1
|
Chen X, Yan X, Yu C, Chen QH, Bi L, Shan Z. PTSD Increases Risk for Hypertension Development Through PVN Activation and Vascular Dysfunction in Sprague Dawley Rats. Antioxidants (Basel) 2024; 13:1423. [PMID: 39594564 PMCID: PMC11590931 DOI: 10.3390/antiox13111423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/04/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
This study investigates the impact of single prolonged stress (SPS), a model of post-traumatic stress disorder (PTSD), on cardiovascular responses, hypothalamic paraventricular nucleus (PVN) activity, and vascular function to elucidate the mechanisms linking traumatic stress to hypertension. Although SPS did not directly cause chronic hypertension in male Sprague Dawley (SD) rats, it induced acute but transient increases in blood pressure and heart rate and significantly altered the expression of hypertension-associated genes, such as vasopressin, angiotensin II type 1 receptor (AT1R), and FOSL1 in the PVN. Notably, mitochondrial reactive oxygen species (mtROS) were predominantly elevated in the pre-autonomic regions of the PVN, colocalizing with AT1R- and FOSL1-expressing cells, suggesting that oxidative stress may amplify sympathetic activation and stress responses. SPS also increased mRNA levels of pro-inflammatory cytokines (TNFα and IL1β) and inducible nitric oxide synthase (iNOS) in the aorta, and impaired vascular reactivity to vasoconstrictor and vasodilator stimuli, reflecting compromised vascular function. These findings suggest that SPS-sensitize neuroendocrine, autonomic, and vascular pathways create a state of cardiovascular vulnerability that could predispose individuals to hypertension when exposed to additional stressors. Understanding these mechanisms provides critical insights into the pathophysiology of stress-related cardiovascular disorders and underscores the need for targeted therapeutic interventions that address oxidative stress and modulate altered PVN pathways to mitigate the cardiovascular impact of PTSD and related conditions.
Collapse
Affiliation(s)
- Xinqian Chen
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI 49931, USA; (X.C.); (Q.-h.C.)
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA; (X.Y.); (C.Y.)
| | - Xin Yan
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA; (X.Y.); (C.Y.)
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA
| | - Chunxiu Yu
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA; (X.Y.); (C.Y.)
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Qing-hui Chen
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI 49931, USA; (X.C.); (Q.-h.C.)
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA; (X.Y.); (C.Y.)
| | - Lanrong Bi
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA; (X.Y.); (C.Y.)
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA
| | - Zhiying Shan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI 49931, USA; (X.C.); (Q.-h.C.)
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA; (X.Y.); (C.Y.)
| |
Collapse
|
2
|
Ren S, Wang S, Lv S, Gao J, Mao Y, Liu Y, Xie Q, Zhang T, Zhao L, Shi J. The nociceptive inputs of the paraventricular hypothalamic nucleus in formalin stimulated mice. Neurosci Lett 2024; 841:137948. [PMID: 39179131 DOI: 10.1016/j.neulet.2024.137948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/03/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
The paraventricular hypothalamic nucleus (PVH) is an important neuroendocrine center involved in pain regulation, but the nociceptive afferent routes for the nucleus are still unclear. We examined the profile of PVH receiving injurious information by a combination of retrograde tracing with Fluoro-Gold (FG) and FOS expression induced by formalin stimuli. The result showed that formalin injection induced significantly increased expression of FOS in the PVH, among which oxytocin containing neurons are one neuronal phenotype. Immunofluorescent staining of FG and FOS revealed that double labeled neurons were strikingly distributed in the area 2 of the cingulate cortex (Cg2), the lateral septal nucleus (LS), the periaqueductal gray (PAG), the posterior hypothalamic area (PH), and the lateral parabrachial nucleus (LPB). In the five regions, LPB had the biggest number and the highest ratio of FOS expression in FG labeled neurons, with main subnuclei distribution in the external, superior, dorsal, and central parts. Further immunofluorescent triple staining disclosed that about one third of FG and FOS double labeled neurons in the LPB were immunoreactive for calcitonin gene related peptide (CGRP). In conclusion, the present study demonstrates the nociceptive input profile of the PVH area under inflammatory pain and suggests that neurons in the LPB may play essential roles in transmitting noxious information to the PVH.
Collapse
Affiliation(s)
- Shuting Ren
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China; Medical School of Yan'an University, Yan'an 716000, China
| | - Shumin Wang
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China; Medical School of Yan'an University, Yan'an 716000, China
| | - Siting Lv
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China; Medical School of Yan'an University, Yan'an 716000, China
| | - Jiaying Gao
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China; Student Brigade, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Yajie Mao
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China; Student Brigade, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Yuankun Liu
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China; Medical School of Yan'an University, Yan'an 716000, China
| | - Qiongyao Xie
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China; Student Brigade, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Ting Zhang
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Lin Zhao
- Medical School of Yan'an University, Yan'an 716000, China.
| | - Juan Shi
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
3
|
Wang P, Mi Y, Yu H, Teng X, Jin S, Xiao L, Xue H, Tian D, Guo Q, Wu Y. Trimethylamine-N-oxide aggravated the sympathetic excitation in D-galactose induced aging rats by down-regulating P2Y12 receptor in microglia. Biomed Pharmacother 2024; 174:116549. [PMID: 38593701 DOI: 10.1016/j.biopha.2024.116549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024] Open
Abstract
This study aimed to determine whether trimethylamine N-oxide (TMAO) was involved in sympathetic activation in aging and the underlying mechanisms. Our hypothesis is TMAO reduces P2Y12 receptor (P2Y12R) and induces microglia-mediated inflammation in the paraventricular nucleus (PVN), then leading to sympathetic activation in aging. This study involved 18 young adults and 16 old adults. Aging rats were established by injecting D-galactose (D-gal, 200 mg/kg/d) subcutaneously for 12 weeks. TMAO (120 mg/kg/d) or 1% 3, 3-dimethyl-l-butanol (DMB) was administrated via drinking water for 12 weeks to investigate their effects on neuroinflammation and sympathetic activation in aging rats. Plasma TMAO, NE and IL-1β levels were higher in old adults than in young adults. In addition, standard deviation of all normal to normal intervals (SDNN) and standard deviation of the average of normal to normal intervals (SDANN) were lower in old adults and negatively correlated with TMAO, indicating sympathetic activation in old adults, which is associated with an increase in TMAO levels. Treatment of rats with D-gal showed increased senescence-associated protein levels and microglia-mediated inflammation, as well as decreased P2Y12R protein levels in PVN. Plasma TMAO, NE and IL-1β levels were increased, accompanied by enhanced renal sympathetic nerve activity (RSNA). While TMAO treatment exacerbated the above phenomenon, DMB mitigated it. These findings suggest that TMAO contributes to sympathetic hyperactivity in aging by downregulating P2Y12R in microglia and increasing inflammation in the PVN. These results may provide promising new target for the prevention and treatment of aging and aging-related diseases.
Collapse
Affiliation(s)
- Ping Wang
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China
| | - Yuan Mi
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China; Department of Emergency, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Hao Yu
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China
| | - Xu Teng
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China
| | - Sheng Jin
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China
| | - Lin Xiao
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China
| | - Hongmei Xue
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China
| | - Danyang Tian
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China
| | - Qi Guo
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China; Experimental Center for Teaching, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Cardiovascular Homeostasis and Aging, China.
| | - Yuming Wu
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang 050017, China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China; Hebei Key Laboratory of Cardiovascular Homeostasis and Aging, China.
| |
Collapse
|
4
|
Berkhout JB, Poormoghadam D, Yi C, Kalsbeek A, Meijer OC, Mahfouz A. An integrated single-cell RNA-seq atlas of the mouse hypothalamic paraventricular nucleus links transcriptomic and functional types. J Neuroendocrinol 2024; 36:e13367. [PMID: 38281730 DOI: 10.1111/jne.13367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/30/2023] [Accepted: 12/30/2023] [Indexed: 01/30/2024]
Abstract
The hypothalamic paraventricular nucleus (PVN) is a highly complex brain region that is crucial for homeostatic regulation through neuroendocrine signaling, outflow of the autonomic nervous system, and projections to other brain areas. In the past years, single-cell datasets of the hypothalamus have contributed immensely to the current understanding of the diverse hypothalamic cellular composition. While the PVN has been adequately classified functionally, its molecular classification is currently still insufficient. To address this, we created a detailed atlas of PVN transcriptomic cell types by integrating various PVN single-cell datasets into a recently published hypothalamus single-cell transcriptome atlas. Furthermore, we functionally profiled transcriptomic cell types, based on relevant literature, existing retrograde tracing data, and existing single-cell data of a PVN-projection target region. Finally, we validated our findings with immunofluorescent stainings. In our PVN atlas dataset, we identify the well-known different neuropeptide types, each composed of multiple novel subtypes. We identify Avp-Tac1, Avp-Th, Oxt-Foxp1, Crh-Nr3c1, and Trh-Nfib as the most important neuroendocrine subtypes based on markers described in literature. To characterize the preautonomic functional population, we integrated a single-cell retrograde tracing study of spinally projecting preautonomic neurons into our PVN atlas. We identify these (presympathetic) neurons to cocluster with the Adarb2+ clusters in our dataset. Further, we identify the expression of receptors for Crh, Oxt, Penk, Sst, and Trh in the dorsal motor nucleus of the vagus, a key region that the pre-parasympathetic PVN neurons project to. Finally, we identify Trh-Ucn3 and Brs3-Adarb2 as some centrally projecting populations. In conclusion, our study presents a detailed overview of the transcriptomic cell types of the murine PVN and provides a first attempt to resolve functionality for the identified populations.
Collapse
Affiliation(s)
- J B Berkhout
- Division of Endocrinology, Department of Medicine, Leiden University Medical Centre, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - D Poormoghadam
- Laboratory of Endocrinology, Department of Laboratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - C Yi
- Laboratory of Endocrinology, Department of Laboratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - A Kalsbeek
- Laboratory of Endocrinology, Department of Laboratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - O C Meijer
- Division of Endocrinology, Department of Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - A Mahfouz
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
- Division of Pattern Recognition and Bioinformatics, Department of Intelligent Systems, Technical University Delft, Delft, The Netherlands
| |
Collapse
|
5
|
O’Brien F, Feetham CH, Staunton CA, Hext K, Barrett-Jolley R. Temperature modulates PVN pre-sympathetic neurones via transient receptor potential ion channels. Front Pharmacol 2023; 14:1256924. [PMID: 37920211 PMCID: PMC10618372 DOI: 10.3389/fphar.2023.1256924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
The paraventricular nucleus (PVN) of the hypothalamus plays a vital role in maintaining homeostasis and modulates cardiovascular function via autonomic pre-sympathetic neurones. We have previously shown that coupling between transient receptor potential cation channel subfamily V Member 4 (Trpv4) and small-conductance calcium-activated potassium channels (SK) in the PVN facilitate osmosensing, but since TRP channels are also thermosensitive, in this report we investigated the temperature sensitivity of these neurones. Methods: TRP channel mRNA was quantified from mouse PVN with RT-PCR and thermosensitivity of Trpv4-like PVN neuronal ion channels characterised with cell-attached patch-clamp electrophysiology. Following recovery of temperature-sensitive single-channel kinetic schema, we constructed a predictive stochastic mathematical model of these neurones and validated this with electrophysiological recordings of action current frequency. Results: 7 thermosensitive TRP channel genes were found in PVN punches. Trpv4 was the most abundant of these and was identified at the single channel level on PVN neurones. We investigated the thermosensitivity of these Trpv4-like channels; open probability (Po) markedly decreased when temperature was decreased, mediated by a decrease in mean open dwell times. Our neuronal model predicted that PVN spontaneous action current frequency (ACf) would increase as temperature is decreased and in our electrophysiological experiments, we found that ACf from PVN neurones was significantly higher at lower temperatures. The broad-spectrum channel blocker gadolinium (100 µM), was used to block the warm-activated, Ca2+-permeable Trpv4 channels. In the presence of gadolinium (100 µM), the temperature effect was largely retained. Using econazole (10 µM), a blocker of Trpm2, we found there were significant increases in overall ACf and the temperature effect was inhibited. Conclusion: Trpv4, the abundantly transcribed thermosensitive TRP channel gene in the PVN appears to contribute to intrinsic thermosensitive properties of PVN neurones. At physiological temperatures (37°C), we observed relatively low ACf primarily due to the activity of Trpm2 channels, whereas at room temperature, where most of the previous characterisation of PVN neuronal activity has been performed, ACf is much higher, and appears to be predominately due to reduced Trpv4 activity. This work gives insight into the fundamental mechanisms by which the body decodes temperature signals and maintains homeostasis.
Collapse
Affiliation(s)
| | | | | | | | - Richard Barrett-Jolley
- Department of Musculoskeletal Ageing Science, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
6
|
Ma L, Liu Q, Liu X, Chang H, Jin S, Ma W, Xu F, Liu H. Paraventricular Hypothalamic Nucleus Upregulates Intraocular Pressure Via Glutamatergic Neurons. Invest Ophthalmol Vis Sci 2023; 64:43. [PMID: 37773501 PMCID: PMC10547014 DOI: 10.1167/iovs.64.12.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 08/11/2023] [Indexed: 10/01/2023] Open
Abstract
Purpose The neuroregulatory center of intraocular pressure (IOP) is located in the hypothalamus. An efferent neural pathway exists between the hypothalamic nuclei and the autonomic nerve endings in the anterior chamber of the eye. This study was designed to investigate whether the paraventricular hypothalamic nucleus (PVH) regulates IOP as the other nuclei do. Methods Optogenetic manipulation of PVH neurons was used in this study. Light stimulation was applied via an optical fiber embedded over the PVH to activate projection neurons after AAV2/9-CaMKIIα-hChR2-mCherry was injected into the right PVH of C57BL/6J mice. The same methods were used to inhibit projection neurons after AAV2/9-CaMKIIα-eNpHR3.0-mCherry was injected into the bilateral PVH of C57BL/6J mice. AAV2/9-EF1α-DIO-hChR2-mCherry was injected into the right PVH of Vglut2-Cre mice to elucidate the effect of glutamatergic neuron-specific activation. IOP was measured before and after light manipulation. Associated nuclei activation was clarified by c-Fos immunohistochemical staining. Only mice with accurate viral expression and fiber embedding were included in the statistical analysis. Results Activation of projection neurons in the right PVH induced significant bilateral IOP elevation (n = 11, P < 0.001); the ipsilateral IOP increased more noticeably (n = 11, P < 0.05); Bilateral inhibition of PVH projection neurons did not significantly influence IOP (n = 5, P > 0.05). Specific activation of glutamatergic neurons among PVH projection neurons also induced IOP elevation in both eyes (n = 5, P < 0.001). The dorsomedial hypothalamic nucleus, ventromedial hypothalamic nucleus, locus coeruleus and basolateral amygdaloid nucleus responded to light stimulation of PVH in AAV-ChR2 mice. Conclusions The PVH may play a role in IOP upregulation via glutamatergic neurons.
Collapse
Affiliation(s)
- Lin Ma
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Liu
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Liu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Chang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sen Jin
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Wenyu Ma
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Fuqiang Xu
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haixia Liu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Guo Q, Zou Y, Chang Y, Zhong Y, Cheng L, Jia L, Zhai L, Bai Y, Sun Q, Wei W. Transcriptomic Evidence of Hypothalamus for Maternal Fructose Exposure Induced Offspring Hypertension through AT1R/TLR4 Pathway. J Nutr Biochem 2023:109373. [PMID: 37178812 DOI: 10.1016/j.jnutbio.2023.109373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
Maternal fructose exposure during pregnancy and lactation has been shown to contribute to hypertension in offspring, with long-term effects on hypothalamus development. However, the underlying mechanisms remain unclear. In this study, we used the tail-cuff method to evaluate the effects of maternal fructose drinking exposure on offspring blood pressure levels at postpartum day 21 (PND21) and postpartum day 60 (PND60). We employed Oxford Nanopore Technologies (ONT) full-length RNA sequencing to investigate the developmental programming of the PND60 offspring's hypothalamus and confirmed the presence of the AT1R/TLR4 pathway using western blot and immunofluorescence. Our findings demonstrated that maternal fructose exposure significantly increased blood pressure in PND60 offspring but not in PND21 offspring. Additionally, we observed transcriptome-wide alterations in the hypothalamus of PND60 offspring following maternal fructose exposure. Overall, our study provides evidence that maternal fructose exposure during pregnancy and lactation may alter the transcriptome-wide of offspring hypothalamus and activate the AT1R/TLR4 pathway, leading to hypertension. These findings may have important implications for the prevention and treatment of hypertension-related diseases in offspring exposed to excessive fructose during pregnancy and lactation.
Collapse
Affiliation(s)
- Qing Guo
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P. R. China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China
| | - Yuchen Zou
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P. R. China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China
| | - Yidan Chang
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P. R. China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China
| | - Yongyong Zhong
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P. R. China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China
| | - Lin Cheng
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P. R. China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China
| | - Lihong Jia
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P. R. China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China
| | - Lingling Zhai
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P. R. China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China
| | - Yinglong Bai
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P. R. China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China
| | - Qi Sun
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P. R. China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China
| | - Wei Wei
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P. R. China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China.
| |
Collapse
|
8
|
Takács R, Kovács P, Ebeid RA, Almássy J, Fodor J, Ducza L, Barrett-Jolley R, Lewis R, Matta C. Ca2+-Activated K+ Channels in Progenitor Cells of Musculoskeletal Tissues: A Narrative Review. Int J Mol Sci 2023; 24:ijms24076796. [PMID: 37047767 PMCID: PMC10095002 DOI: 10.3390/ijms24076796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Musculoskeletal disorders represent one of the main causes of disability worldwide, and their prevalence is predicted to increase in the coming decades. Stem cell therapy may be a promising option for the treatment of some of the musculoskeletal diseases. Although significant progress has been made in musculoskeletal stem cell research, osteoarthritis, the most-common musculoskeletal disorder, still lacks curative treatment. To fine-tune stem-cell-based therapy, it is necessary to focus on the underlying biological mechanisms. Ion channels and the bioelectric signals they generate control the proliferation, differentiation, and migration of musculoskeletal progenitor cells. Calcium- and voltage-activated potassium (KCa) channels are key players in cell physiology in cells of the musculoskeletal system. This review article focused on the big conductance (BK) KCa channels. The regulatory function of BK channels requires interactions with diverse sets of proteins that have different functions in tissue-resident stem cells. In this narrative review article, we discuss the main ion channels of musculoskeletal stem cells, with a focus on calcium-dependent potassium channels, especially on the large conductance BK channel. We review their expression and function in progenitor cell proliferation, differentiation, and migration and highlight gaps in current knowledge on their involvement in musculoskeletal diseases.
Collapse
Affiliation(s)
- Roland Takács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Patrik Kovács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Rana Abdelsattar Ebeid
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - János Almássy
- Department of Physiology, Faculty of Medicine, Semmelweis University, H-1428 Budapest, Hungary
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - László Ducza
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Richard Barrett-Jolley
- Department of Musculoskeletal Biology, Faculty of Health and Life Sciences, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L69 3GA, UK
| | - Rebecca Lewis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
9
|
Tsukioka K, Yamanaka K, Waki H. Implication of the Central Nucleus of the Amygdala in Cardiovascular Regulation and Limiting Maximum Exercise Performance During High-intensity Exercise in Rats. Neuroscience 2022; 496:52-63. [PMID: 35690335 DOI: 10.1016/j.neuroscience.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/14/2022] [Accepted: 06/02/2022] [Indexed: 11/24/2022]
Abstract
To date, the mechanism of central fatigue during high-intensity exercise has remained unclear. Here we elucidate the central mechanisms of cardiovascular regulation during high-intensity exercise with a focus on the hypothesis that amygdala activation acts to limit maximum exercise performance. In the first of three experiments, we probed the involvement of the central nucleus of the amygdala (CeA) in such regulation. Wistar rats were subjected to a maximum exercise test and their total running time and cardiovascular responses were compared before and after bilateral CeA lesions. Next, probing the role of central pathways, we tested whether high-intensity exercise activated neurons in CeA and/or the hypothalamic paraventricular nucleus (PVN) that project to the nucleus tractus solitarius (NTS). Finally, to understand the potential autonomic mechanisms affecting maximum exercise performance, we measured the cardiovascular responses in anesthetized rats to electrical microstimulation of the CeA, PVN, or both. We have found that (1) CeA lesions resulted in an increase in the total exercise time and the time at which an abrupt increase in arterial pressure appeared, indicating an apparent suppression of fatigue. (2) We confirmed that high-intensity exercise activated both the PVN-NTS and CeA-NTS pathways. Moreover, we discovered that (3) while stimulation of the CeA or PVN alone both induced pressor responses, their simultaneous stimulation also increased muscle vascular resistance. These results are evidence that cardiovascular responses during high-intensity exercise are affected by CeA activation, which acts to limit maximum exercise performance, and may implicate autonomic control modulating the PVN-NTS pathway via the CeA.
Collapse
Affiliation(s)
- Kei Tsukioka
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan; Research Fellow of Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Ko Yamanaka
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan.
| | - Hidefumi Waki
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan; Institute of Health and Sports Science & Medicine, Juntendo University, Chiba 270-1695, Japan.
| |
Collapse
|
10
|
O'Brien F, Staunton CA, Barrett-Jolley R. Systemic application of the transient receptor potential vanilloid-type 4 antagonist GSK2193874 induces tail vasodilation in a mouse model of thermoregulation. Biol Lett 2022; 18:20220129. [PMID: 35702981 PMCID: PMC9198786 DOI: 10.1098/rsbl.2022.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/25/2022] [Indexed: 11/12/2022] Open
Abstract
In humans, skin is a primary thermoregulatory organ, with vasodilation leading to rapid body cooling, whereas in Rodentia the tail performs an analogous function. Many thermodetection mechanisms are likely to be involved including transient receptor potential vanilloid-type 4 (TRPV4), an ion channel with thermosensitive properties. Previous studies have shown that TRPV4 is a vasodilator by local action in blood vessels, so here, we investigated whether constitutive TRPV4 activity affects Mus muscularis tail vascular tone and thermoregulation. We measured tail blood flow by pressure plethysmography in lightly sedated M. muscularis (CD1 strain) at a range of ambient temperatures, with and without intraperitoneal administration of the blood-brain barrier crossing TRPV4 antagonist GSK2193874. We also measured heart rate (HR) and blood pressure. As expected for a thermoregulatory organ, we found that tail blood flow increased with temperature. However, unexpectedly, we found that GSK2193874 increased tail blood flow at all temperatures, and we observed changes in HR variability. Since local TRPV4 activation causes vasodilation that would increase tail blood flow, these data suggest that increases in tail blood flow resulting from the TRPV4 antagonist may arise from a site other than the blood vessels themselves, perhaps in central cardiovascular control centres.
Collapse
Affiliation(s)
- Fiona O'Brien
- Department of Musculoskeletal Ageing, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Caroline A. Staunton
- Department of Musculoskeletal Ageing, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Richard Barrett-Jolley
- Department of Musculoskeletal Ageing, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, UK
| |
Collapse
|
11
|
Wang K, You S, Hu H, Li X, Yin J, Shi Y, Qi L, Li P, Zhao Y, Yan S. Effect of TLR4/MyD88/NF-kB axis in paraventricular nucleus on ventricular arrhythmias induced by sympathetic hyperexcitation in post-myocardial infarction rats. J Cell Mol Med 2022; 26:2959-2971. [PMID: 35393774 PMCID: PMC9097841 DOI: 10.1111/jcmm.17309] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/09/2022] [Accepted: 03/22/2022] [Indexed: 12/21/2022] Open
Abstract
Sympathetic activation after myocardial infarction (MI) leads to ventricular arrhythmias (VAs), which can result in sudden cardiac death (SCD). The toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MyD88)/nuclear factor-kappa B (NF-kB) axis within the hypothalamic paraventricular nucleus (PVN), a cardiac-neural sympathetic nerve centre, plays an important role in causing VAs. An MI rat model and a PVN-TLR4 knockdown model were constructed. The levels of protein were detected by Western blotting and immunofluorescence, and localizations were visualized by multiple immunofluorescence staining. Central and peripheral sympathetic activation was visualized by immunohistochemistry for c-fos protein, renal sympathetic nerve activity (RSNA) measurement, heart rate variability (HRV) analysis and norepinephrine (NE) level detection in serum and myocardial tissue measured by ELISA. The arrhythmia scores were measured by programmed electrical stimulation (PES), and cardiac function was detected by the pressure-volume loop (P-V loop). The levels of TLR4 and MyD88 and the nuclear translocation of NF-kB within the PVN were increased after MI, while sympathetic activation and arrhythmia scores were increased and cardiac function was decreased. However, inhibition of TLR4 significantly reversed these conditions. PVN-mediated sympathetic activation via the TLR4/MyD88/NF-kB axis ultimately leads to the development of VAs after MI.
Collapse
Affiliation(s)
- Kang Wang
- Department of Cardiology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shuling You
- Adicon Clinical Laboratories.Inc., Department of Pathology, Wangkai Infectious Diseases Hospital of Zaozhuang City, Zaozhuang, Shandong, China
| | - Hesheng Hu
- Department of Cardiology, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Xiaolu Li
- Department of Emergency Medicine, Shandong Medicine and Health Key Laboratory of Emergency Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Jie Yin
- Department of Cardiology, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Yugen Shi
- Department of Cardiology, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Lei Qi
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Pingjiang Li
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yuepeng Zhao
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Suhua Yan
- Department of Cardiology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Cardiology, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| |
Collapse
|
12
|
Zhuang ZX, Chen SE, Chen CF, Lin EC, Huang SY. Single-nucleotide polymorphisms in genes related to oxidative stress and ion channels in chickens are associated with semen quality and hormonal responses to thermal stress. J Therm Biol 2022; 105:103220. [DOI: 10.1016/j.jtherbio.2022.103220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/18/2022] [Accepted: 02/22/2022] [Indexed: 10/19/2022]
|
13
|
Imoto D, Yamamoto I, Matsunaga H, Yonekura T, Lee ML, Kato KX, Yamasaki T, Xu S, Ishimoto T, Yamagata S, Otsuguro KI, Horiuchi M, Iijima N, Kimura K, Toda C. Refeeding activates neurons in the dorsomedial hypothalamus to inhibit food intake and promote positive valence. Mol Metab 2021; 54:101366. [PMID: 34728342 PMCID: PMC8609163 DOI: 10.1016/j.molmet.2021.101366] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Objective The regulation of food intake is a major research area in the study of obesity, which plays a key role in the development of metabolic syndrome. Gene targeting studies have clarified the roles of hypothalamic neurons in feeding behavior, but the deletion of a gene has a long-term effect on neurophysiology. Our understanding of short-term changes such as appetite under physiological conditions is therefore still limited. Methods Targeted recombination in active populations (TRAP) is a newly developed method for labeling active neurons by using tamoxifen-inducible Cre recombination controlled by the promoter of activity-regulated cytoskeleton-associated protein (Arc/Arg3.1), a member of immediate early genes. Transgenic mice for TRAP were fasted overnight, re-fed with normal diet, and injected with 4-hydroxytamoxifen 1 h after the refeeding to label the active neurons. The role of labeled neurons was examined by expressing excitatory or inhibitory designer receptors exclusively activated by designer drugs (DREADDs). The labeled neurons were extracted and RNA sequencing was performed to identify genes that are specifically expressed in these neurons. Results Fasting-refeeding activated and labeled neurons in the compact part of the dorsomedial hypothalamus (DMH) that project to the paraventricular hypothalamic nucleus. Chemogenetic activation of the labeled DMH neurons decreased food intake and developed place preference, an indicator of positive valence. Chemogenetic activation or inhibition of these neurons had no influence on the whole-body glucose metabolism. The labeled DMH neurons expressed prodynorphin (pdyn), gastrin-releasing peptide (GRP), cholecystokinin (CCK), and thyrotropin-releasing hormone receptor (Trhr) genes. Conclusions We identified a novel cell type of DMH neurons that can inhibit food intake and promote feeding-induced positive valence. Our study provides insight into the role of DMH and its molecular mechanism in the regulation of appetite and emotion. Fasting-refeeding activates a subset of neurons in the dorsomedial hypothalamus (DMH). Chemogenetic inhibition of the DMH neurons increases food intake. Chemogenetic activation of the DMH neurons inhibits food intake and promotes positive valence. The DMH neurons express pdyn, GRP, CCK and Trhr genes.
Collapse
Affiliation(s)
- Daigo Imoto
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Izumi Yamamoto
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Hirokazu Matsunaga
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Toya Yonekura
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Ming-Liang Lee
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Kan X Kato
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Takeshi Yamasaki
- Laboratory of Animal Experiment, Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan
| | - Shucheng Xu
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Taiga Ishimoto
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Satoshi Yamagata
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Ken-Ichi Otsuguro
- Laboratory of Pharmacology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Motohiro Horiuchi
- Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Norifumi Iijima
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan; Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kazuhiro Kimura
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Chitoku Toda
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan.
| |
Collapse
|
14
|
Belity T, Hoffman JR, Horowitz M, Epstein Y, Bruchim Y, Cohen H. β-Alanine Supplementation Attenuates the Neurophysiological Response in Animals Exposed to an Acute Heat Stress. J Diet Suppl 2021; 19:443-458. [PMID: 33615958 DOI: 10.1080/19390211.2021.1889734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The effect of 30 days of β-alanine supplementation on neurophysiological responses of animals exposed to an acute heat stress (HS) was examined. Animals were randomized to one of three groups; exposed to HS (120 min at 40-41 °C) and fed a normal diet (EXP; n = 12); EXP and supplemented with β-alanine (EXP + BA; n = 10); or not exposed (CTL; n = 10). Hippocampal (CA1, CA3 and DG) and hypothalamic (PVN) immunoreactive (ir) cell numbers of COX2, IBA-1, BDNF, NPY and HSP70 were analyzed. Three animals in EXP and one in EXP-BA did not survive the HS, however no significant difference (p = 0.146) was noted in survival rate in EXP + BA. The % change in rectal temperature was significantly lower (p = 0.04) in EXP + BA than EXP. Elevations (p's < 0.05) in COX-2, IBA-1 and HSP70 ir-cell numbers were noted in animals exposed to HS in all subregions. COX-2 ir-cell numbers were attenuated for EXP + BA in CA1 (p = 0.02) and PVN (p = 0.015) compared to EXP. No difference in COX-2 ir-cell numbers was noted between CTL and EXP + BA at CA1. BDNF-ir cell numbers in CA1, DG and PVN were reduced (p's < 0.05) during HS compared to CTL. No difference in BDNF-ir cell numbers was noted between EXP + BA and CTL in CA3 and PVN. NPY-ir density was reduced in exposed animals in all subregions, but NPY-ir density for EXP-BA was greater than EXP in CA3 (p < 0.001) and PVN (p = 0.04). β-Alanine supplementation attenuated the thermoregulatory and inflammatory responses and maintained neurotrophin and neuropeptide levels during acute HS. Further research is necessary to determine whether β-alanine supplementation can increase survival rate during a heat stress.
Collapse
Affiliation(s)
- Tal Belity
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jay R Hoffman
- Department of Physical Therapy, Ariel University, Ariel, Israel
| | - Michal Horowitz
- Laboratory of Environmental Physiology, Faculty of Dental Medicine, The Hebrew University, Jerusalem, Israel
| | - Yoram Epstein
- Heller Institute of Medical Research, Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yaron Bruchim
- The Hebrew University Veterinary Teaching Hospital, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hagit Cohen
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Beer-Sheva Mental Health Center, Ministry of Health, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
15
|
Kalsbeek A, Buijs RM. Organization of the neuroendocrine and autonomic hypothalamic paraventricular nucleus. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:45-63. [PMID: 34225948 DOI: 10.1016/b978-0-12-820107-7.00004-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A major function of the nervous system is to maintain a relatively constant internal environment. The distinction between our external environment (i.e., the environment that we live in and that is subject to major changes, such as temperature, humidity, and food availability) and our internal environment (i.e., the environment formed by the fluids surrounding our bodily tissues and that has a very stable composition) was pointed out in 1878 by Claude Bernard (1814-1878). Later on, it was indicated by Walter Cannon (1871-1945) that the internal environment is not really constant, but rather shows limited variability. Cannon named the mechanism maintaining this limited variability homeostasis. Claude Bernard envisioned that, for optimal health, all physiologic processes in the body needed to maintain homeostasis and should be in perfect harmony with each other. This is illustrated by the fact that, for instance, during the sleep-wake cycle important elements of our physiology such as body temperature, circulating glucose, and cortisol levels show important variations but are in perfect synchrony with each other. These variations are driven by the biologic clock in interaction with hypothalamic target areas, among which is the paraventricular nucleus of the hypothalamus (PVN), a core brain structure that controls the neuroendocrine and autonomic nervous systems and thus is key for integrating central and peripheral information and implementing homeostasis. This chapter focuses on the anatomic connections between the biologic clock and the PVN to modulate homeostasis according to the daily sleep-wake rhythm. Experimental studies have revealed a highly specialized organization of the connections between the clock neurons and neuroendocrine system as well as preautonomic neurons in the PVN. These complex connections ensure a logical coordination between behavioral, endocrine, and metabolic functions that helps the organism maintain homeostasis throughout the day.
Collapse
Affiliation(s)
- Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers (Amsterdam UMC), University of Amsterdam, Amsterdam, The Netherlands; Department of Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| | - Ruud M Buijs
- Hypothalamic Integration Mechanisms Laboratory, Department of Cellular Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| |
Collapse
|
16
|
Milanick WJ, Polo-Parada L, Dantzler HA, Kline DD. Activation of alpha-1 adrenergic receptors increases cytosolic calcium in neurones of the paraventricular nucleus of the hypothalamus. J Neuroendocrinol 2019; 31:e12791. [PMID: 31494990 PMCID: PMC7003713 DOI: 10.1111/jne.12791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/22/2019] [Accepted: 09/04/2019] [Indexed: 12/15/2022]
Abstract
Norepinephrine (NE) activates adrenergic receptors (ARs) in the hypothalamic paraventricular nucleus (PVN) to increase excitatory currents, depolarise neurones and, ultimately, augment neuro-sympathetic and endocrine output. Such cellular events are known to potentiate intracellular calcium ([Ca2+ ]i ); however, the role of NE with respect to modulating [Ca2+ ]i in PVN neurones and the mechanisms by which this may occur remain unclear. We evaluated the effects of NE on [Ca2+ ]i of acutely isolated PVN neurones using Fura-2 imaging. NE induced a slow increase in [Ca2+ ]i compared to artificial cerebrospinal fluid vehicle. NE-induced Ca2+ elevations were mimicked by the α1 -AR agonist phenylephrine (PE) but not by α2 -AR agonist clonidine (CLON). NE and PE but not CLON also increased the overall number of neurones that increase [Ca2+ ]i (ie, responders). Elimination of extracellular Ca2+ or intracellular endoplasmic reticulum Ca2+ stores abolished the increase in [Ca2+ ]i and reduced responders. Blockade of voltage-dependent Ca2+ channels abolished the α1 -AR induced increase in [Ca2+ ]i and number of responders, as did inhibition of phospholipase C inhibitor, protein kinase C and inositol triphosphate receptors. Spontaneous phasic Ca2+ events, however, were not altered by NE, PE or CLON. Repeated K+ -induced membrane depolarisation produced repetitive [Ca2+ ]i elevations. NE and PE increased baseline Ca2+ , whereas NE decreased the peak amplitude. CLON also decreased peak amplitude but did not affect baseline [Ca2+ ]i . Taken together, these data suggest receptor-specific influence of α1 and α2 receptors on the various modes of calcium entry in PVN neurones. They further suggest Ca2+ increase via α1 -ARs is co-dependent on extracellular Ca2+ influx and intracellular Ca2+ release, possibly via a phospholipase C inhibitor-mediated signalling cascade.
Collapse
Affiliation(s)
- William J. Milanick
- Department of Biomedical Sciences, University of Missouri, Columbia MO 65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia MO 65211
| | - Luis Polo-Parada
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia MO 65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia MO 65211
| | - Heather A. Dantzler
- Department of Biomedical Sciences, University of Missouri, Columbia MO 65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia MO 65211
| | - David D. Kline
- Department of Biomedical Sciences, University of Missouri, Columbia MO 65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia MO 65211
| |
Collapse
|
17
|
Dantzler HA, Matott MP, Martinez D, Kline DD. Hydrogen peroxide inhibits neurons in the paraventricular nucleus of the hypothalamus via potassium channel activation. Am J Physiol Regul Integr Comp Physiol 2019; 317:R121-R133. [PMID: 31042419 DOI: 10.1152/ajpregu.00054.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The paraventricular nucleus (PVN) of the hypothalamus is an important homeostatic and reflex center for neuroendocrine, respiratory, and autonomic regulation, including during hypoxic stressor challenges. Such challenges increase reactive oxygen species (ROS) to modulate synaptic, neuronal, and ion channel activity. Previously, in the nucleus tractus solitarius, another cardiorespiratory nucleus, we showed that the ROS H2O2 induced membrane hyperpolarization and reduced action potential discharge via increased K+ conductance at the resting potential. Here, we sought to determine the homogeneity of influence and mechanism of action of H2O2 on PVN neurons. We recorded PVN neurons in isolation and in an acute slice preparation, which leaves neurons in their semi-intact network. Regardless of preparation, H2O2 hyperpolarized PVN neurons and decreased action potential discharge. In the slice preparation, H2O2 also decreased spontaneous excitatory postsynaptic current frequency, but not amplitude. To examine potential mechanisms, we investigated the influence of the K+ channel blockers Ba2+, Cs+, and glibenclamide on membrane potential, as well as the ionic currents active at resting potential and outward K+ currents (IK) upon depolarization. The H2O2 hyperpolarization was blocked by K+ channel blockers. H2O2 did not alter currents between -50 and -110 mV. However, H2O2 induced an outward IK at -50 mV yet, at potentials more positive to 0 mV H2O2, decreased IK. Elevated intracellular antioxidant catalase eliminated H2O2 effects. These data indicate that H2O2 alters synaptic and neuronal properties of PVN neurons likely via membrane hyperpolarization and alteration of IK, which may ultimately alter cardiorespiratory reflexes.
Collapse
Affiliation(s)
- Heather A Dantzler
- Department of Biomedical Sciences, University of Missouri , Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri , Columbia, Missouri
| | - Michael P Matott
- Department of Biomedical Sciences, University of Missouri , Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri , Columbia, Missouri
| | - Diana Martinez
- Department of Biomedical Sciences, University of Missouri , Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri , Columbia, Missouri
| | - David D Kline
- Department of Biomedical Sciences, University of Missouri , Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri , Columbia, Missouri
| |
Collapse
|
18
|
Abdul Kadir L, Stacey M, Barrett-Jolley R. Emerging Roles of the Membrane Potential: Action Beyond the Action Potential. Front Physiol 2018; 9:1661. [PMID: 30519193 PMCID: PMC6258788 DOI: 10.3389/fphys.2018.01661] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/02/2018] [Indexed: 01/03/2023] Open
Abstract
Whilst the phenomenon of an electrical resting membrane potential (RMP) is a central tenet of biology, it is nearly always discussed as a phenomenon that facilitates the propagation of action potentials in excitable tissue, muscle, and nerve. However, as ion channel research shifts beyond these tissues, it became clear that the RMP is a feature of virtually all cells studied. The RMP is maintained by the cell’s compliment of ion channels. Transcriptome sequencing is increasingly revealing that equally rich compliments of ion channels exist in both excitable and non-excitable tissue. In this review, we discuss a range of critical roles that the RMP has in a variety of cell types beyond the action potential. Whereas most biologists would perceive that the RMP is primarily about excitability, the data show that in fact excitability is only a small part of it. Emerging evidence show that a dynamic membrane potential is critical for many other processes including cell cycle, cell-volume control, proliferation, muscle contraction (even in the absence of an action potential), and wound healing. Modulation of the RMP is therefore a potential target for many new drugs targeting a range of diseases and biological functions from cancer through to wound healing and is likely to be key to the development of successful stem cell therapies.
Collapse
Affiliation(s)
- Lina Abdul Kadir
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Michael Stacey
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| | - Richard Barrett-Jolley
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|