1
|
MacMillan S, Burns DP, O'Halloran KD, Evans AM. SubSol-HIe is an AMPK-dependent hypoxia-responsive subnucleus of the nucleus tractus solitarius that coordinates the hypoxic ventilatory response and protects against apnoea in mice. Pflugers Arch 2024; 476:1087-1107. [PMID: 38635058 PMCID: PMC11166843 DOI: 10.1007/s00424-024-02957-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/24/2024] [Accepted: 03/31/2024] [Indexed: 04/19/2024]
Abstract
Functional magnetic resonance imaging (fMRI) suggests that the hypoxic ventilatory response is facilitated by the AMP-activated protein kinase (AMPK), not at the carotid bodies, but within a subnucleus (Bregma -7.5 to -7.1 mm) of the nucleus tractus solitarius that exhibits right-sided bilateral asymmetry. Here, we map this subnucleus using cFos expression as a surrogate for neuronal activation and mice in which the genes encoding the AMPK-α1 (Prkaa1) and AMPK-α2 (Prkaa2) catalytic subunits were deleted in catecholaminergic cells by Cre expression via the tyrosine hydroxylase promoter. Comparative analysis of brainstem sections, relative to controls, revealed that AMPK-α1/α2 deletion inhibited, with right-sided bilateral asymmetry, cFos expression in and thus activation of a neuronal cluster that partially spanned three interconnected anatomical nuclei adjacent to the area postrema: SolDL (Bregma -7.44 mm to -7.48 mm), SolDM (Bregma -7.44 mm to -7.48 mm) and SubP (Bregma -7.48 mm to -7.56 mm). This approximates the volume identified by fMRI. Moreover, these nuclei are known to be in receipt of carotid body afferent inputs, and catecholaminergic neurons of SubP and SolDL innervate aspects of the ventrolateral medulla responsible for respiratory rhythmogenesis. Accordingly, AMPK-α1/α2 deletion attenuated hypoxia-evoked increases in minute ventilation (normalised to metabolism), reductions in expiration time, and increases sigh frequency, but increased apnoea frequency during hypoxia. The metabolic response to hypoxia in AMPK-α1/α2 knockout mice and the brainstem and spinal cord catecholamine levels were equivalent to controls. We conclude that within the brainstem an AMPK-dependent, hypoxia-responsive subnucleus partially spans SubP, SolDM and SolDL, namely SubSol-HIe, and is critical to coordination of active expiration, the hypoxic ventilatory response and defence against apnoea.
Collapse
Affiliation(s)
- Sandy MacMillan
- Centre for Discovery Brain Sciences, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - David P Burns
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - A Mark Evans
- Centre for Discovery Brain Sciences, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
2
|
Evans AM. Of Mice and Men and Plethysmography Systems: Does LKB1 Determine the Set Point of Carotid Body Chemosensitivity and the Hypoxic Ventilatory Response? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1427:163-173. [PMID: 37322347 DOI: 10.1007/978-3-031-32371-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Our recent studies suggest that the level of liver kinase B1 (LKB1) expression in some way determines carotid body afferent discharge during hypoxia and to a lesser extent during hypercapnia. In short, phosphorylation by LKB1 of an as yet unidentified target(s) determines a set point for carotid body chemosensitivity. LKB1 is the principal kinase that activates the AMP-activated protein kinase (AMPK) during metabolic stresses, but conditional deletion of AMPK in catecholaminergic cells, including therein carotid body type I cells, has little or no effect on carotid body responses to hypoxia or hypercapnia. With AMPK excluded, the most likely target of LKB1 is one or other of the 12 AMPK-related kinases, which are constitutively phosphorylated by LKB1 and, in general, regulate gene expression. By contrast, the hypoxic ventilatory response is attenuated by either LKB1 or AMPK deletion in catecholaminergic cells, precipitating hypoventilation and apnea during hypoxia rather than hyperventilation. Moreover, LKB1, but not AMPK, deficiency causes Cheyne-Stokes-like breathing. This chapter will explore further the possible mechanisms that determine these outcomes.
Collapse
Affiliation(s)
- A Mark Evans
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
3
|
Moral-Sanz J, Lewis SA, MacMillan S, Meloni M, McClafferty H, Viollet B, Foretz M, Del-Pozo J, Mark Evans A. AMPK deficiency in smooth muscles causes persistent pulmonary hypertension of the new-born and premature death. Nat Commun 2022; 13:5034. [PMID: 36028487 PMCID: PMC9418192 DOI: 10.1038/s41467-022-32568-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/05/2022] [Indexed: 11/10/2022] Open
Abstract
AMPK has been reported to facilitate hypoxic pulmonary vasoconstriction but, paradoxically, its deficiency precipitates pulmonary hypertension. Here we show that AMPK-α1/α2 deficiency in smooth muscles promotes persistent pulmonary hypertension of the new-born. Accordingly, dual AMPK-α1/α2 deletion in smooth muscles causes premature death of mice after birth, associated with increased muscularisation and remodeling throughout the pulmonary arterial tree, reduced alveolar numbers and alveolar membrane thickening, but with no oedema. Spectral Doppler ultrasound indicates pulmonary hypertension and attenuated hypoxic pulmonary vasoconstriction. Age-dependent right ventricular pressure elevation, dilation and reduced cardiac output was also evident. KV1.5 potassium currents of pulmonary arterial myocytes were markedly smaller under normoxia, which is known to facilitate pulmonary hypertension. Mitochondrial fragmentation and reactive oxygen species accumulation was also evident. Importantly, there was no evidence of systemic vasculopathy or hypertension in these mice. Moreover, hypoxic pulmonary vasoconstriction was attenuated by AMPK-α1 or AMPK-α2 deletion without triggering pulmonary hypertension.
Collapse
Affiliation(s)
- Javier Moral-Sanz
- Centre for Discovery Brain Sciences and Cardiovascular Science, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Sophronia A Lewis
- Centre for Discovery Brain Sciences and Cardiovascular Science, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Sandy MacMillan
- Centre for Discovery Brain Sciences and Cardiovascular Science, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Marco Meloni
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Heather McClafferty
- Centre for Discovery Brain Sciences and Cardiovascular Science, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Benoit Viollet
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014, Paris, France
| | - Marc Foretz
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014, Paris, France
| | - Jorge Del-Pozo
- R(D)SVS, University of Edinburgh Easter Bush Campus, EH25 9RG, Roslin, Edinburgh, UK
| | - A Mark Evans
- Centre for Discovery Brain Sciences and Cardiovascular Science, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
4
|
Rosehart AC, Longden TA, Weir N, Fontaine JT, Joutel A, Dabertrand F. Prostaglandin E 2 Dilates Intracerebral Arterioles When Applied to Capillaries: Implications for Small Vessel Diseases. Front Aging Neurosci 2021; 13:695965. [PMID: 34483880 PMCID: PMC8414797 DOI: 10.3389/fnagi.2021.695965] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/15/2021] [Indexed: 11/24/2022] Open
Abstract
Prostaglandin E2 (PGE2) has been widely proposed to mediate neurovascular coupling by dilating brain parenchymal arterioles through activation of prostanoid EP4 receptors. However, our previous report that direct application of PGE2 induces an EP1-mediated constriction strongly argues against its direct action on arterioles during neurovascular coupling, the mechanisms sustaining functional hyperemia. Recent advances have highlighted the role of capillaries in sensing neuronal activity and propagating vasodilatory signals to the upstream penetrating parenchymal arteriole. Here, we examined the effect of capillary stimulation with PGE2 on upstream arteriolar diameter using an ex vivo capillary-parenchymal arteriole preparation and in vivo cerebral blood flow measurements with two-photon laser-scanning microscopy. We found that PGE2 caused upstream arteriolar dilation when applied onto capillaries with an EC50 of 70 nM. The response was inhibited by EP1 receptor antagonist and was greatly reduced, but not abolished, by blocking the strong inward-rectifier K+ channel. We further observed a blunted dilatory response to capillary stimulation with PGE2 in a genetic mouse model of cerebral small vessel disease with impaired functional hyperemia. This evidence casts previous findings in a different light, indicating that capillaries are the locus of PGE2 action to induce upstream arteriolar dilation in the control of brain blood flow, thereby providing a paradigm-shifting view that nonetheless remains coherent with the broad contours of a substantial body of existing literature.
Collapse
Affiliation(s)
- Amanda C. Rosehart
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Thomas A. Longden
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Nick Weir
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Jackson T. Fontaine
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Anne Joutel
- INSERM, UMR 1266, GHU Paris Psychiatrie et Neurosciences, Institute of Psychiatry and Neuroscience of Paris, University of Paris, Paris, France
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Fabrice Dabertrand
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
5
|
Evans AM, Hardie DG. AMPK and the Need to Breathe and Feed: What's the Matter with Oxygen? Int J Mol Sci 2020; 21:ijms21103518. [PMID: 32429235 PMCID: PMC7279029 DOI: 10.3390/ijms21103518] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
We live and to do so we must breathe and eat, so are we a combination of what we eat and breathe? Here, we will consider this question, and the role in this respect of the AMP-activated protein kinase (AMPK). Emerging evidence suggests that AMPK facilitates central and peripheral reflexes that coordinate breathing and oxygen supply, and contributes to the central regulation of feeding and food choice. We propose, therefore, that oxygen supply to the body is aligned with not only the quantity we eat, but also nutrient-based diet selection, and that the cell-specific expression pattern of AMPK subunit isoforms is critical to appropriate system alignment in this respect. Currently available information on how oxygen supply may be aligned with feeding and food choice, or vice versa, through our motivation to breathe and select particular nutrients is sparse, fragmented and lacks any integrated understanding. By addressing this, we aim to provide the foundations for a clinical perspective that reveals untapped potential, by highlighting how aberrant cell-specific changes in the expression of AMPK subunit isoforms could give rise, in part, to known associations between metabolic disease, such as obesity and type 2 diabetes, sleep-disordered breathing, pulmonary hypertension and acute respiratory distress syndrome.
Collapse
Affiliation(s)
- A. Mark Evans
- Centre for Discovery Brain Sciences and Cardiovascular Science, Edinburgh Medical School, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
- Correspondence:
| | - D. Grahame Hardie
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK;
| |
Collapse
|
6
|
AMPK breathing and oxygen supply. Respir Physiol Neurobiol 2019; 265:112-120. [DOI: 10.1016/j.resp.2018.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/06/2018] [Accepted: 08/31/2018] [Indexed: 01/28/2023]
|
7
|
Moral-Sanz J, Lewis SA, MacMillan S, Ross FA, Thomson A, Viollet B, Foretz M, Moran C, Hardie DG, Evans AM. The LKB1-AMPK-α1 signaling pathway triggers hypoxic pulmonary vasoconstriction downstream of mitochondria. Sci Signal 2018; 11:11/550/eaau0296. [PMID: 30279167 DOI: 10.1126/scisignal.aau0296] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hypoxic pulmonary vasoconstriction (HPV), which aids ventilation-perfusion matching in the lungs, is triggered by mechanisms intrinsic to pulmonary arterial smooth muscles. The unique sensitivity of these muscles to hypoxia is conferred by mitochondrial cytochrome c oxidase subunit 4 isoform 2, the inhibition of which has been proposed to trigger HPV through increased generation of mitochondrial reactive oxygen species. Contrary to this model, we have shown that the LKB1-AMPK-α1 signaling pathway is critical to HPV. Spectral Doppler ultrasound revealed that deletion of the AMPK-α1 catalytic subunit blocked HPV in mice during mild (8% O2) and severe (5% O2) hypoxia, whereas AMPK-α2 deletion attenuated HPV only during severe hypoxia. By contrast, neither of these genetic manipulations affected serotonin-induced reductions in pulmonary vascular flow. HPV was also attenuated by reduced expression of LKB1, a kinase that activates AMPK during energy stress, but not after deletion of CaMKK2, a kinase that activates AMPK in response to increases in cytoplasmic Ca2+ Fluorescence imaging of acutely isolated pulmonary arterial myocytes revealed that AMPK-α1 or AMPK-α2 deletion did not affect mitochondrial membrane potential during normoxia or hypoxia. However, deletion of AMPK-α1, but not of AMPK-α2, blocked hypoxia from inhibiting KV1.5, the classical "oxygen-sensing" K+ channel in pulmonary arterial myocytes. We conclude that LKB1-AMPK-α1 signaling pathways downstream of mitochondria are critical for the induction of HPV, in a manner also supported by AMPK-α2 during severe hypoxia.
Collapse
Affiliation(s)
- Javier Moral-Sanz
- Centre for Discovery Brain Sciences and Cardiovascular Science, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Sophronia A Lewis
- Centre for Discovery Brain Sciences and Cardiovascular Science, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Sandy MacMillan
- Centre for Discovery Brain Sciences and Cardiovascular Science, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Fiona A Ross
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Adrian Thomson
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Benoit Viollet
- Institut Cochin, INSERM U1016, Sorbonne Paris cité, 75014 Paris, France.,CNRS UMR 8104, Sorbonne Paris cité, 75014 Paris, France.,Université Paris Descartes, Sorbonne Paris cité, 75014 Paris, France
| | - Marc Foretz
- Institut Cochin, INSERM U1016, Sorbonne Paris cité, 75014 Paris, France.,CNRS UMR 8104, Sorbonne Paris cité, 75014 Paris, France.,Université Paris Descartes, Sorbonne Paris cité, 75014 Paris, France
| | - Carmel Moran
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - D Grahame Hardie
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - A Mark Evans
- Centre for Discovery Brain Sciences and Cardiovascular Science, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK.
| |
Collapse
|