A.A.-P.); (M.G.-F.); (A.C.-G.); (M.L.-F.); (S.B.B.); (A.J.-M.)
| | - Ana Alonso-Pérez
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain; (A.P.-P.); (M.P.-R.); (E.F.-T.); (A.A.-P.); (M.G.-F.); (A.C.-G.); (M.L.-F.); (S.B.B.); (A.J.-M.)
| | - María Guillán-Fresco
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain; (A.P.-P.); (M.P.-R.); (E.F.-T.); (A.A.-P.); (M.G.-F.); (A.C.-G.); (M.L.-F.); (S.B.B.); (A.J.-M.)
| | - Antía Crespo-Golmar
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain; (A.P.-P.); (M.P.-R.); (E.F.-T.); (A.A.-P.); (M.G.-F.); (A.C.-G.); (M.L.-F.); (S.B.B.); (A.J.-M.)
| | - Miriam López-Fagúndez
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain; (A.P.-P.); (M.P.-R.); (E.F.-T.); (A.A.-P.); (M.G.-F.); (A.C.-G.); (M.L.-F.); (S.B.B.); (A.J.-M.)
| | - Javier Conde Aranda
- Molecular and Cellular Gastroenterology, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain;
| | - Susana Belen Bravo
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain; (A.P.-P.); (M.P.-R.); (E.F.-T.); (A.A.-P.); (M.G.-F.); (A.C.-G.); (M.L.-F.); (S.B.B.); (A.J.-M.)
| | - Alberto Jorge-Mora
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain; (A.P.-P.); (M.P.-R.); (E.F.-T.); (A.A.-P.); (M.G.-F.); (A.C.-G.); (M.L.-F.); (S.B.B.); (A.J.-M.)
| | - Rodolfo Gómez
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain; (A.P.-P.); (M.P.-R.); (E.F.-T.); (A.A.-P.); (M.G.-F.); (A.C.-G.); (M.L.-F.); (S.B.B.); (A.J.-M.)
| |
Collapse
|
8
|
Gao P, Pan X, Wang S, Guo S, Dong Z, Wang Z, Liang X, Chen Y, Fang F, Yang L, Huang J, Zhang C, Li C, Luo Y, Peng S, Xu F. Identification of the transcriptome signatures and immune-inflammatory responses in postmenopausal osteoporosis. Heliyon 2024; 10:e23675. [PMID: 38187229 PMCID: PMC10770509 DOI: 10.1016/j.heliyon.2023.e23675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 11/25/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
Postmenopausal osteoporosis is the most common type of osteoporosis in women. To date, little is known about their transcriptome signatures, although biomarkers from peripheral blood mononuclear cells are attractive for postmenopausal osteoporosis diagnoses. Here, we performed bulk RNA sequencing of 206 samples (124 postmenopausal osteoporosis and 82 normal samples) and described the clinical phenotypic characteristics of postmenopausal women. We then highlighted the gene set enrichment analyses between the extreme T-score group and the heathy control group, revealing that some immune-inflammatory responses were enhanced in postmenopausal osteoporosis, with representative pathways including the mitogen-activated protein kinase (NES = 1.6, FDR <0.11) pathway and B_CELL_RECEPTOR (NES = 1.69, FDR <0.15) pathway. Finally, we developed a combined risk prediction model based on lasso-logistic regression to predict postmenopausal osteoporosis, which combined eleven genes (PTGS2, CXCL16, NECAP1, RPS23, SSR3, CD74, IL4R, BTBD2, PIGS, LILRA2, MAP3K11) and three pieces of clinical information (age, procollagen I N-terminal propeptide, β isomer of C-terminal telopeptide of type I) and provided the best prediction ability (AUC = 0.97). Taken together, this study filled a gap in the large-scale transcriptome signature profiles and revealed the close relationship between immune-inflammatory responses and postmenopausal osteoporosis, providing a unique perspective for understanding the occurrence and development of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Pan Gao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI Cell, Shenzhen 518083, China
- BGI Research, Shenzhen 518083, China
| | - Xiaoguang Pan
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao 266555, China
| | - Shang Wang
- Department of Spine Surgery, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Sijia Guo
- BGI Research, Shenzhen 518083, China
| | | | - Zhefeng Wang
- Department of Spine Surgery, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Xue Liang
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao 266555, China
| | - Yan Chen
- BGI Research, Shenzhen 518083, China
| | - Fang Fang
- BGI Research, Shenzhen 518083, China
| | - Ling Yang
- BGI Research, Shenzhen 518083, China
| | - Jinrong Huang
- BGI Research, Shenzhen 518083, China
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | | | - Conghui Li
- BGI Research, Shenzhen 518083, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao 266555, China
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Yonglun Luo
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI Research, Shenzhen 518083, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao 266555, China
| | - Songlin Peng
- Department of Spine Surgery, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Fengping Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI Cell, Shenzhen 518083, China
- BGI Research, Shenzhen 518083, China
| |
Collapse
|
9
|
Jin M, Fang J, Wang JJ, Shao X, Xu SW, Liu PQ, Ye WC, Liu ZP. Regulation of toll-like receptor (TLR) signaling pathways in atherosclerosis: from mechanisms to targeted therapeutics. Acta Pharmacol Sin 2023; 44:2358-2375. [PMID: 37550526 PMCID: PMC10692204 DOI: 10.1038/s41401-023-01123-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/04/2023] [Indexed: 08/09/2023] Open
Abstract
Atherosclerosis, one of the life-threatening cardiovascular diseases (CVDs), has been demonstrated to be a chronic inflammatory disease, and inflammatory and immune processes are involved in the origin and development of the disease. Toll-like receptors (TLRs), a class of pattern recognition receptors that trigger innate immune responses by identifying pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs), regulate numerous acute and chronic inflammatory diseases. Recent studies reveal that TLRs have a vital role in the occurrence and development of atherosclerosis, including the initiation of endothelial dysfunction, interaction of various immune cells, and activation of a number of other inflammatory pathways. We herein summarize some other inflammatory signaling pathways, protein molecules, and cellular responses associated with TLRs, such as NLRP3, Nrf2, PCSK9, autophagy, pyroptosis and necroptosis, which are also involved in the development of AS. Targeting TLRs and their regulated inflammatory events could be a promising new strategy for the treatment of atherosclerotic CVDs. Novel drugs that exert therapeutic effects on AS through TLRs and their related pathways are increasingly being developed. In this article, we comprehensively review the current knowledge of TLR signaling pathways in atherosclerosis and actively seek potential therapeutic strategies using TLRs as a breakthrough point in the prevention and therapy of atherosclerosis.
Collapse
Affiliation(s)
- Mei Jin
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Jian Fang
- Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, 510800, China
| | - Jiao-Jiao Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Xin Shao
- Department of Food Science and Engineering, Jinan University, Guangzhou, 511436, China
| | - Suo-Wen Xu
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Pei-Qing Liu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511436, China.
- National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Wen-Cai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511436, China.
| | - Zhi-Ping Liu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511436, China.
| |
Collapse
|
10
|
Lee S, Seo J, Kim YH, Ju HJ, Kim S, Ji YB, Lee HB, Kim HS, Choi S, Kim MS. Enhanced intra-articular therapy for rheumatoid arthritis using click-crosslinked hyaluronic acid hydrogels loaded with toll-like receptor antagonizing peptides. Acta Biomater 2023; 172:188-205. [PMID: 37866726 DOI: 10.1016/j.actbio.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disorder that results in the deterioration of joint cartilage and bone. Toll-like receptor 4 (TLR4) has been pinpointed as a key factor in RA-related inflammation. While Toll-like receptor antagonizing peptide 2 (TAP2) holds potential as an anti-inflammatory agent, its in vivo degradation rate hinders its efficacy. We engineered depots of TAP2 encapsulated in click-crosslinked hyaluronic acid (TAP2+Cx-HA) for intra-articular administration, aiming to enhance the effectiveness of TAP2 as an anti-inflammatory agent within the joint cavity. Our data demonstrated that FI-TAP2+Cx-HA achieves a longer retention time in the joint cavity compared to FI-TAP2 alone. Mechanistically, we found that TAP2 interacts with TLR4 on the cell membranes of inflammatory cells, thereby inhibiting the nuclear translocation of NF-κB and maintaining it in an inactive cytoplasmic state. In a rat model of RA, the TAP2+Cx-HA formulation effectively downregulated the inflammatory cytokines TNF-α and IL-6, while upregulating the anti-inflammatory cytokine IL-10 and the therapeutic protein 14-3-3ζ. This led to a more rapid restoration of cartilage thickness, increased deposition of glycosaminoglycans, and new bone tissue formation in the regenerated cartilage, in comparison to a single TAP2 treatment after a six-week period. Our results suggest that TAP2+Cx-HA could serve as a potent intra-articular treatment for RA, offering both symptomatic relief and promoting cartilage regeneration. This innovative delivery system holds significant promise for improving the management of RA and other inflammatory joint conditions. STATEMENT OF SIGNIFICANCE: In this study, we developed a therapy by creating toll-like receptor 4 (TLR4)-antagonizing peptide (TAP2)-loaded click-crosslinked hyaluronic acid (TAP2+Cx-HA) depots for direct intra-articular injection. Our study demonstrates that FI-TAP2+Cx-HA exhibits a more than threefold longer lifetime in the joint cavity compared to FI-TAP2 alone. Furthermore, we found that TAP2 binds to TLR4 and masks the nuclear localization signals of NF-κB, leading to its sequestration in an inactive state in the cytoplasm. In a rat model of RA, TAP2+Cx-HA effectively suppresses inflammatory molecules, specifically TNF-α and IL-6, while upregulating the anti-inflammatory cytokine IL-10 and the therapeutic protein 14-3-3ζ. This resulted in faster regeneration of cartilage thickness, increased glycosaminoglycan deposits in the regenerated cartilage, and a twofold increase in new bone tissue formation compared to a single TAP2 treatment.
Collapse
Affiliation(s)
- Soyeon Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Jiyoung Seo
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Young Hun Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Hyeon Jin Ju
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Shina Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Yun Bae Ji
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Hai Bang Lee
- Research Institute, Medipolymers, Woncheon Dong 332-2, Suwon 16522, Korea
| | - Han Su Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea.
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; Research Institute, Medipolymers, Woncheon Dong 332-2, Suwon 16522, Korea.
| |
Collapse
|
11
|
Kim EY, Kim JE, Chung SH, Park JE, Yoon D, Min HJ, Sung Y, Lee SB, Kim SW, Chang EJ. Concomitant induction of SLIT3 and microRNA-218-2 in macrophages by toll-like receptor 4 activation limits osteoclast commitment. Cell Commun Signal 2023; 21:213. [PMID: 37596575 PMCID: PMC10436635 DOI: 10.1186/s12964-023-01226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/12/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Toll-like receptor 4 (TLR4) conducts a highly regulated inflammatory process by limiting the extent of inflammation to avoid toxicity and tissue damage, even in bone tissues. Thus, it is plausible that strategies for the maintenance of normal bone-immunity to prevent undesirable bone damage by TLR4 activation can exist, but direct evidence is still lacking. METHODS Osteoclast precursors (OCPs) obtained from WT or Slit3-deficient mice were differentiated into osteoclast (OC) with macrophage colony-stimulating factor (M-CSF), RANK ligand (RANKL) and lipopolysaccharide (LPS) by determining the number of TRAP-positive multinuclear cells (TRAP+ MNCs). To determine the alteration of OCPs population, fluorescence-activated cell sorting (FACS) was conducted in bone marrow cells in mice after LPS injection. The severity of bone loss in LPS injected WT or Slit3-deficient mice was evaluated by micro-CT analysis. RESULT We demonstrate that TLR4 activation by LPS inhibits OC commitment by inducing the concomitant expression of miR-218-2-3p and its host gene, Slit3, in mouse OCPs. TLR4 activation by LPS induced SLIT3 and its receptor ROBO1 in BMMs, and this SLIT3-ROBO1 axis hinders RANKL-induced OC differentiation by switching the protein levels of C/EBP-β isoforms. A deficiency of SLIT3 resulted in increased RANKL-induced OC differentiation, and the elevated expression of OC marker genes including Pu.1, Nfatc1, and Ctsk. Notably, Slit3-deficient mice showed expanded OCP populations in the bone marrow. We also found that miR-218-2 was concomitantly induced with SLIT3 expression after LPS treatment, and that this miRNA directly suppressed Tnfrsf11a (RANK) expression at both gene and protein levels, linking it to a decrease in OC differentiation. An endogenous miR-218-2 block rescued the expression of RANK and subsequent OC formation in LPS-stimulated OCPs. Aligned with these results, SLIT3-deficient mice displayed increased OC formation and reduced bone density after LPS challenge. CONCLUSION Our findings suggest that the TLR4-dependent concomitant induction of Slit3 and miR-218-2 targets RANK in OCPs to restrain OC commitment, thereby avoiding an uncoordinated loss of bone through inflammatory processes. These observations provide a mechanistic explanation for the role of TLR4 in controlling the commitment phase of OC differentiation. Video Abstract.
Collapse
Affiliation(s)
- Eun-Young Kim
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Ji-Eun Kim
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Soo-Hyun Chung
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Ji-Eun Park
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
| | - Dohee Yoon
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Hyo-Jin Min
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Yoolim Sung
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Soo Been Lee
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Seong Who Kim
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea.
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.
| | - Eun-Ju Chang
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea.
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.
| |
Collapse
|
12
|
Yu R, Ma C, Li G, Xu J, Feng D, Lan X. Inhibition of Toll-Like Receptor 4 Signaling Pathway Accelerates the Repair of Avascular Necrosis of Femoral Epiphysis through Regulating Macrophage Polarization in Perthes Disease. Tissue Eng Regen Med 2023; 20:489-501. [PMID: 37041432 PMCID: PMC10219917 DOI: 10.1007/s13770-023-00529-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/18/2023] [Accepted: 02/13/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Legg-Calvé-Perthes disease (LCPD) is still a refractory disease in children's orthopedics. With the introduction of the concept of "osteoimmunology", the immune-inflammatory mechanisms between bone and immune system have become a research focus of LCPD. However, few studies have reported on the pathological role of inflammation-related receptors such as toll-like receptors (TLRs) as well as immune cells such as macrophages in LCPD. This study was for investigating the mechanism of TLR4 signaling pathway on the direction of macrophage polarization and the repair of avascular necrosis of femoral epiphysis in LCPD. METHODS With GSE57614 and GSE74089, differentially expressed genes were screened. Through enrichment analysis and protein-protein interaction network, the functions of TLR4 were explored. Furthermore, immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), hematoxylin & eosin (H&E) staining, micro-CT, tartrate-resistant acid phosphatase (TRAP) dyeing and western blotting were performed for determining the influences of TAK-242 (a TLR4 inhibitor) on the repair of avascular necrosis of femoral epiphysis in rat models. RESULTS Totally 40 co-expression genes were screened as well as enriched in TLR4 signaling pathway. Immunohistochemistry and ELISA analyses certified that TLR4 facilitated macrophage polarization toward the M1 phenotype and prevented macrophage polarization toward the M2 phenotype. Besides, the results of H&E and TRAP staining, micro-CT, and western blotting showed that TAK-242 can inhibit osteoclastogenesis and promote osteogenesis. CONCLUSION Inhibition of TLR4 signaling pathway accelerated the repair of avascular necrosis of femoral epiphysis by regulating macrophage polarization in LCPD.
Collapse
Affiliation(s)
- Ronghui Yu
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Cong Ma
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Guoyong Li
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jianyun Xu
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Dan Feng
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, 330046, Jiangxi, China
| | - Xia Lan
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
13
|
Liu H, Wada A, Le I, Le PT, Lee AWF, Zhou J, Gori F, Baron R, Rosen CJ. PTH regulates osteogenesis and suppresses adipogenesis through Zfp467 in a feed-forward, PTH1R-cyclic AMP-dependent manner. eLife 2023; 12:e83345. [PMID: 37159501 PMCID: PMC10171860 DOI: 10.7554/elife.83345] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 04/25/2023] [Indexed: 05/11/2023] Open
Abstract
Conditional deletion of the PTH1R in mesenchymal progenitors reduces osteoblast differentiation, enhances marrow adipogenesis, and increases zinc finger protein 467 (Zfp467) expression. In contrast, genetic loss of Zfp467 increased Pth1r expression and shifts mesenchymal progenitor cell fate toward osteogenesis and higher bone mass. PTH1R and ZFP467 could constitute a feedback loop that facilitates PTH-induced osteogenesis and that conditional deletion of Zfp467 in osteogenic precursors would lead to high bone mass in mice. Prrx1Cre; Zfp467fl/fl but not AdipoqCre; Zfp467fl/fl mice exhibit high bone mass and greater osteogenic differentiation similar to the Zfp467-/- mice. qPCR results revealed that PTH suppressed Zfp467 expression primarily via the cyclic AMP/PKA pathway. Not surprisingly, PKA activation inhibited the expression of Zfp467 and gene silencing of Pth1r caused an increase in Zfp467 mRNA transcription. Dual fluorescence reporter assays and confocal immunofluorescence demonstrated that genetic deletion of Zfp467 resulted in higher nuclear translocation of NFκB1 that binds to the P2 promoter of the Pth1r and increased its transcription. As expected, Zfp467-/- cells had enhanced production of cyclic AMP and increased glycolysis in response to exogenous PTH. Additionally, the osteogenic response to PTH was also enhanced in Zfp467-/- COBs, and the pro-osteogenic effect of Zfp467 deletion was blocked by gene silencing of Pth1r or a PKA inhibitor. In conclusion, our findings suggest that loss or PTH1R-mediated repression of Zfp467 results in a pathway that increases Pth1r transcription via NFκB1 and thus cellular responsiveness to PTH/PTHrP, ultimately leading to enhanced bone formation.
Collapse
Affiliation(s)
- Hanghang Liu
- Maine Medical Center Research Institute, Maine Medical CenterScarboroughUnited States
- West China Hospital of Stomatology, Sichuan UniversitySichuanChina
| | - Akane Wada
- Division of Bone and Mineral Research, Dept of Oral Medicine, Infection and Immunity, Harvard School of Dental MedicineBostonUnited States
- Harvard Medical School, Department of Medicine and Endocrine Unit, Massachusetts General HospitalBostonUnited States
| | - Isabella Le
- Maine Medical Center Research Institute, Maine Medical CenterScarboroughUnited States
- Graduate Medical Sciences, Boston University School of MedicineBostonUnited States
| | - Phuong T Le
- Maine Medical Center Research Institute, Maine Medical CenterScarboroughUnited States
| | - Andrew WF Lee
- Maine Medical Center Research Institute, Maine Medical CenterScarboroughUnited States
- University of New England, College of Osteopathic MedicineBiddefordUnited States
| | - Jun Zhou
- Division of Bone and Mineral Research, Dept of Oral Medicine, Infection and Immunity, Harvard School of Dental MedicineBostonUnited States
- Harvard Medical School, Department of Medicine and Endocrine Unit, Massachusetts General HospitalBostonUnited States
| | - Francesca Gori
- Division of Bone and Mineral Research, Dept of Oral Medicine, Infection and Immunity, Harvard School of Dental MedicineBostonUnited States
| | - Roland Baron
- Division of Bone and Mineral Research, Dept of Oral Medicine, Infection and Immunity, Harvard School of Dental MedicineBostonUnited States
- Harvard Medical School, Department of Medicine and Endocrine Unit, Massachusetts General HospitalBostonUnited States
| | - Clifford J Rosen
- Maine Medical Center Research Institute, Maine Medical CenterScarboroughUnited States
| |
Collapse
|
14
|
Rajpar I, Kumar G, Fortina P, Tomlinson RE. Toll-like receptor 4 signaling in osteoblasts is required for load-induced bone formation in mice. iScience 2023; 26:106304. [PMID: 36950122 PMCID: PMC10025993 DOI: 10.1016/j.isci.2023.106304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/06/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
In mature bone, NGF is produced by osteoblasts following mechanical loading and signals through resident sensory nerves expressing its high affinity receptor, neurotrophic tyrosine kinase receptor type 1 (TrkA), to support bone formation. Here, we investigated whether osteoblastic expression of Toll-like receptor 4 (TLR4), a key receptor in the NF-κB signaling pathway, is required to initiate NGF-TrkA signaling required for load-induced bone formation. Although Tlr4 conditional knockout mice have normal skeletal mass and strength in adulthood, the loss of TLR4 signaling significantly reduced lamellar bone formation following loading. Inhibition of TLR4 signaling reduced Ngf expression in primary osteoblasts and RNA sequencing of bones from Tlr4 conditional knockout mice and wild-type littermates revealed dysregulated inflammatory signaling three days after osteogenic mechanical loading. In total, our study reveals an important role for osteoblastic TLR4 in the skeletal adaptation of bone to mechanical forces.
Collapse
Affiliation(s)
- Ibtesam Rajpar
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gaurav Kumar
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Paolo Fortina
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ryan E. Tomlinson
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
15
|
Liu T, Yu H, Wang S, Li H, Du X, He X. Chondroitin sulfate alleviates osteoporosis caused by calcium deficiency by regulating lipid metabolism. Nutr Metab (Lond) 2023; 20:6. [PMID: 36747190 PMCID: PMC9901125 DOI: 10.1186/s12986-023-00726-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/21/2023] [Indexed: 02/08/2023] Open
Abstract
The use of non-drug intervention for calcium deficiency has attracted attention in recent years. Although calcium carbonate is the preferred raw material for calcium supplementation, there are few reports on the mechanism of the combined action of chondroitin sulfate and calcium to alleviate osteoporosis from the perspective of gut microbiota and metabolomics. In this study, a rat model of osteoporosis was established by feeding a low-calcium diet. The intestinal microbiota abundance, fecal and plasma metabolite expression levels of rats fed a basal diet, a low-calcium diet, a low-calcium diet plus calcium carbonate, and a low-calcium diet plus chondroitin sulfate were compared. The results showed that compared with the low calcium group, the calcium content and bone mineral density of femur were significantly increased in the calcium carbonate and chondroitin sulfate groups. 16 S rRNA sequencing and metabolomics analysis showed that chondroitin sulfate intervention could reduce short-chain fatty acid synthesis of intestinal flora, slow down inflammatory response, inhibit osteoclast differentiation, promote calcium absorption and antioxidant mechanism, and alleviate osteoporosis in low-calcium feeding rats. Correlation analysis showed that the selected intestinal flora was significantly correlated with metabolites enriched in feces and plasma. This study provides scientific evidence of the potential impact of chondroitin sulfate as a dietary supplement for patients with osteoporosis.
Collapse
Affiliation(s)
- Tianshu Liu
- grid.27255.370000 0004 1761 1174Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Institute for Medical Dataology, Shandong University, National Institute of Health Data Science of China, Jinan, 250012 Shandong China
| | - Hai Yu
- grid.272242.30000 0001 2168 5385Division of Cancer RNA Research, National Cancer Center Research Institute, Tokyo, 104-0045 Japan ,grid.27255.370000 0004 1761 1174Institute for Medical Dataology, Shandong University, National Institute of Health Data Science of China, Jinan, 250012 Shandong China
| | - Shuai Wang
- grid.27255.370000 0004 1761 1174Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jining, 250012 Shandong China
| | - Huimin Li
- grid.27255.370000 0004 1761 1174Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China ,grid.506261.60000 0001 0706 7839National Human Genetic Resources Center; National Research Institute for Health and Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 China
| | - Xinyiran Du
- grid.449428.70000 0004 1797 7280College of Stomatology, Jining Medical University, Jining, 272067 Shandong China
| | - Xiaodong He
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Institute for Medical Dataology, Shandong University, National Institute of Health Data Science of China, Jinan, 250012, Shandong, China.
| |
Collapse
|
16
|
Franco-Trepat E, Alonso-Pérez A, Guillán-Fresco M, López-Fagúndez M, Pazos-Pérez A, Crespo-Golmar A, Belén Bravo S, López-López V, Jorge-Mora A, Cerón-Carrasco JP, Lois Iglesias A, Gómez R. β Boswellic Acid Blocks Articular Innate Immune Responses: An In Silico and In Vitro Approach to Traditional Medicine. Antioxidants (Basel) 2023; 12:371. [PMID: 36829930 PMCID: PMC9952103 DOI: 10.3390/antiox12020371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Osteoarthritis (OA) is hallmarked as a silent progressive rheumatic disease of the whole joint. The accumulation of inflammatory and catabolic factors such as IL6, TNFα, and COX2 drives the OA pathophysiology into cartilage degradation, synovia inflammation, and bone destruction. There is no clinical available OA treatment. Although traditional ayurvedic medicine has been using Boswellia serrata extracts (BSE) as an antirheumatic treatment for a millennium, none of the BSE components have been clinically approved. Recently, β boswellic acid (BBA) has been shown to reduce in vivo OA-cartilage loss through an unknown mechanism. We used computational pharmacology, proteomics, transcriptomics, and metabolomics to present solid evidence of BBA therapeutic properties in mouse and primary human OA joint cells. Specifically, BBA binds to the innate immune receptor Toll-like Receptor 4 (TLR4) complex and inhibits both TLR4 and Interleukin 1 Receptor (IL1R) signaling in OA chondrocytes, osteoblasts, and synoviocytes. Moreover, BBA inhibition of TLR4/IL1R downregulated reactive oxygen species (ROS) synthesis and MAPK p38/NFκB, NLRP3, IFNαβ, TNF, and ECM-related pathways. Altogether, we present a solid bulk of evidence that BBA blocks OA innate immune responses and could be transferred into the clinic as an alimentary supplement or as a therapeutic tool after clinical trial evaluations.
Collapse
Affiliation(s)
- Eloi Franco-Trepat
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Ana Alonso-Pérez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - María Guillán-Fresco
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Miriam López-Fagúndez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Andrés Pazos-Pérez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Antía Crespo-Golmar
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Susana Belén Bravo
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Verónica López-López
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Alberto Jorge-Mora
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - José P. Cerón-Carrasco
- Centro Universitario de la Defensa, Universidad Politécnica de Cartagena, C/Coronel López Peña S/N, Base Aérea de San Javier, Santiago de La Ribera, 30720 Murcia, Spain
| | - Ana Lois Iglesias
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Rodolfo Gómez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| |
Collapse
|
17
|
Zeng B, Wu X, Liang W, Huang X. Network pharmacology combined with molecular docking to explore the anti-osteoporosis mechanisms of β-ecdysone derived from medicinal plants. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Abstract
β-Ecdysone is a phytosteroid derived from multifarious medicinal plants, such as Achyranthes root (Achyranthes bidentata) and Tinospora cordifolia, possessing the potential anti-osteoporosis effect. However, the underlying mechanisms for β-ecdysone treating osteoporosis remain unclear. This study aims to explore the molecular mechanisms of β-ecdysone against osteoporosis by network pharmacology and molecular docking. First, the potential targets of β-ecdysone and osteoporosis were predicted by public databases. Protein interaction and functional enrichment analyses of potential targets were performed using the STRING and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway databases. Finally, hub targets were identified from network pharmacology, and their interaction with β-ecdysone was validated by molecular docking. Results showed that 47 potential targets were related to the mechanisms of β-ecdysone treating osteoporosis. Enrichment analyses revealed that the potential targets were mainly associated with steroid biosynthetic and metabolic processes, as well as HIF-1 and estrogen signaling pathways. By protein–protein interaction network analysis, top 10 hub targets were screened, including TNF, ALB, SRC, STAT3, MAPK3, ESR1, PPARG, CASP3, TLR4, and NR3C1. Molecular docking showed that β-ecdysone had good affinity with TLR4, TNF, and ESR1. Therefore, β-ecdysone might exert therapeutic effect on osteoporosis development via targeting TLR4, TNF, and ESR1 and regulating HIF-1 and estrogen pathways.
Collapse
Affiliation(s)
- Bin Zeng
- Department of Articular, Zhoushan Hospital of Traditional Chinese Medicine , No. 355 Xinqiao Road, Dinghai District , Zhoushan 316000 , Zhejiang , China
| | - Xudong Wu
- Department of Articular, Zhoushan Hospital of Traditional Chinese Medicine , No. 355 Xinqiao Road, Dinghai District , Zhoushan 316000 , Zhejiang , China
| | - Wenqing Liang
- Department of Articular, Zhoushan Hospital of Traditional Chinese Medicine , No. 355 Xinqiao Road, Dinghai District , Zhoushan 316000 , Zhejiang , China
| | - Xiaogang Huang
- Department of Articular, Zhoushan Hospital of Traditional Chinese Medicine , No. 355 Xinqiao Road, Dinghai District , Zhoushan 316000 , Zhejiang , China
| |
Collapse
|
18
|
Petronglo JR, Putnam NE, Ford CA, Cruz-Victorio V, Curry JM, Butrico CE, Fulbright LE, Johnson JR, Peck SH, Fatah SR, Cassat JE. Context-Dependent Roles for Toll-Like Receptors 2 and 9 in the Pathogenesis of Staphylococcus aureus Osteomyelitis. Infect Immun 2022; 90:e0041722. [PMID: 36226943 PMCID: PMC9670883 DOI: 10.1128/iai.00417-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus is the major causative agent of bacterial osteomyelitis, an invasive infection of bone. Inflammation generated by the immune response to S. aureus contributes to bone damage by altering bone homeostasis. Increases in the differentiation of monocyte lineage cells into bone-resorbing osteoclasts (osteoclastogenesis) promote bone loss in the setting of osteomyelitis. In this study, we sought to define the role of Toll-like receptor (TLR) signaling in the pathogenesis of S. aureus osteomyelitis. We hypothesized that S. aureus-sensing TLRs 2 and 9, both of which are known to alter osteoclastogenesis in vitro, promote pathological changes to bone, including increased osteoclast abundance, bone loss, and altered callus formation during osteomyelitis. Stimulation of osteoclast precursors with S. aureus supernatant increased osteoclastogenesis in a TLR2-dependent, but not a TLR9-dependent, manner. However, in vivo studies using a posttraumatic murine model of osteomyelitis revealed that TLR2-null mice experienced similar bone damage and increased osteoclastogenesis compared to wild type (WT) mice. Therefore, we tested the hypothesis that compensation between TLR2 and TLR9 contributes to osteomyelitis pathogenesis. We found that mice deficient in both TLR2 and TLR9 (Tlr2/9-/-) have decreased trabecular bone loss in response to infection compared to WT mice. However, osteoclastogenesis is comparable between WT and Tlr2/9-/- mice, suggesting that alternative mechanisms enhance osteoclastogenesis in vivo during osteomyelitis. Indeed, we discovered that osteoclast precursors intracellularly infected with S. aureus undergo significantly increased osteoclast formation, even in the absence of TLR2 and TLR9. These results suggest that TLR2 and TLR9 have context-dependent roles in the alteration of bone homeostasis during osteomyelitis.
Collapse
Affiliation(s)
- Jenna R. Petronglo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Nicole E. Putnam
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Caleb A. Ford
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Virginia Cruz-Victorio
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Jacob M. Curry
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Casey E. Butrico
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Laura E. Fulbright
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Joshua R. Johnson
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Sun H. Peck
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Sana R. Fatah
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - James E. Cassat
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| |
Collapse
|
19
|
Matskevych AM, Mukvich OM, Zabara DV. EXPRESSION OF TOLL-LIKE RECEPTORS 4 ON CD14 + MONOCYTES IN JUVENILE IDIOPATHIC ARTHRITIS. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2022; 75:2759-2764. [PMID: 36591765 DOI: 10.36740/wlek202211208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The aim: The work is aimed at determining the relationship between TLR4 expression on CD14+monocytes in whole heparinized blood and B1a lymphocyte synthesis in various subtypes of JIA. PATIENTS AND METHODS Materials and methods: 64children aged3to17years were examined, including42children with different subtypes of JIA and22healthy children. The intensity of TLR4 expression onCD14+monocytes was determined in whole heparinized blood incubated with a CD14-FITC/TLR4-PE monoclonal antibody cocktail(Biolegend, USA)using flow cytometry. Monoclonal antibodies (BD Bioscience) were used to determine the main subpopulations of lymphocytes. RESULTS Results: A statistically significant increase in TLR4 expression has been determined in JIA compared to the control group. The most prominent TLR4 expression was detected in children with oligoarthritis, while in systemic arthritis, there was no statistical difference compared to healthy children. High TLR4 expression on peripheral CD14+monocytes inversely depends on the activity of the autoimmune process, which may have a protective effect against the aseptic inflammation.Increased TLR4 expression involves a statis¬tically significant increase in the percentage and quantity of В1а lymphocytes(p≤0.05). CONCLUSION Conclusions: A statistically significant increase in TLR4 expression on CD14+monocytes in whole heparinized blood was detected in patients with JIA compared to healthy children. Children with oligoarthritis had the highest rates, which indicates possible differences in the development of pathogenetic processes in different subtypes of arthritis. Determining the degree of TLR4 activation on CD14+monocytes is reasonable for predicting JIA activity.
Collapse
Affiliation(s)
- Anna M Matskevych
- INSTITUTE OF PEDIATRICS, OBSTETRICS, AND GYNECOLOGY NAMED AFTER ACAD. O.M. LUKYANOVA OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES OF UKRAINE, KYIV, UKRAINE
| | - Olena M Mukvich
- INSTITUTE OF PEDIATRICS, OBSTETRICS, AND GYNECOLOGY NAMED AFTER ACAD. O.M. LUKYANOVA OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES OF UKRAINE, KYIV, UKRAINE
| | - Dariia V Zabara
- INSTITUTE OF PEDIATRICS, OBSTETRICS, AND GYNECOLOGY NAMED AFTER ACAD. O.M. LUKYANOVA OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES OF UKRAINE, KYIV, UKRAINE
| |
Collapse
|
20
|
Carvalho AL, Brooks DJ, Barlow D, Langlais AL, Morrill B, Houseknecht KL, Bouxsein ML, Lian JB, King T, Farina NH, Motyl KJ. Sustained Morphine Delivery Suppresses Bone Formation and Alters Metabolic and Circulating miRNA Profiles in Male C57BL/6J Mice. J Bone Miner Res 2022; 37:2226-2243. [PMID: 36054037 PMCID: PMC9712245 DOI: 10.1002/jbmr.4690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/30/2022] [Accepted: 08/24/2022] [Indexed: 11/05/2022]
Abstract
Opioid use is detrimental to bone health, causing both indirect and direct effects on bone turnover. Although the mechanisms of these effects are not entirely clear, recent studies have linked chronic opioid use to alterations in circulating miRNAs. Here, we developed a model of opioid-induced bone loss to understand bone turnover and identify candidate miRNA-mediated regulatory mechanisms. We evaluated the effects of sustained morphine treatment on male and female C57BL/6J mice by treating with vehicle (0.9% saline) or morphine (17 mg/kg) using subcutaneous osmotic minipumps for 25 days. Morphine-treated mice had higher energy expenditure and respiratory quotient, indicating a shift toward carbohydrate metabolism. Micro-computed tomography (μCT) analysis indicated a sex difference in the bone outcome, where male mice treated with morphine had reduced trabecular bone volume fraction (Tb.BV/TV) (15%) and trabecular bone mineral density (BMD) (14%) in the distal femur compared with vehicle. Conversely, bone microarchitecture was not changed in females after morphine treatment. Histomorphometric analysis demonstrated that in males, morphine reduced bone formation rate compared with vehicle, but osteoclast parameters were not different. Furthermore, morphine reduced bone formation marker gene expression in the tibia of males (Bglap and Dmp1). Circulating miRNA profile changes were evident in males, with 14 differentially expressed miRNAs associated with morphine treatment compared with two differentially expressed miRNAs in females. In males, target analysis indicated hypoxia-inducible factor (HIF) signaling pathway was targeted by miR-223-3p and fatty acid metabolism by miR-484, -223-3p, and -328-3p. Consequently, expression of miR-223-3p targets, including Igf1r and Stat3, was lower in morphine-treated bone. In summary, we have established a model where morphine leads to a lower trabecular bone formation in males and identified potential mediating miRNAs. Understanding the sex-specific mechanisms of bone loss from opioids will be important for improving management of the adverse effects of opioids on the skeleton. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Adriana Lelis Carvalho
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
| | - Daniel J Brooks
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Deborah Barlow
- Department of Pharmacology, University of New England, Biddeford, ME, USA
| | - Audrie L. Langlais
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Breanna Morrill
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
| | - Karen L. Houseknecht
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, USA
| | - Mary L. Bouxsein
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jane B Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, USA
- Larner College of Medicine, University of Vermont Cancer Center, Burlington, VT, USA
- Northern New England Clinical and Translational Research Network, MaineHealth, Portland, ME
| | - Tamara King
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, USA
| | - Nicholas H Farina
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, USA
- Larner College of Medicine, University of Vermont Cancer Center, Burlington, VT, USA
- Northern New England Clinical and Translational Research Network, MaineHealth, Portland, ME
| | - Katherine J Motyl
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
- Northern New England Clinical and Translational Research Network, MaineHealth, Portland, ME
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
- Tufts University School of Medicine, Tufts University, Boston, MA, USA
| |
Collapse
|
21
|
Franco-Trepat E, Guillán-Fresco M, Alonso-Pérez A, López-Fagúndez M, Pazos-Pérez A, Crespo-Golmar A, Gualillo O, Jorge-Mora A, Bravo SB, Gómez R. Repurposing drugs to inhibit innate immune responses associated with TLR4, IL1, and NLRP3 signaling in joint cells. Biomed Pharmacother 2022; 155:113671. [PMID: 36108390 DOI: 10.1016/j.biopha.2022.113671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) affects more than 300 million people worldwide and it is about to become the first disabling disease. OA is characterized by the progressive degradation of the articular cartilage but is a disease of the whole joint. Articular innate immune responses (IIR) associated with tissue degradation contribute to its progression. However, no treatment is available to block these IIRs. Through data text mining and computational pharmacology, we identified two clinical available drugs, naloxone, and thalidomide, with potential inhibitory properties on toll-like receptor 4 (TLR4), a major activator of these IIR. Proteome analysis confirmed that activation of this receptor or the IL1 receptor generated OA-like and gout-like proteomic changes in human primary chondrocytes. Both compounds were found to block TLR4 complex and inhibit TLR4 and IL1R-mediated IIR in OA chondrocytes, osteoblasts, and synoviocytes. Furthermore, naloxone and thalidomide inhibitory effects involved the downregulation of the NLRP3 inflammasome pathway, which is downstream of TLR4/IL1R signaling. We demonstrated that these compounds, within a therapeutic range of concentrations, exhibited anti-inflammatory and anti-catabolic properties in joint primary OA cells without any toxic effect. This data underpins naloxone & thalidomide repurpose to treat OA-associated inflammatory responses.
Collapse
Affiliation(s)
- Eloi Franco-Trepat
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela 15706, Spain
| | - María Guillán-Fresco
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela 15706, Spain
| | - Ana Alonso-Pérez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela 15706, Spain
| | - Miriam López-Fagúndez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela 15706, Spain
| | - Andrés Pazos-Pérez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela 15706, Spain
| | - Antia Crespo-Golmar
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela 15706, Spain
| | - Oreste Gualillo
- Research laboratory 9 (NEIRID LAB), Institute of Medical Research, SERGAS, Santiago University Clinical Hospital, Santiago de Compostela 15706, Spain
| | - Alberto Jorge-Mora
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela 15706, Spain
| | - Susana Belén Bravo
- Proteomics Unit, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela 15706, Spain
| | - Rodolfo Gómez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela 15706, Spain.
| |
Collapse
|
22
|
METTL3 mediates osteoblast apoptosis by regulating endoplasmic reticulum stress during LPS-induced inflammation. Cell Signal 2022; 95:110335. [DOI: 10.1016/j.cellsig.2022.110335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/21/2022] [Accepted: 04/14/2022] [Indexed: 11/17/2022]
|
23
|
Zhuang C, Chen R, Zheng Z, Lu J, Hong C. Toll-Like Receptor 3 in Cardiovascular Diseases. Heart Lung Circ 2022; 31:e93-e109. [PMID: 35367134 DOI: 10.1016/j.hlc.2022.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023]
Abstract
Toll-like receptor 3 (TLR3) is an important member of the innate immune response receptor toll-like receptors (TLRs) family, which plays a vital role in regulating immune response, promoting the maturation and differentiation of immune cells, and participating in the response of pro-inflammatory factors. TLR3 is activated by pathogen-associated molecular patterns and damage-associated molecular patterns, which support the pathophysiology of many diseases related to inflammation. An increasing number of studies have confirmed that TLR3, as a crucial medium of innate immunity, participates in the occurrence and development of cardiovascular diseases (CVDs) by regulating the transcription and translation of various cytokines, thus affecting the structure and physiological function of resident cells in the cardiovascular system, including vascular endothelial cells, vascular smooth muscle cells, cardiomyocytes, fibroblasts and macrophages. The dysfunction and structural damage of vascular endothelial cells and proliferation of vascular smooth muscle cells are the key factors in the occurrence of vascular diseases such as pulmonary arterial hypertension, atherosclerosis, myocardial hypertrophy, myocardial infarction, ischaemia/reperfusion injury, and heart failure. Meanwhile, cardiomyocytes, fibroblasts, and macrophages are involved in the development of CVDs. Therefore, the purpose of this review was to explore the latest research published on TLR3 in CVDs and discuss current understanding of potential mechanisms by which TLR3 contributes to CVDs. Even though TLR3 is a developing area, it has strong treatment potential as an immunomodulator and deserves further study for clinical translation.
Collapse
Affiliation(s)
- Chunying Zhuang
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Riken Chen
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenzhen Zheng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Guangzhou, China
| | - Jianmin Lu
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cheng Hong
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
24
|
Li L, Ge J. Exosome‑derived lncRNA‑Ankrd26 promotes dental pulp restoration by regulating miR‑150‑TLR4 signaling. Mol Med Rep 2022; 25:152. [PMID: 35244185 DOI: 10.3892/mmr.2022.12668] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/30/2021] [Indexed: 11/06/2022] Open
Abstract
At present, retaining the biological function of dental pulp is an urgent requirement in the treatment of pulp disease; it has been recognized that application of dental pulp stem cells (DPSCs) in regenerating dental pulp and dentin complexes is expected to become a safe and effective treatment of pulp disease; meanwhile the role of DPSC‑derived exosomes in dental pulp regeneration and repair is gaining attention. However, the underlying mechanism of DPSCs in dental pulp regeneration and repair is still unclear. In the present study, a variety of in vitro biological experiments and an animal model, as well as next‑generation sequencing and bioinformatics analysis, demonstrated that DPSCs promoted migration and osteoblastic differentiation of mesenchymal stem cells (MSCs) via exosomes; this was induced by DPSC‑derived exosomal long non‑coding (lnc)RNA‑ankyrin repeat domain (Ankrd)26. Mechanistically, the effect of exosomal lncRNA‑Ankrd26 on migration and osteoblastic differentiation of MSCs was dependent on microRNA (miR)‑150/Toll‑like receptor (TLR)4 signaling; this was regulated by lncRNA‑Ankrd26. The present study demonstrated that exosomes‑derived lncRNA‑Ankrd26 from DPSCs promoted dental pulp restoration via regulating miR‑150‑TLR4 signaling in MSCs; these findings help to understand the mechanism of dental pulp repair, identify therapeutic targets in the development of pulpitis and develop clinical treatments.
Collapse
Affiliation(s)
- Lin Li
- Department of Endodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, P.R. China
| | - Jianping Ge
- Department of Endodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, P.R. China
| |
Collapse
|
25
|
Xm S, Cc L, C L, Yf L, L C, Yz Z, Sj Y. TLR4 inhibition ameliorated glucolipotoxicity-induced differentiation suppression in osteoblasts via RIAM regulation of NF-κB nuclear translocation. Mol Cell Endocrinol 2022; 543:111539. [PMID: 34929310 DOI: 10.1016/j.mce.2021.111539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 11/26/2022]
Abstract
TLR4 is a key innate immune signal that mediates glucolipid toxicity through yet unclear mechanisms. Here, TLR4 truncation ameliorated bone metabolism disorders in diabetic rats, and the underlying mechanisms were explored by proteomics. Our study showed that TLR4 truncation inhibited bone loss induced by diabetes in rats. In addition, a proteomic analysis screen exposed the differential proteins associated with immune reactivity and T cell activation (RIAM and Class II histocompatibility antigen, M β1 chain). Further cellular experiments showed that TLR4 mediated the inhibition of osteoblast differentiation induced by glucolipotoxicity and promoted an increase in the nuclear level of RIAM-NF-κB. Mechanistic studies showed that TLR4 mediated glucolipotoxicity induced damage in bone metabolism primarily by regulating RIAM-NF-κB interactions, which promoted RIAM-NF-κB nuclear translocation. In conclusion, we confirmed that TLR4 inhibition could delay bone metabolism disorders induced by glycolipid toxicity via RIAM regulation of NF-κB nuclear translocation.
Collapse
Affiliation(s)
- Shen Xm
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Diabetes Research Institute of Fujian Province, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Metabolic Diseases Research Institute, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Clinical Research Center for Metabolic Diseases of Fujian Province, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China
| | - Li Cc
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Department of Cardiology, Affiliated Fuzhou First Hospital of Fujian Medical University, 190 Da Dao Road, Fuzhou, Fujian, 350009, China
| | - Lan C
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China
| | - Lin Yf
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China
| | - Cheng L
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China
| | - Zhang Yz
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Diabetes Research Institute of Fujian Province, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Metabolic Diseases Research Institute, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Clinical Research Center for Metabolic Diseases of Fujian Province, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China
| | - Yan Sj
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Diabetes Research Institute of Fujian Province, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Metabolic Diseases Research Institute, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Clinical Research Center for Metabolic Diseases of Fujian Province, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China.
| |
Collapse
|
26
|
Toll-like Receptor 4, Osteoblasts and Leukemogenesis; the Lesson from Acute Myeloid Leukemia. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030735. [PMID: 35163998 PMCID: PMC8838156 DOI: 10.3390/molecules27030735] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 12/29/2022]
Abstract
Toll-like receptor 4 (TLR4) is a pattern-recognizing receptor that can bind exogenous and endogenous ligands. It is expressed by acute myeloid leukemia (AML) cells, several bone marrow stromal cells, and nonleukemic cells involved in inflammation. TLR4 can bind a wide range of endogenous ligands that are present in the bone marrow microenvironment. Furthermore, the TLR4-expressing nonleukemic bone marrow cells include various mesenchymal cells, endothelial cells, differentiated myeloid cells, and inflammatory/immunocompetent cells. Osteoblasts are important stem cell supporting cells localized to the stem cell niches, and they support the proliferation and survival of primary AML cells. These supporting effects are mediated by the bidirectional crosstalk between AML cells and supportive osteoblasts through the local cytokine network. Finally, TLR4 is also important for the defense against complicating infections in neutropenic patients, and it seems to be involved in the regulation of inflammatory and immunological reactions in patients treated with allogeneic stem cell transplantation. Thus, TLR4 has direct effects on primary AML cells, and it has indirect effects on the leukemic cells through modulation of their supporting neighboring bone marrow stromal cells (i.e., modulation of stem cell niches, regulation of angiogenesis). Furthermore, in allotransplant recipients TLR4 can modulate inflammatory and potentially antileukemic immune reactivity. The use of TLR4 targeting as an antileukemic treatment will therefore depend both on the biology of the AML cells, the biological context of the AML cells, aging effects reflected both in the AML and the stromal cells and the additional antileukemic treatment combined with HSP90 inhibition.
Collapse
|
27
|
Inflammation Regulates Haematopoietic Stem Cells and Their Niche. Int J Mol Sci 2022; 23:ijms23031125. [PMID: 35163048 PMCID: PMC8835214 DOI: 10.3390/ijms23031125] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
Haematopoietic stem cells (HSCs) reside in the bone marrow and are supported by the specialised microenvironment, a niche to maintain HSC quiescence. To deal with haematopoietic equilibrium disrupted during inflammation, HSCs are activated from quiescence directly and indirectly to generate more mature immune cells, especially the myeloid lineage cells. In the process of proliferation and differentiation, HSCs gradually lose their self-renewal potential. The extensive inflammation might cause HSC exhaustion/senescence and malignant transformation. Here, we summarise the current understanding of how HSC functions are maintained, damaged, or exhausted during acute, prolonged, and pathological inflammatory conditions. We also highlight the inflammation-altered HSC niche and its impact on escalating the insults on HSCs.
Collapse
|
28
|
Dong Q, Han Z, Tian L. Identification of Serum Exosome-Derived circRNA-miRNA-TF-mRNA Regulatory Network in Postmenopausal Osteoporosis Using Bioinformatics Analysis and Validation in Peripheral Blood-Derived Mononuclear Cells. Front Endocrinol (Lausanne) 2022; 13:899503. [PMID: 35757392 PMCID: PMC9218277 DOI: 10.3389/fendo.2022.899503] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Osteoporosis is one of the most common systemic metabolic bone diseases, especially in postmenopausal women. Circular RNA (circRNA) has been implicated in various human diseases. However, the potential role of circRNAs in postmenopausal osteoporosis (PMOP) remains largely unknown. The study aims to identify potential biomarkers and further understand the mechanism of PMOP by constructing a circRNA-associated ceRNA network. METHODS The PMOP-related datasets GSE161361, GSE64433, and GSE56116 were downloaded from the Gene Expression Omnibus (GEO) database and were used to obtain differentially expressed genes (DEGs). Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were applied to determine possible relevant functions of differentially expressed messenger RNAs (mRNAs). The TRRUST database was used to predict differential transcription factor (TF)-mRNA regulatory pairs. Afterwards, combined CircBank and miRTarBase, circRNA-miRNA as well as miRNA-TF pairs were constructed. Then, a circRNA-miRNA-TF-mRNA network was established. Next, the correlation of mRNAs, TFs, and PMOP was verified by the Comparative Toxicogenomics Database. And expression levels of key genes, including circRNAs, miRNAs, TFs, and mRNAs in the ceRNA network were further validated by quantitative real-time PCR (qRT-PCR). Furthermore, to screen out signaling pathways related to key mRNAs of the ceRNA network, Gene Set Enrichment Analysis (GSEA) was performed. RESULTS A total of 1201 DE mRNAs, 44 DE miRNAs, and 1613 DE circRNAs associated with PMOP were obtained. GO function annotation showed DE mRNAs were mainly related to inflammatory responses. KEGG analysis revealed DE mRNAs were mainly enriched in osteoclast differentiation, rheumatoid arthritis, hematopoietic cell lineage, and cytokine-cytokine receptor interaction pathways. We first identified 26 TFs and their target mRNAs. Combining DE miRNAs, miRNA-TF/mRNA pairs were obtained. Combining DE circRNAs, we constructed the ceRNA network contained 6 circRNAs, 4 miRNAs, 4 TFs, and 12 mRNAs. The expression levels of most genes detected by qRT-PCR were generally consistent with the microarray results. Combined with the qRT-PCR validation results, we eventually identified the ceRNA network that contained 4 circRNAs, 3 miRNAs, 3 TFs, and 9 mRNAs. The GSEA revealed that 9 mRNAs participate in many important signaling pathways, such as "olfactory transduction", "T cell receptor signaling pathway", and "neuroactive ligand-receptor interaction". These pathways have been reported to the occurrence and development of PMOP. To sum up, key mRNAs in the ceRNA network may participate in the development of osteoporosis by regulating related signal pathways. CONCLUSIONS A circRNA-associated ceRNA network containing TFs was established for PMOP. The study may help further explore the molecular mechanisms and may serve as potential biomarkers or therapeutic targets for PMOP.
Collapse
Affiliation(s)
- Qianqian Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, China
- Clinical Research Center for Metabolic Disease, Gansu Provincial Hospital, Lanzhou, China
| | - Ziqi Han
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, China
- Clinical Research Center for Metabolic Disease, Gansu Provincial Hospital, Lanzhou, China
| | - Limin Tian
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, China
- Clinical Research Center for Metabolic Disease, Gansu Provincial Hospital, Lanzhou, China
- *Correspondence: Limin Tian,
| |
Collapse
|
29
|
Haubruck P, Pinto MM, Moradi B, Little CB, Gentek R. Monocytes, Macrophages, and Their Potential Niches in Synovial Joints - Therapeutic Targets in Post-Traumatic Osteoarthritis? Front Immunol 2021; 12:763702. [PMID: 34804052 PMCID: PMC8600114 DOI: 10.3389/fimmu.2021.763702] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
Synovial joints are complex structures that enable normal locomotion. Following injury, they undergo a series of changes, including a prevalent inflammatory response. This increases the risk for development of osteoarthritis (OA), the most common joint disorder. In healthy joints, macrophages are the predominant immune cells. They regulate bone turnover, constantly scavenge debris from the joint cavity and, together with synovial fibroblasts, form a protective barrier. Macrophages thus work in concert with the non-hematopoietic stroma. In turn, the stroma provides a scaffold as well as molecular signals for macrophage survival and functional imprinting: “a macrophage niche”. These intricate cellular interactions are susceptible to perturbations like those induced by joint injury. With this review, we explore how the concepts of local tissue niches apply to synovial joints. We introduce the joint micro-anatomy and cellular players, and discuss their potential interactions in healthy joints, with an emphasis on molecular cues underlying their crosstalk and relevance to joint functionality. We then consider how these interactions are perturbed by joint injury and how they may contribute to OA pathogenesis. We conclude by discussing how understanding these changes might help identify novel therapeutic avenues with the potential of restoring joint function and reducing post-traumatic OA risk.
Collapse
Affiliation(s)
- Patrick Haubruck
- Centre for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Trauma and Reconstructive Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Marlene Magalhaes Pinto
- Centre for Inflammation Research & Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Babak Moradi
- Clinic of Orthopaedics and Trauma Surgery, University Clinic of Schleswig-Holstein, Kiel, Germany
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Rebecca Gentek
- Centre for Inflammation Research & Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
30
|
Xie H, Cao L, Ye L, Shan G, Song W. The miR-1906 mimic attenuates bone loss in osteoporosis by down-regulating the TLR4/MyD88/NF-κB pathway. Physiol Int 2021; 107:469-478. [PMID: 33410769 DOI: 10.1556/2060.2020.00042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/12/2020] [Indexed: 11/19/2022]
Abstract
In this study, the ability of microRNA-1906 (miR-1906) to attenuate bone loss in osteoporosis was evaluated by measuring the effects of a miR-1906 mimic and inhibitor on the cellular toxicity and cell viability of MC3T3-E1 cells. Bone marrow-derived macrophage (BMM) cells were isolated from female mice, and tartrate-resistant acid phosphatase signalling was performed in miR-1906 mimic-treated, receptor-activated nuclear factor kappa-B (NF-κB) ligand (RANKL)-induced osteoclasts. In-vivo, osteoporosis was induced by ovariectomy (OVX). Rats were treated with 500 nmol/kg of the miR-1906 mimic via intrathecal administration for 10 consecutive days following surgery. The effect of the miR-1906 mimic on bone mineral density (BMD) in OVX rats was observed in the whole body, lumbar vertebrae and femur. Levels of biochemical parameters and cytokines in the serum of miR-1906 mimic-treated OVX rats were analysed. The mRNA expression of toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), p-38 and NF-κB in tibias of osteoporotic rats (induced by ovariectomy) was observed using quantitative reverse-transcription polymerase chain reaction. Treatment with the miR-1906 mimic reduced cellular toxicity and enhanced the cell viability of MC3T3-E1 cells. Furthermore, osteoclastogenesis in miR-1906 mimic-treated, RANKL-induced osteoclast cells was reduced, whereas the BMD in the miR-1906 mimic-treated group was higher than in the OVX group of rats. Treatment with the miR-1906 mimic also increased levels of biochemical parameters and cytokines in the serum of ovariectomised rats. Finally, mRNA expression levels of TLR4, MyD88, p-38 and NF-κB were lower in the tibias of miR-1906 mimic-treated rats than in those of OVX rats. In conclusion, the miR-1906 mimic reduces bone loss in rats with ovariectomy-induced osteoporosis by regulating the TLR4/MyD88/NF-κB pathway.
Collapse
Affiliation(s)
- H Xie
- Department of Rehabilitation, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - L Cao
- Department of Rehabilitation, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - L Ye
- Department of Rehabilitation, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - G Shan
- Department of Rehabilitation, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | | |
Collapse
|
31
|
Wu Y, Gao LJ, Fan YS, Chen Y, Li Q. Network Pharmacology-Based Analysis on the Action Mechanism of Oleanolic Acid to Alleviate Osteoporosis. ACS OMEGA 2021; 6:28410-28420. [PMID: 34723038 PMCID: PMC8552458 DOI: 10.1021/acsomega.1c04825] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/05/2021] [Indexed: 05/13/2023]
Abstract
Oleanolic acid (OA) is a triterpenoid commonly found in plants and has shown extensive pharmaceutical activities. This study aimed to investigate the underlying mechanism of antiosteoporosis (OP) action of OA by utilizing the network pharmacology approach and molecular docking methods. First, the targets of OA were identified using the GeneCards, Stitch, and Swisstarget databases, and the targets related to OP were mined using the NCBI, Genecards, and DisGeNet databases. The overlapped targets of OA and OP were regarded as candidate targets, and the String database was used to obtain the protein-protein interactions among the targets. Then, Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway enrichment pathways of the candidate targets were performed using the DAVID database. In addition, the top 16 targets in the protein interaction network were used for molecular docking. Finally, an animal model constructed using d-galactose-induced oxidative stress and a low-calcium diet with accelerated bone loss was used to verify the in vivo effects of OA on osteoporotic mice. A total of 42 candidate targets for OA to treat OP were obtained. According to the protein-protein interaction network, MAPK1 showed the highest connectivity with other proteins. Additionally, GO analysis identified the top 20 biological processes, 9 cellular components, and top 20 molecular functions. Moreover, the candidate targets were mainly involved in 13 signaling pathways such as TNF signaling pathway, insulin resistance, MAPK signaling pathway, apoptosis, and PI3K-Akt signaling pathways. Furthermore, molecular docking revealed that OA has a high degree of connections with 16 key proteins. In addition, the anti-OP effects of OA are further validated through the in vivo model. Altogether, our study elucidated the candidate targets for OA to alleviate OP, explored the protein-protein interactions and related signaling pathways of the targets, and validated the anti-OP effects of OA. It could provide a better understanding of the action mechanism in OA to treat OP.
Collapse
Affiliation(s)
- Yi Wu
- College
of Life Sciences and Food Engineering, Hebei
University of Engineering, 056038 Handan, China
| | - Li-Jie Gao
- College
of Animal Science and Technology, Hebei
Agricultural University, 071000 Baoding, China
| | - Ying-Sai Fan
- College
of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, 071000 Baoding, China
| | - Ye Chen
- College
of Life Sciences and Food Engineering, Hebei
University of Engineering, 056038 Handan, China
| | - Qin Li
- College
of Life Sciences and Food Engineering, Hebei
University of Engineering, 056038 Handan, China
| |
Collapse
|
32
|
Franco-Trepat E, Alonso-Pérez A, Guillán-Fresco M, Jorge-Mora A, Crespo-Gomar A, López-Fagúndez M, Pazos-Pérez A, Gualillo O, Belén Bravo S, Gómez R. Amitriptyline blocks innate immune responses mediated by TLR4 & IL1R: preclinical and clinical evidence in OA and gout. Br J Pharmacol 2021; 179:270-286. [PMID: 34643941 PMCID: PMC9300168 DOI: 10.1111/bph.15707] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/10/2021] [Accepted: 09/09/2021] [Indexed: 11/28/2022] Open
Abstract
Background and Purpose Osteoarthritis, a major cause of disability in developed countries does not have effective treatment. Activation of TLR4 and innate immune response factors contribute to osteoarthritis progressive cartilage degradation. There are no clinically available TLR4 inhibitors. Interestingly, the antidepressant amitriptyline could block this receptor. Thus, we evaluated amitriptyline anti‐TLR4 effects on human osteoarthritis chondrocytes in order to repurpose it as an inhibitor of innate immune response in joint inflammatory pathologies. Experimental Approach Using in silico docking analysis, RT‐PCR, siRNA, elisa, proteomics and clinical data mining of drug consumption, we explored the clinical relevance of amitriptyline blockade of TLR4‐mediated innate immune responses in human osteoarthritis chondrocytes. Key Results Amitriptyline bound TLR4 but not IL‐1 receptor. Interestingly, amitriptyline binding to TLR4 inhibited TLR4‐ and IL‐1 receptor‐mediated innate immune responses in human osteoarthritis chondrocytes, synoviocytes and osteoblasts cells. Amitriptyline reduced basal innate immune responses and promoted anabolic effects in human osteoarthritis chondrocytes. Supporting its anti‐innate immune response effects, amitriptyline down‐regulated basal and induced expression of NLRP3, an inflammasome member from IL‐1 receptor signalling linked to osteoarthritis and gout pathologies. Accordingly, mining of dissociated and aggregated drug consumption data from 107,172 elderly patients (>65 years) revealed that amitriptyline consumption was significantly associated with lower colchicine consumption associated with inflammatory gout flare treatment. Conclusion and Implications Amitriptyline blocks TLR4‐, IL‐1 receptor and NLRP3‐dependent innate immune responses. This together with clinical data amitriptyline could be repurposed for systemic or local innate immune response management in diverse joint inflammatory pathologies.
Collapse
Affiliation(s)
- Eloi Franco-Trepat
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Ana Alonso-Pérez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - María Guillán-Fresco
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Alberto Jorge-Mora
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Antia Crespo-Gomar
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Miriam López-Fagúndez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Andrés Pazos-Pérez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Oreste Gualillo
- NEIRID LAB, Institute IDIS, SERGAS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Susana Belén Bravo
- Proteomics Unit, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Rodolfo Gómez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| |
Collapse
|
33
|
Saxena Y, Routh S, Mukhopadhaya A. Immunoporosis: Role of Innate Immune Cells in Osteoporosis. Front Immunol 2021; 12:687037. [PMID: 34421899 PMCID: PMC8374941 DOI: 10.3389/fimmu.2021.687037] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis or porous bone disorder is the result of an imbalance in an otherwise highly balanced physiological process known as 'bone remodeling'. The immune system is intricately involved in bone physiology as well as pathologies. Inflammatory diseases are often correlated with osteoporosis. Inflammatory mediators such as reactive oxygen species (ROS), and pro-inflammatory cytokines and chemokines directly or indirectly act on the bone cells and play a role in the pathogenesis of osteoporosis. Recently, Srivastava et al. (Srivastava RK, Dar HY, Mishra PK. Immunoporosis: Immunology of Osteoporosis-Role of T Cells. Frontiers in immunology. 2018;9:657) have coined the term "immunoporosis" to emphasize the role of immune cells in the pathology of osteoporosis. Accumulated pieces of evidence suggest both innate and adaptive immune cells contribute to osteoporosis. However, innate cells are the major effectors of inflammation. They sense various triggers to inflammation such as pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), cellular stress, etc., thus producing pro-inflammatory mediators that play a critical role in the pathogenesis of osteoporosis. In this review, we have discussed the role of the innate immune cells in great detail and divided these cells into different sections in a systemic manner. In the beginning, we talked about cells of the myeloid lineage, including macrophages, monocytes, and dendritic cells. This group of cells explicitly influences the skeletal system by the action of production of pro-inflammatory cytokines and can transdifferentiate into osteoclast. Other cells of the myeloid lineage, such as neutrophils, eosinophils, and mast cells, largely impact osteoporosis via the production of pro-inflammatory cytokines. Further, we talked about the cells of the lymphoid lineage, including natural killer cells and innate lymphoid cells, which share innate-like properties and play a role in osteoporosis. In addition to various innate immune cells, we also discussed the impact of classical pro-inflammatory cytokines on osteoporosis. We also highlighted the studies regarding the impact of physiological and metabolic changes in the body, which results in chronic inflammatory conditions such as ageing, ultimately triggering osteoporosis.
Collapse
Affiliation(s)
- Yogesh Saxena
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Sanjeev Routh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Arunika Mukhopadhaya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| |
Collapse
|
34
|
Aasebø E, Brenner AK, Hernandez-Valladares M, Birkeland E, Berven FS, Selheim F, Bruserud Ø. Proteomic Comparison of Bone Marrow Derived Osteoblasts and Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:ijms22115665. [PMID: 34073480 PMCID: PMC8198503 DOI: 10.3390/ijms22115665] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can differentiate into osteoblasts, and therapeutic targeting of these cells is considered both for malignant and non-malignant diseases. We analyzed global proteomic profiles for osteoblasts derived from ten and MSCs from six healthy individuals, and we quantified 5465 proteins for the osteoblasts and 5420 proteins for the MSCs. There was a large overlap in the profiles for the two cell types; 156 proteins were quantified only in osteoblasts and 111 proteins only for the MSCs. The osteoblast-specific proteins included several extracellular matrix proteins and a network including 27 proteins that influence intracellular signaling (Wnt/Notch/Bone morphogenic protein pathways) and bone mineralization. The osteoblasts and MSCs showed only minor age- and sex-dependent proteomic differences. Finally, the osteoblast and MSC proteomic profiles were altered by ex vivo culture in serum-free media. We conclude that although the proteomic profiles of osteoblasts and MSCs show many similarities, we identified several osteoblast-specific extracellular matrix proteins and an osteoblast-specific intracellular signaling network. Therapeutic targeting of these proteins will possibly have minor effects on MSCs. Furthermore, the use of ex vivo cultured osteoblasts/MSCs in clinical medicine will require careful standardization of the ex vivo handling of the cells.
Collapse
Affiliation(s)
- Elise Aasebø
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway; (E.A.); (A.K.B.)
- Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5020 Bergen, Norway; (M.H.-V.); (E.B.); (F.S.B.); (F.S.)
| | - Annette K. Brenner
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway; (E.A.); (A.K.B.)
| | - Maria Hernandez-Valladares
- Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5020 Bergen, Norway; (M.H.-V.); (E.B.); (F.S.B.); (F.S.)
| | - Even Birkeland
- Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5020 Bergen, Norway; (M.H.-V.); (E.B.); (F.S.B.); (F.S.)
| | - Frode S. Berven
- Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5020 Bergen, Norway; (M.H.-V.); (E.B.); (F.S.B.); (F.S.)
| | - Frode Selheim
- Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5020 Bergen, Norway; (M.H.-V.); (E.B.); (F.S.B.); (F.S.)
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway; (E.A.); (A.K.B.)
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Correspondence:
| |
Collapse
|
35
|
Liang B, Shen X, Lan C, Lin Y, Li C, Zhong S, Yan S. Glycolipid toxicity induces osteogenic dysfunction via the TLR4/S100B pathway. Int Immunopharmacol 2021; 97:107792. [PMID: 34051593 DOI: 10.1016/j.intimp.2021.107792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 01/22/2023]
Abstract
Diabetes can cause bone metabolism disorders and osteoporosis. The occurrence of both diabetes mellitus and osteoporosis increases the disability and mortality of elderly individuals due to pathological fracture. Abnormal metabolism of nutrientsis considered to be one of the important mechanisms of diabetes mellitus-induced osteoporosis. This study preliminarily explored the roles of TLR4 (Toll-like receptor 4) and S100B in osteogenic dysfunction induced by glycolipid toxicity. In this study, a diabetic rat model and TLR4-knockdown diabetic rat model were used in vivo. MC3T3-E1 cells in a high glucose and palmitic acid environment were used as glycolipid toxicity cell models in vitro. We investigated the effects of TLR4 and S100B on osteogenesis by overexpression or inhibition of TLR4 and S100B in vitro. We found that when TLR4 or S100B was inhibited, ALP and OCN were significantly up-regulated and p-ERK was significantly down regulated in the glycolipid model. These results suggest that TLR4/S100B may play a role in reducing glycolipid toxicity by regulating ERK phosphorylation.
Collapse
Affiliation(s)
- Bo Liang
- Department of Endocrinology, M.D. Candidate, The First Affiliated Hospital of Fujian Medical University, China; Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, China
| | - Ximei Shen
- Department of Endocrinology, M.D. Candidate, The First Affiliated Hospital of Fujian Medical University, China; Diabetes Research Institute of Fujian Province, Fuzhou, Fujian, China
| | - Chao Lan
- Department of Endocrinology, M.D. Candidate, The First Affiliated Hospital of Fujian Medical University, China
| | - Youfen Lin
- Department of Endocrinology, M.D. Candidate, The First Affiliated Hospital of Fujian Medical University, China
| | - Chuanchuan Li
- Department of Endocrinology, M.D. Candidate, The First Affiliated Hospital of Fujian Medical University, China
| | - Shuai Zhong
- Department of Endocrinology, M.D. Candidate, The First Affiliated Hospital of Fujian Medical University, China
| | - Sunjie Yan
- Department of Endocrinology, M.D. Candidate, The First Affiliated Hospital of Fujian Medical University, China; Diabetes Research Institute of Fujian Province, Fuzhou, Fujian, China.
| |
Collapse
|
36
|
Kanegasaki S, Tsuchiya T. A possible way to prevent the progression of bone lesions in multiple myeloma via Src-homology-region-2-domain-containing-phosphatase-1 activation. J Cell Biochem 2021; 122:1313-1325. [PMID: 33969922 DOI: 10.1002/jcb.29949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/01/2021] [Accepted: 04/26/2021] [Indexed: 11/08/2022]
Abstract
On the basis of our recent findings, in which multiple receptor-mediated mast cell functions are regulated via a common signaling cascade, we posit that the formation and functioning of osteoclasts are also controlled by a similar common mechanism. These cells are derived from the same granulocyte/monocyte progenitors and share multiple receptors except those that are cell-specific. In both types of cells, all known receptors reside in lipid rafts, form multiprotein complexes with recruited signaling molecules, and are internalized upon receptor engagement. Signal transduction proceeds in a chain of protein phosphorylations, where adaptor protein LAT (linker-for-activation-of-T-cells) plays a central role. The key kinase that associates LAT phosphorylation and lipid raft internalization is Syk (spleen-tyrosine-kinase) and/or an Src-family-kinase, most probably Lck (lymphocyte-specific-protein-tyrosine-kinase). Dephosphorylation of phosphorylated Syk and Lck by activated SHP-1 (Src-homology-region-2-domain-containing-phosphatase-1) terminates the signal transduction and endocytosis of receptors, resulting in inhibition of osteoclast differentiation and other functions. In malignant plasma cells (MM cells) too, SHP-1 plays a similar indispensable role in controlling signal transduction required for survival and proliferation, though BLNK (B-cell-linker-protein), a functional equivalent of LAT and SLP-76 (SH2-domain-containing-leukocyte-protein-of-76-kDa) in B cells, is used instead of LAT. In both osteoclasts and MM cells, therefore, activated SHP-1 acts negatively in receptor-mediated cellular functions. In osteoblasts, however, activated SHP-1 promotes differentiation, osteocalcin generation, and mineralization by preventing both downregulation of transcription factors, such as Ostrix and Runx2, and degradation of β-catenin required for activation of the transcription factors. SHP-1 is activated by tyrosine phosphorylation and micromolar doses (M-dose) of CCRI-ligand-induced SHP-1 activation. Small molecular compounds, such as A770041, Sorafenib, Nitedanib, and Dovitinib, relieve the autoinhibitory conformation. Activation of SHP-1 by M-dose CCRI ligands or the compounds described may prevent the progression of bone lesions in MM.
Collapse
Affiliation(s)
- Shiro Kanegasaki
- Department of Lipid Signaling, Research Institute National Center for Global Health and Medicine, Tokyo, Japan
| | - Tomoko Tsuchiya
- Department of Molecular Immunology and Inflammation, Research Institute National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
37
|
Cao Y, Han X, Wang Z, Liu Y, Wang Y, Zhang R, Ye J, Zou L, Dai W. TLR4 knockout ameliorates streptozotocin-induced osteoporosis in a mouse model of diabetes. Biochem Biophys Res Commun 2021; 546:185-191. [PMID: 33601314 DOI: 10.1016/j.bbrc.2021.01.102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/28/2021] [Indexed: 12/28/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is characterized by hyperglycemia manifesting as insufficient insulin. Toll-like receptor-4 (TLR4) has been implicated in diabetic osteoporosis. We established streptozotocin (STZ)-induced diabetic mouse model and examined the relevant osteoporosis factors in different experimental groups, the WT-CON group, WT-STZ group, KO-CON group and KO-STZ group, respectively. No obvious protection of TLR4 deletion was shown in mice with diabetes. There was no obvious difference in the body weight or blood glucose concentration between WT-STZ group and KO-STZ group. However, TLR4 deletion reduced the receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation. Furthermore, TLR4 knockout attenuated STZ-induced diabetic osteoporosis via inhibiting osteoblasts and pre-inflammation factors mediated by the NF-κB pathway. TLR4 deletion ameliorated STZ-induced diabetic osteoporosis in mice, and TLR4 may be used as a potential therapeutic target for the treatment of diabetic osteoporosis.
Collapse
Affiliation(s)
- Yonghong Cao
- Department of Endocrinology, The Second People's Hospital of Hefei, Guangde Road, Hefei, 230011, Anhui, China
| | - Xiaofang Han
- Department of Endocrinology, The Second People's Hospital of Hefei, Guangde Road, Hefei, 230011, Anhui, China
| | - Zhenzhen Wang
- Department of Endocrinology, The Second People's Hospital of Hefei, Guangde Road, Hefei, 230011, Anhui, China
| | - Yan Liu
- Department of Endocrinology, The Second People's Hospital of Hefei, Guangde Road, Hefei, 230011, Anhui, China
| | - Yunsheng Wang
- Department of Endocrinology, The Second People's Hospital of Hefei, Guangde Road, Hefei, 230011, Anhui, China
| | - Rong Zhang
- Department of Endocrinology, The Second People's Hospital of Hefei, Guangde Road, Hefei, 230011, Anhui, China
| | - Jun Ye
- Department of Endocrinology, The Second People's Hospital of Hefei, Guangde Road, Hefei, 230011, Anhui, China
| | - Lingling Zou
- Department of Endocrinology, The Second People's Hospital of Hefei, Guangde Road, Hefei, 230011, Anhui, China
| | - Wu Dai
- Department of Endocrinology, The Second People's Hospital of Hefei, Guangde Road, Hefei, 230011, Anhui, China.
| |
Collapse
|
38
|
Luchetti MM, Ciccia F, Avellini C, Benfaremo D, Rizzo A, Spadoni T, Svegliati S, Marzioni D, Santinelli A, Costantini A, Viola N, Berretta A, Ciferri M, Mattioli Belmonte Cima M, Mosca P, Benedetti A, Gabrielli A. Gut epithelial impairment, microbial translocation and immune system activation in inflammatory bowel disease-associated spondyloarthritis. Rheumatology (Oxford) 2021; 60:92-102. [PMID: 32442267 DOI: 10.1093/rheumatology/keaa164] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Gut microbiota has been widely reported to be involved in systemic inflammation through microbial translocation and T cell activation in several diseases. In this work we aimed to investigate bacterial infiltration and epithelial impairment in the gut of patients with IBD-associated SpA (SpA-IBD), as well as the relationship of microbial translocation with immune system activation and their putative role in the pathogenesis of joint inflammation in IBD patients. METHODS Tight-junction proteins (TJPs) occludin and claudin-1/-4 and bacteria were assessed by real-time PCR analysis and immunohistochemical staining of the ileum. Intestinal fatty acid binding protein (I-FABP), lipopolysaccharides (LPS), soluble CD14 (sCD14), sclerostin and anti-sclerostin antibodies (anti-sclerostin-IgG) were assayed with ELISAs and peripheral mononuclear blood cells with flow cytometry. LPS and sCD14 were used in vitro to stimulate a human osteoblast cell line. RESULTS Compared with IBD, ileal samples from SpA-IBD patients showed bacterial infiltration, epithelial damage and downregulation of TJPs. In sera, they showed higher serum levels of I-FABP, LPS, sCD14 (the latter correlating with sclerostin and anti-sclerostin-IgG) and higher CD80+/CD163+ and lower CD14+ mononuclear cells. In vitro experiments demonstrated that only the LPS and sCD14 synergic action downregulates sclerostin expression in osteoblast cells. CONCLUSION SpA-IBD patients are characterized by gut epithelium impairment with consequent translocation of microbial products into the bloodstream, immune system activation and an increase of specific soluble biomarkers. These findings suggest that gut dysbiosis could be involved in the pathogenesis of SpA-IBD and it could hopefully prompt the use of these biomarkers in the follow-up and management of IBD patients.
Collapse
Affiliation(s)
- Michele Maria Luchetti
- Dipartimento di Scienze Cliniche e Molecolari, Clinica Medica, Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Ciccia
- Dipartimento Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Chiara Avellini
- Dipartimento di Scienze Cliniche e Molecolari, Clinica Medica, Università Politecnica delle Marche, Ancona, Italy
| | - Devis Benfaremo
- Dipartimento di Scienze Cliniche e Molecolari, Clinica Medica, Università Politecnica delle Marche, Ancona, Italy
| | - Aroldo Rizzo
- Unità di Patologia, Ospedale Cervello, Palermo, Italia
| | - Tatiana Spadoni
- Dipartimento di Scienze Cliniche e Molecolari, Clinica Medica, Università Politecnica delle Marche, Ancona, Italy
| | - Silvia Svegliati
- Dipartimento di Scienze Cliniche e Molecolari, Clinica Medica, Università Politecnica delle Marche, Ancona, Italy
| | - Daniela Marzioni
- Dipartimento di Medicina Sperimentale e Clinica, Anatomia Umana, Università Politecnica delle Marche, Ancona, Italy
| | - Alfredo Santinelli
- Anatomia Patologica, Azienda Ospedaliera Ospedali Riuniti Marche Nord, Pesaro, Italy
| | - Andrea Costantini
- Servizio di Immunologia Clinica, Azienda Ospedaliero-Universitaria "Umberto I-G.M. Lancisi-G. Salesi", Ancona, Italy
| | - Nadia Viola
- Servizio di Immunologia Clinica, Azienda Ospedaliero-Universitaria "Umberto I-G.M. Lancisi-G. Salesi", Ancona, Italy
| | - Antonella Berretta
- Servizio di Immunologia Clinica, Azienda Ospedaliero-Universitaria "Umberto I-G.M. Lancisi-G. Salesi", Ancona, Italy
| | - Monia Ciferri
- Dipartimento di Scienze Cliniche e Molecolari, Clinica Medica, Università Politecnica delle Marche, Ancona, Italy
| | | | - Piergiorgio Mosca
- IBD Unit, Azienda Ospedaliero-Universitaria "Umberto I-G.M. Lancisi-G. Salesi", Ancona, Italy and
| | - Antonio Benedetti
- IBD Unit, Azienda Ospedaliero-Universitaria "Umberto I-G.M. Lancisi-G. Salesi", Ancona, Italy and.,Dipartimento di Scienze Cliniche e Molecolari, Clinica di Gastroenterologia, Università Politecnica delle Marche, Ancona, Italy
| | - Armando Gabrielli
- Dipartimento di Scienze Cliniche e Molecolari, Clinica Medica, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
39
|
Cousminer DL, Wagley Y, Pippin JA, Elhakeem A, Way GP, Pahl MC, McCormack SE, Chesi A, Mitchell JA, Kindler JM, Baird D, Hartley A, Howe L, Kalkwarf HJ, Lappe JM, Lu S, Leonard ME, Johnson ME, Hakonarson H, Gilsanz V, Shepherd JA, Oberfield SE, Greene CS, Kelly A, Lawlor DA, Voight BF, Wells AD, Zemel BS, Hankenson KD, Grant SFA. Genome-wide association study implicates novel loci and reveals candidate effector genes for longitudinal pediatric bone accrual. Genome Biol 2021; 22:1. [PMID: 33397451 PMCID: PMC7780623 DOI: 10.1186/s13059-020-02207-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 11/18/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Bone accrual impacts lifelong skeletal health, but genetic discovery has been primarily limited to cross-sectional study designs and hampered by uncertainty about target effector genes. Here, we capture this dynamic phenotype by modeling longitudinal bone accrual across 11,000 bone scans in a cohort of healthy children and adolescents, followed by genome-wide association studies (GWAS) and variant-to-gene mapping with functional follow-up. RESULTS We identify 40 loci, 35 not previously reported, with various degrees of supportive evidence, half residing in topological associated domains harboring known bone genes. Of several loci potentially associated with later-life fracture risk, a candidate SNP lookup provides the most compelling evidence for rs11195210 (SMC3). Variant-to-gene mapping combining ATAC-seq to assay open chromatin with high-resolution promoter-focused Capture C identifies contacts between GWAS loci and nearby gene promoters. siRNA knockdown of gene expression supports the putative effector gene at three specific loci in two osteoblast cell models. Finally, using CRISPR-Cas9 genome editing, we confirm that the immediate genomic region harboring the putative causal SNP influences PRPF38A expression, a location which is predicted to coincide with a set of binding sites for relevant transcription factors. CONCLUSIONS Using a new longitudinal approach, we expand the number of genetic loci putatively associated with pediatric bone gain. Functional follow-up in appropriate cell models finds novel candidate genes impacting bone accrual. Our data also raise the possibility that the cell fate decision between osteogenic and adipogenic lineages is important in normal bone accrual.
Collapse
Affiliation(s)
- Diana L Cousminer
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Yadav Wagley
- Department of Orthopedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - James A Pippin
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ahmed Elhakeem
- MRC Integrative Epidemiology Unit, Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Gregory P Way
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, 02140, USA
| | - Matthew C Pahl
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shana E McCormack
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jonathan A Mitchell
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joseph M Kindler
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Denis Baird
- MRC Integrative Epidemiology Unit, Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - April Hartley
- MRC Integrative Epidemiology Unit, Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Laura Howe
- MRC Integrative Epidemiology Unit, Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Heidi J Kalkwarf
- Department of Pediatrics, Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, OH, USA
| | - Joan M Lappe
- Department of Medicine and College of Nursing, Creighton University School of Medicine, Omaha, NB, USA
| | - Sumei Lu
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michelle E Leonard
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Matthew E Johnson
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Vicente Gilsanz
- Center for Endocrinology, Diabetes & Metabolism, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - John A Shepherd
- Department of Epidemiology and Population Science, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Sharon E Oberfield
- Division of Pediatric Endocrinology, Columbia University Medical Center, New York, NY, USA
| | - Casey S Greene
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Childhood Cancer Data Lab, Alex's Lemonade Stand Foundation, Philadelphia, PA, USA
| | - Andrea Kelly
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit, Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Benjamin F Voight
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Babette S Zemel
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kurt D Hankenson
- Department of Orthopedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Struan F A Grant
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
40
|
Venugopal M, Nambiar J, Nair BG. Anacardic acid-mediated regulation of osteoblast differentiation involves mitigation of inflammasome activation pathways. Mol Cell Biochem 2020; 476:819-829. [PMID: 33090336 DOI: 10.1007/s11010-020-03947-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/10/2020] [Indexed: 10/23/2022]
Abstract
Disruption of the finely tuned osteoblast-osteoclast balance is the underlying basis of several inflammatory bone diseases, such as osteomyelitis, osteoporosis, and septic arthritis. Prolonged and unrestrained exposure to inflammatory environment results in reduction of bone mineral density by downregulating osteoblast differentiation. Earlier studies from our laboratory have identified that Anacardic acid (AA), a constituent of Cashew nut shell liquid that is used widely in traditional medicine, has potential inhibitory effect on gelatinases (MMP2 and MMP9) which are over-expressed in numerous inflammatory conditions (Omanakuttan et al. in Mol Pharmacol, 2012 and Nambiar et al. in Exp Cell Res, 2016). The study demonstrated for the first time that AA promotes osteoblast differentiation in lipopolysaccharide-treated osteosarcoma cells (MG63) by upregulating specific markers, like osteocalcin, receptor activator of NF-κB ligand, and alkaline phosphatase. Furthermore, expression of the negative regulators, such as nuclear factor-κB, matrix metalloproteinases (MMPs), namely MMP13, and MMP1, along with several inflammatory markers, such as Interleukin-1β and Nod-like receptor protein 3 were downregulated by AA. Taken together, AA expounds as a novel template for development of potential pharmacological therapeutics for inflammatory bone diseases.
Collapse
Affiliation(s)
- Meera Venugopal
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O, Kollam, Kerala, India, 690525
| | - Jyotsna Nambiar
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O, Kollam, Kerala, India, 690525
| | - Bipin G Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O, Kollam, Kerala, India, 690525.
| |
Collapse
|
41
|
Chen H, Guo M, Yue D, Zhao J, Zhou Y, Chen C, Liang G, Xu L. MicroRNA-7 negatively regulates Toll-like receptor 4 signaling pathway through FAM177A. Immunology 2020; 162:44-57. [PMID: 32852789 DOI: 10.1111/imm.13252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 07/08/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptor (TLR) 4 signalling is critical for innate immunoinflammatory response and widely triggers the development of various types of clinical diseases. MicroRNA-7 (miR-7) is well documented to play an important regulatory role in various biological events. However, the exact role of miR-7 in TLR4 signalling pathway remains to be fully elucidated. In the present study, we found that miR-7 expression in TLR4 signalling-activated bone marrow-derived macrophages (BMDMs) stimulated by LPS was dramatically increased. Importantly, miR-7 deficiency significantly enhanced the production of related inflammatory cytokines including IL-1β, IL-6 and IL-12, as well as TNF-α, on LPS-activated BMDMs, accompanied by elevated transduction of TLR4 signalling including Myd88-dependent and Myd88-independent pathways, whereas miR-7 overexpression significantly decreased the transduction of TLR4 signalling and the production of related inflammatory cytokines. Mechanistically, we identified family with sequence similarity 177, member A (FAM177A) as a novel target molecule of miR-7. Furthermore, down-regulation of FAM177A using RNAi could impair the transduction of TLR4 signalling. Finally, down-regulation of FAM177A also reversed the effect of miR-7 deficiency on TLR4 signalling transduction and production of related inflammatory cytokines on BMDMs. Therefore, we provide the new evidence that miR-7 acts as a novel negative fine-tuner in regulating TLR4 signalling pathways by targeting FAM177A, which might throw light on the basal understanding on the regulatory mechanism of TLR4 signalling and benefit the development of therapeutic strategies against related clinical diseases.
Collapse
Affiliation(s)
- Huizi Chen
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Dongxu Yue
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Ya Zhou
- Department of Medical Physics, Zunyi Medical University, Zunyi, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Guiyou Liang
- Department of Cardiovascular Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lin Xu
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
42
|
Ichise Y, Saegusa J, Tanaka-Natsui S, Naka I, Hayashi S, Kuroda R, Morinobu A. Soluble CD14 Induces Pro-inflammatory Cytokines in Rheumatoid Arthritis Fibroblast-Like Synovial Cells via Toll-Like Receptor 4. Cells 2020; 9:E1689. [PMID: 32674360 PMCID: PMC7408546 DOI: 10.3390/cells9071689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Synovial fluids of rheumatoid arthritis (RA) patients commonly contain high concentrations of soluble CD14 (sCD14). To investigate its potential role in RA pathogenesis, we tested whether sCD14 binding transmits a signal to fibroblast-like synoviocytes from RA patients (RA-FLS). METHODS The induction of pro-inflammatory cytokines, chemokines, and mediators by sCD14 stimulation of RA-FLS was quantified by real-time PCR and ELISA. Cell proliferation was assessed by the BrdU assay. LPS-RS, a Toll-like receptor 4 (TLR-4) antagonist, was used to block TLR-4 signaling. RESULTS Soluble CD14 induced the expression of IL-6 mRNA and secretion of the protein. The expression of other pro-inflammatory cytokines and mediators, such as TNF-α, IL-8, intercellular adhesion molecule-1 (ICAM-1), MMP-3, and RANK ligand (RANKL), was also induced by sCD14. In addition, sCD14 stimulation promoted RA-FLS proliferation. LPS-RS abolished IL-6, IL-8, and ICAM-1 mRNA induction by sCD14 in RA-FLS. On the other hand, TNF-α and IL-17A increased TLR-4 expression by RA-FLS and amplified their sCD14-induced IL-6 expression. CONCLUSIONS Soluble CD14 transmits inflammatory signals to RA-FLS via TLR-4. The effects of sCD14 may be augmented in inflammatory milieu. Our results suggest that sCD14 is involved in the pathogenesis of RA and may be a novel therapeutic target.
Collapse
Affiliation(s)
- Yoshihide Ichise
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.I.); (S.T.-N.); (I.N.); (A.M.)
| | - Jun Saegusa
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.I.); (S.T.-N.); (I.N.); (A.M.)
- Department of Clinical Laboratory, Kobe University Hospital, Kobe 650-0017, Japan
| | - Shino Tanaka-Natsui
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.I.); (S.T.-N.); (I.N.); (A.M.)
| | - Ikuko Naka
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.I.); (S.T.-N.); (I.N.); (A.M.)
| | - Shinya Hayashi
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (S.H.); (R.K.)
| | - Ryosuke Kuroda
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (S.H.); (R.K.)
| | - Akio Morinobu
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.I.); (S.T.-N.); (I.N.); (A.M.)
| |
Collapse
|
43
|
Shahen VA, Gerbaix M, Koeppenkastrop S, Lim SF, McFarlane KE, Nguyen ANL, Peng XY, Weiss NB, Brennan-Speranza TC. Multifactorial effects of hyperglycaemia, hyperinsulinemia and inflammation on bone remodelling in type 2 diabetes mellitus. Cytokine Growth Factor Rev 2020; 55:109-118. [PMID: 32354674 DOI: 10.1016/j.cytogfr.2020.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022]
Abstract
Bones undergo continuous cycles of bone remodelling that rely on the balance between bone formation and resorption. This balance allows the bone to adapt to changes in mechanical loads and repair microdamages. However, this balance is susceptible to upset in various conditions, leading to impaired bone remodelling and abnormal bones. This is usually indicated by abnormal bone mineral density (BMD), an indicator of bone strength. Despite this, patients with type 2 diabetes mellitus (T2DM) exhibit normal to high BMD, yet still suffer from an increased risk of fractures. The activity of the bone cells is also altered as indicated by the reduced levels of bone turnover markers in T2DM observed in the circulation. The underlying mechanisms behind these skeletal outcomes in patients with T2DM remain unclear. This review summarises recent findings regarding inflammatory cytokine factors associated with T2DM to understand the mechanisms involved and considers potential therapeutic interventions.
Collapse
Affiliation(s)
- V A Shahen
- Department of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
| | - M Gerbaix
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital & Faculty of Medicine, Geneva, Switzerland
| | - S Koeppenkastrop
- Department of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
| | - S F Lim
- Department of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
| | - K E McFarlane
- Department of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
| | - Amanda N L Nguyen
- Department of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
| | - X Y Peng
- Department of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
| | - N B Weiss
- Department of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
| | - T C Brennan-Speranza
- Department of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia; School of Public Health, Faculty of Medicine and Health, The University of Sydney, Australia.
| |
Collapse
|
44
|
S100A9 Increases IL-6 and RANKL Expressions through MAPKs and STAT3 Signaling Pathways in Osteocyte-Like Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7149408. [PMID: 32149126 PMCID: PMC7053464 DOI: 10.1155/2020/7149408] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/23/2019] [Accepted: 01/22/2020] [Indexed: 02/02/2023]
Abstract
Objective Calprotectin is a heterocomplex of S100A8 and S100A9 and is mainly secreted from neutrophils, monocytes, and chondrocytes in inflammatory condition. Calprotectin binds to RAGE and TLR4 and induces the expression of proinflammatory chemokines and cytokines in various cells. Periodontitis is a chronic inflammatory disease that leads to gingival inflammation and alveolar bone resorption. Calprotectin levels in gingival crevicular fluid of periodontitis patients are higher than healthy patients. In the present study, the effects of S100A8 and S100A9 on the expressions of proinflammatory cytokines and bone metabolism-related factors in mouse osteocyte-like cells (MLO-Y4-A2) were investigated. Design MLO-Y4-A2 cells were treated with S100A8 and S100A9, and the expressions of RAGE, TLR4, RANKL, and several inflammatory cytokines were analyzed by PCR and Western blotting or ELISA methods. To investigate the intracellular signaling pathways, phosphorylation of MAPK and STAT3 was determined by Western blotting, and chemical specific inhibitors and siRNAs were used. Results Expressions of IL-6 and RANKL were increased by treatment with S100A9 but not S100A8. However, both S100A8 and S100A9 did not change expression of IL-1β, IL-8, and TNF-α. Although RAGE and TLR4 expressions were not upregulated by S100A9 treatment, transfection of siRNA for RAGE and TLR4 significantly decreased IL-6 and RANKL expressions. In addition, S100A9 activated p38, ERK, and STAT3 signaling pathways, and inhibitors for these factors significantly decreased S100A9-induced IL-6 and RANKL expressions. Conclusions These results indicated that S100A9 induces IL-6 and RANKL production via engagement with RAGE and TLR4 signalings in osteocytes and suggested that S100A9 may play important roles in the periodontal alveolar bone destruction.
Collapse
|
45
|
Samarpita S, Kim JY, Rasool MK, Kim KS. Investigation of toll-like receptor (TLR) 4 inhibitor TAK-242 as a new potential anti-rheumatoid arthritis drug. Arthritis Res Ther 2020; 22:16. [PMID: 31973752 PMCID: PMC6979396 DOI: 10.1186/s13075-020-2097-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 01/07/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Proper blocking of toll-like receptor (TLR) activation during disease progression has been reported to have inhibitory effect on the pathogenesis of rheumatoid arthritis (RA). We tested whether the TLR4 inhibitor TAK-242 had potential as a remedy for rheumatoid arthritis. METHODS The therapeutic effect of TAK-242 was tested in vitro using the human rheumatoid fibroblast-like synoviocyte (FLS) line MH7A or primary human FLS and in an adjuvant-induced arthritis (AIA) rat model. RESULTS TAK-242 dose dependently inhibited the increased expression of IL-6, IL-8, MMP-1, and VEGF in LPS-stimulated MH7A cells. It also inhibited the expression of IL-6 and IL-8 in poly(I:C), TLR3 activator-stimulated primary FLS, but not in IL-1β-stimulated primary FLS. These findings suggest that TAK-242 blocks a specific signaling pathway to some degree. Further, TAK-242 slightly inhibited mobilization of NF-κB into nuclei. In the AIA rat model, TAK-242 significantly reversed the body weight and paw thickness of AIA rats to the normal state at a dose of 5 mg/kg, but not at 3 mg/kg, and reduced the increased serum level of IL-6 and VEGF in AIA rats. It also significantly ameliorated inflammatory symptoms of joint tissues at day 21 of treatment, according to histology and RT-PCR. CONCLUSIONS Based on the drug repositioning concept, TAK-242, which is used for the treatment of TLR4-mediated inflammatory diseases, shows potential for cost-effective development as a remedy for rheumatoid arthritis or to control the progression of RA.
Collapse
Affiliation(s)
- Snigdha Samarpita
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Joo Young Kim
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University School of Medicine, Kyunghee-daero 23, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Mahaboob Khan Rasool
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Kyoung Soo Kim
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University School of Medicine, Kyunghee-daero 23, Dongdaemun-gu, Seoul, 02447, South Korea. .,East-West Bone and Joint Disease Research Institute, Kyung Hee University Hospital at Gangdong, Gandong-gu, Seoul, 05278, South Korea.
| |
Collapse
|
46
|
Xu N, Wang Y, Zhao S, Jiao T, Xue H, Shan F, Zhang N. Naltrexone (NTX) relieves inflammation in the collagen-induced- arthritis (CIA) rat models through regulating TLR4/NFκB signaling pathway. Int Immunopharmacol 2019; 79:106056. [PMID: 31865244 DOI: 10.1016/j.intimp.2019.106056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Our aim was to study the efficacy and mechanism by which NTX alleviate arthritis in CIA rat models in vivo. METHODS Female Wistar rats were randomly divided into 6 groups, their weights were observed and the severity of arthritis and pathological changes were evaluated by HE staining. T lymphocyte subsets were detected by flow cytometry. The expression of cytokines was detected in peripheral serum by ELISA. Real time PCR, immunohistochemical staining and western blot analysis were utilized to detect the mRNA and protein expression of opioid receptors, TLR4, RANKL and /NF-κB in synovial tissue and the spleen. RESULTS The weight of the rats in the 10 mg/kg NTX group decreased the least, and had the least severe arthritis. CD4+ T cells, Th1 cells and Treg cells increased, and CD8+T cells, Th1 cells and Th17 cells decreased in the splenic lymphocytes. The expression of proinflammatory cytokines decreased, and the expression of anti-inflammatory cytokines increased. MOR and DOR were strongly expressed in the spleen, whereas KOR and DOR were strongly expressed in synovial tissue. The expression of TLR4, NF-κB and RANKL was reduced in the spleen and synovium in the NTX group. CONCLUSIONS NTX relieved the severity of arthritis in the CIA rat models at a concentration of 10 mg/kg by regulating T lymphocyte subsets and the expression of cytokines. NTX affected opioid receptors to inhibit the TLR4/NF-κB signaling pathway, regulating the systemic immune response and decreasing osteoclast differentiation, thereby alleviating inflammation and the erosion of articular cartilage along with bone tissue.
Collapse
Affiliation(s)
- Neili Xu
- Department of Rheumatology, Shengjing Hospital of China Medical University, China
| | - Yuejiao Wang
- Department of Rheumatology, Shengjing Hospital of China Medical University, China
| | - Shuai Zhao
- Department of Rheumatology, Shengjing Hospital of China Medical University, China
| | - Ting Jiao
- Department of Rheumatology, Shengjing Hospital of China Medical University, China
| | - Hongxia Xue
- Department of Rheumatology, Shengjing Hospital of China Medical University, China
| | - Fengping Shan
- Department of Immunology, College of Basic Medical Science, China Medical University, China
| | - Ning Zhang
- Department of Rheumatology, Shengjing Hospital of China Medical University, China.
| |
Collapse
|
47
|
Research Progress of Mechanisms and Drug Therapy For Atherosclerosis on Toll-Like Receptor Pathway. J Cardiovasc Pharmacol 2019; 74:379-388. [PMID: 31730559 DOI: 10.1097/fjc.0000000000000738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent reports have established atherosclerosis (AS) as a major factor in the pathogenetic process of cardiovascular diseases such as ischemic stroke and coronary heart disease. Although the possible pathogenesis of AS remains to be elucidated, a large number of investigations strongly suggest that the inhibition of toll-like receptors (TLRs) alleviates the severity of AS to some extent by suppressing vascular inflammation and the formation of atherosclerotic plaques. As pattern recognition receptors, TLRs occupy a vital position in innate immunity, mediating various signaling pathways in infective and sterile inflammation. This review summarizes the available data on the research progress of AS and the latest antiatherosclerotic drugs associated with TLR pathway.
Collapse
|
48
|
Franco-Trepat E, Guillán-Fresco M, Alonso-Pérez A, Jorge-Mora A, Francisco V, Gualillo O, Gómez R. Visfatin Connection: Present and Future in Osteoarthritis and Osteoporosis. J Clin Med 2019; 8:jcm8081178. [PMID: 31394795 PMCID: PMC6723538 DOI: 10.3390/jcm8081178] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 07/29/2019] [Accepted: 08/04/2019] [Indexed: 12/15/2022] Open
Abstract
Musculoskeletal pathologies (MSPs) such as osteoarthritis (OA) and osteoporosis (OP), are a set of disorders that cause severe pain, motion difficulties, and even permanent disability. In developed countries, the current incidence of MSPs reaches about one in four adults and keeps escalating as a consequence of aging and sedentarism. Interestingly, OA and OP have been closely related to similar risk factors, including aging, metabolic alterations, and inflammation. Visfatin, an adipokine with an inflammatory and catabolic profile, has been associated with several OA and OP metabolic risk factors, such as obesity, insulin resistance, and type II diabetes. Furthermore, visfatin has been associated with the innate immune receptor toll-like receptor 4 (TLR4), which plays a key role in cartilage and bone inflammatory and catabolic responses. Moreover, visfatin has been related to several OA and OP pathologic features. The aim of this work is to bring together basic and clinical data regarding the common role of visfatin in these pathologies and their major shared risk factors. Finally, we discuss the pitfalls of visfatin as a potential biomarker and therapeutic target in both pathologies.
Collapse
Affiliation(s)
- Eloi Franco-Trepat
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain
| | - María Guillán-Fresco
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain
| | - Ana Alonso-Pérez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain
| | - Alberto Jorge-Mora
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain
| | - Vera Francisco
- Research laboratory 9, Institute IDIS, Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain
| | - Oreste Gualillo
- Research laboratory 9, Institute IDIS, Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain
| | - Rodolfo Gómez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain.
| |
Collapse
|
49
|
Huang X, Cen X, Zhang B, Liao Y, Zhu G, Liu J, Zhao Z. Prospect of circular RNA in osteogenesis: A novel orchestrator of signaling pathways. J Cell Physiol 2019; 234:21450-21459. [PMID: 31131457 DOI: 10.1002/jcp.28866] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Xinqi Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu Sichuan China
- Department of Orthodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Xiao Cen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu Sichuan China
- Department of Temporomandibular Joint, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Bo Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu Sichuan China
- Department of Orthodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Yuwei Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu Sichuan China
- Department of Orthodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Guanyin Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu Sichuan China
- Department of Orthodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Jun Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu Sichuan China
- Department of Orthodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu Sichuan China
- Department of Orthodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| |
Collapse
|
50
|
Immunomodulatory effects exerted by Poria Cocos polysaccharides via TLR4/TRAF6/NF-κB signaling in vitro and in vivo. Biomed Pharmacother 2019; 112:108709. [DOI: 10.1016/j.biopha.2019.108709] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/16/2022] Open
|