1
|
Srivastava RAK. A Review of Progress on Targeting LDL Receptor-Dependent and -Independent Pathways for the Treatment of Hypercholesterolemia, a Major Risk Factor of ASCVD. Cells 2023; 12:1648. [PMID: 37371118 DOI: 10.3390/cells12121648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Since the discovery of the LDL receptor in 1973 by Brown and Goldstein as a causative protein in hypercholesterolemia, tremendous amounts of effort have gone into finding ways to manage high LDL cholesterol in familial hypercholesterolemic (HoFH and HeFH) individuals with loss-of-function mutations in the LDL receptor (LDLR) gene. Statins proved to be the first blockbuster drug, helping both HoFH and HeFH individuals by inhibiting the cholesterol synthesis pathway rate-limiting enzyme HMG-CoA reductase and inducing the LDL receptor. However, statins could not achieve the therapeutic goal of LDL. Other therapies targeting LDLR include PCSK9, which lowers LDLR by promoting LDLR degradation. Inducible degrader of LDLR (IDOL) also controls the LDLR protein, but an IDOL-based therapy is yet to be developed. Among the LDLR-independent pathways, such as angiopoietin-like 3 (ANGPTL3), apolipoprotein (apo) B, apoC-III and CETP, only ANGPTL3 offers the advantage of treating both HoFH and HeFH patients and showing relatively better preclinical and clinical efficacy in animal models and hypercholesterolemic individuals, respectively. While loss-of-LDLR-function mutations have been known for decades, gain-of-LDLR-function mutations have recently been identified in some individuals. The new information on gain of LDLR function, together with CRISPR-Cas9 genome/base editing technology to target LDLR and ANGPTL3, offers promise to HoFH and HeFH individuals who are at a higher risk of developing atherosclerotic cardiovascular disease (ASCVD).
Collapse
Affiliation(s)
- Rai Ajit K Srivastava
- Integrated Pharma Solutions LLC, Boston, MA 02101-02117, USA
- College of Professional Studies, Northeastern University, Boston, MA 02101-02117, USA
| |
Collapse
|
2
|
HDL-Based Therapy: Vascular Protection at All Stages. Biomedicines 2023; 11:biomedicines11030711. [PMID: 36979690 PMCID: PMC10045384 DOI: 10.3390/biomedicines11030711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
It is known that lipid metabolism disorders are involved in a wide range of pathologies. These pathologies include cardiovascular, metabolic, neurodegenerative diseases, and even cancer. All these diseases lead to serious health consequences, which makes it impossible to ignore them. Unfortunately, these diseases most often have a complex pathogenesis, which makes it difficult to study them and, in particular, diagnose and treat them. HDL is an important part of lipid metabolism, performing many functions under normal conditions. One of such functions is the maintaining of the reverse cholesterol transport. These functions are also implicated in pathology development. Thus, HDL contributes to vascular protection, which has been demonstrated in various conditions: Alzheimer’s disease, atherosclerosis, etc. Many studies have shown that serum levels of HDL cholesterol correlate negatively with CV risk. With these data, HDL-C is a promising therapeutic target. In this manuscript, we reviewed HDL-based therapeutic strategies that are currently being used or may be developed soon.
Collapse
|
3
|
Zhang Y, Jia XB, Liu YC, Yu WQ, Si YH, Guo SD. Fenofibrate enhances lipid deposition via modulating PPARγ, SREBP-1c, and gut microbiota in ob/ob mice fed a high-fat diet. Front Nutr 2022; 9:971581. [PMID: 36172518 PMCID: PMC9511108 DOI: 10.3389/fnut.2022.971581] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is characterized by lipid accumulation in distinct organs. Presently, fenofibrate is a commonly used triglyceride-lowering drug. This study is designed to investigate whether long-term fenofibrate intervention can attenuate lipid accumulation in ob/ob mouse, a typical model of obesity. Our data demonstrated that fenofibrate intervention significantly decreased plasma triglyceride level by 21.0%, increased liver index and hepatic triglyceride content by 31.7 and 52.1%, respectively, and elevated adipose index by 44.6% compared to the vehicle group. As a PPARα agonist, fenofibrate intervention significantly increased the expression of PPARα protein in the liver by 46.3% and enhanced the expression of LDLR protein by 3.7-fold. However, fenofibrate dramatically increased the expression of PPARγ and SREBP-1c proteins by ~2.1- and 0.9-fold in the liver, respectively. Fenofibrate showed no effects on the expression of genes-related to fatty acid β-oxidation. Of note, it significantly increased the gene expression of FAS and SCD-1. Furthermore, fenofibrate modulated the gut microbiota. Collectively, long-term fenofibrate induces lipid accumulation in liver and adipose tissues in ob/ob mice by enhancing the expression of adipogenesis-related proteins and gut microbiota. These data suggest that fenofibrate may have limited effects on attenuating lipid deposition in obese patients.
Collapse
Affiliation(s)
- Ying Zhang
- College of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiu-Bin Jia
- College of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yun-Chao Liu
- College of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Wen-Qian Yu
- Innovative Drug Research Centre, School of Pharmacy, Institute of Lipid Metabolism and Atherosclerosis, Weifang Medical University, Weifang, China
| | - Yan-Hong Si
- College of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- College of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Yan-Hong Si
| | - Shou-Dong Guo
- Innovative Drug Research Centre, School of Pharmacy, Institute of Lipid Metabolism and Atherosclerosis, Weifang Medical University, Weifang, China
- *Correspondence: Shou-Dong Guo
| |
Collapse
|
4
|
Survey of Approaches for Investigation of Atherosclerosis In Vivo. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2419:57-72. [PMID: 35237958 DOI: 10.1007/978-1-0716-1924-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Although in vitro model systems are useful for investigation of atherosclerosis-associated processes, they represent simplification of complex events that occur in vivo, which involve interactions between many different cell types together with their environment. The use of animal model systems is important for more in-depth insights of the molecular mechanisms underlying atherosclerosis and for identifying potential targets for agents that can prevent plaque formation and even reverse existing disease. This chapter will provide a survey of such animal models and associated techniques that are routinely used for research of atherosclerosis in vivo.
Collapse
|
5
|
Srivastava RAK, Cefalu AB, Srivastava NS, Averna M. NPC1L1 and ABCG5/8 induction explain synergistic fecal cholesterol excretion in ob/ob mice co-treated with PPAR-α and LXR agonists. Mol Cell Biochem 2020; 473:247-262. [DOI: 10.1007/s11010-020-03826-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/04/2020] [Indexed: 12/15/2022]
|
6
|
Zhang T, Chen J, Tang X, Luo Q, Xu D, Yu B. Interaction between adipocytes and high-density lipoprotein:new insights into the mechanism of obesity-induced dyslipidemia and atherosclerosis. Lipids Health Dis 2019; 18:223. [PMID: 31842884 PMCID: PMC6913018 DOI: 10.1186/s12944-019-1170-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022] Open
Abstract
Obesity is the most common nutritional disorder worldwide and is associated with dyslipidemia and atherosclerotic cardiovascular disease. The hallmark of dyslipidemia in obesity is low high density lipoprotein (HDL) cholesterol (HDL-C) levels. Moreover, the quality of HDL is also changed in the obese setting. However, there are still some disputes on the explanations for this phenomenon. There is increasing evidence that adipose tissue, as an energy storage tissue, participates in several metabolism activities, such as hormone secretion and cholesterol efflux. It can influence overall reverse cholesterol transport and plasma HDL-C level. In obesity individuals, the changes in morphology and function of adipose tissue affect plasma HDL-C levels and HDL function, thus, adipose tissue should be the main target for the treatment of HDL metabolism in obesity. In this review, we will summarize the cross-talk between adipocytes and HDL related to cardiovascular disease and focus on the new insights of the potential mechanism underlying obesity and HDL dysfunction.
Collapse
Affiliation(s)
- Tianhua Zhang
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Jin Chen
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Xiaoyu Tang
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Qin Luo
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Danyan Xu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Bilian Yu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China.
| |
Collapse
|
7
|
miR-146a Deficiency Accelerates Hepatic Inflammation Without Influencing Diet-induced Obesity in Mice. Sci Rep 2019; 9:12626. [PMID: 31477775 PMCID: PMC6718417 DOI: 10.1038/s41598-019-49090-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023] Open
Abstract
miR-146a, an anti-inflammatory microRNA, is shown to be a negative regulator of adipocyte inflammation. However, the functional contribution of miR-146a in the development of obesity is not defined. In order to determine whether miR-146a influences diet-induced obesity, mice that were either wild type (WT) or miR-146a deficient (KO) were fed with high (60% kcal) fat diet (HFD) for 16 weeks. Deficiency of miR-146a did not influence obesity measured as HFD-induced body weight and fat mass gain, or metabolism of glucose and insulin tolerance. In addition, adipocyte apoptosis, adipose tissue collagen and macrophage accumulation as detected by TUNEL, Picro Sirius and F4/80 immunostaining, respectively, were comparable between the two groups of mice. Although, miR-146a deficiency had no influence on HFD-induced hepatic lipid accumulation, interestingly, it significantly increased obesity-induced inflammatory responses in liver tissue. The present study demonstrates that miR-146a deficiency had no influence on the development of HFD-induced obesity and adipose tissue remodeling, whereas it significantly increased hepatic inflammation in obese mice. This result suggests that miR-146a regulates hepatic inflammation during development of obesity.
Collapse
|
8
|
Variji A, Shokri Y, Fallahpour S, Zargari M, Bagheri B, Abediankenari S, Alizadeh A, Mahrooz A. The combined utility of myeloperoxidase (MPO) and paraoxonase 1 (PON1) as two important HDL-associated enzymes in coronary artery disease: Which has a stronger predictive role? Atherosclerosis 2019; 280:7-13. [DOI: 10.1016/j.atherosclerosis.2018.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/17/2018] [Accepted: 11/07/2018] [Indexed: 12/20/2022]
|
9
|
Zhu H, He Z, Kwek E, Liu J, Hao W, Liang N, Zhao Y, Ma KY, He WS, Chen ZY. Dose-Dependent Increases in Liver Cholesterol but Not Plasma Cholesterol from Consumption of One to Five Whole Eggs and No Effects from Egg Whites on Liver or Plasma Cholesterol in Hamsters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12805-12814. [PMID: 30415537 DOI: 10.1021/acs.jafc.8b04730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The dose-dependent effect of egg consumption on plasma cholesterol in humans remains inconclusive. It is unknown if egg white consumed in a normal amount can reduce plasma cholesterol. We used hamsters as a model to (i) investigate the dose-dependent effect of consuming zero to five whole eggs on plasma total cholesterol (TC) and (ii) examine if egg white, equivalent to one to five eggs, possessed any reducing effects on plasma TC. In experiment 1, hamsters were divided into six groups ( n = 8 each) and fed either a control diet or one of five experimental diets supplemented with whole-egg powder equivalent to one to five eggs per 2000 kcal. Results showed that supplementation with one egg increased plasma TC by 25% compared with that of the control (226 ± 16 versus 282 ± 56 mg/dL, p < 0.05), whereas supplementation with two to five eggs did not significantly produce any additional effects on plasma cholesterol. However, supplementation with one to five eggs in diets caused a dose-dependent accumulation of cholesterol in the liver from 21.5 ± 4.4 to 71.3 ± 7.3 mg/g ( p < 0.01). In the second experiment, hamsters were divided into six groups and fed either a high-cholesterol control diet or one of five experimental diets supplemented with egg-white powder from one to five eggs. Results showed that egg-white powder affected neither plasma nor liver cholesterol levels. The egg-white powder did not affect fecal sterol excretion, suggesting it had no effect on cholesterol absorption. It was therefore concluded that consumption of two to five eggs did not significantly produce any additional effects on plasma cholesterol, whereas egg white did not possess a plasma-cholesterol-lowering activity if it was consumed at amounts similar to those in a normal human diet.
Collapse
Affiliation(s)
- Hanyue Zhu
- School of Life Sciences , The Chinese University of Hong Kong , Shatin , New Territories, Hong Kong , China
| | - Zouyan He
- School of Life Sciences , The Chinese University of Hong Kong , Shatin , New Territories, Hong Kong , China
| | - Erika Kwek
- School of Life Sciences , The Chinese University of Hong Kong , Shatin , New Territories, Hong Kong , China
| | - Jianhui Liu
- School of Life Sciences , The Chinese University of Hong Kong , Shatin , New Territories, Hong Kong , China
| | - Wangjun Hao
- School of Life Sciences , The Chinese University of Hong Kong , Shatin , New Territories, Hong Kong , China
| | - Ning Liang
- School of Life Sciences , The Chinese University of Hong Kong , Shatin , New Territories, Hong Kong , China
| | - Yimin Zhao
- School of Life Sciences , The Chinese University of Hong Kong , Shatin , New Territories, Hong Kong , China
| | - Ka Ying Ma
- School of Life Sciences , The Chinese University of Hong Kong , Shatin , New Territories, Hong Kong , China
| | - Wen-Sen He
- School of Life Sciences , The Chinese University of Hong Kong , Shatin , New Territories, Hong Kong , China
- School of Food and Biological Engineering , Jiangsu University , 301 Xuefu Road , Zhenjiang 212013 , Jiangsu , China
| | - Zhen-Yu Chen
- School of Life Sciences , The Chinese University of Hong Kong , Shatin , New Territories, Hong Kong , China
| |
Collapse
|
10
|
Srivastava RAK. Life-style-induced metabolic derangement and epigenetic changes promote diabetes and oxidative stress leading to NASH and atherosclerosis severity. J Diabetes Metab Disord 2018; 17:381-391. [PMID: 30918873 DOI: 10.1007/s40200-018-0378-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/20/2018] [Indexed: 12/15/2022]
Abstract
Energy imbalance resulting from high calorie food intake and insufficient metabolic activity leads to increased body mass index (BMI) and sets the stage for metabolic derangement influencing lipid and carbohydrate metabolism and ultimately leading to insulin resistance, dyslipidemia, and type 2 diabetes. 70% of cardiovascular disease (CVD) deaths occur in patients with diabetes. Environment-induced physiological perturbations trigger epigenetic changes through chromatin modification and leads to type 2 diabetes and progression of nonalcoholic fatty liver disease (NAFLD) and CVD. Thus, in terms of disease progression and pathogenesis, energy homeostasis, metabolic dysregulation, diabetes, fatty liver, and CVD are interlinked. Since advanced glycation end products (AGEs) and low-grade inflammation in type 2 diabetes play definitive roles in the pathogenesis of liver and vascular diseases, a natural checkpoint to prevent diabetes and associated complications appears to be the identification and management of prediabetes together with weight management, since 70% of prediabetic individuals develop diabetes during their life time, and every kg of weight increase is associated with up to 9% increase in diabetes risk. A good proportion of diabetes and obesity population have fatty liver that progresses to non-alcoholic steatohepatitis (NASH) and cirrhosis, and increased risk of hepatocellular carcinoma. Diabetes and NASH both have elevated oxidative stress, impaired cholesterol elimination, and increased inflammation that leads to CVD risk. This review addresses life-style-induced metabolic pathway derangement and how it contributes to epigenetic changes, type 2 diabetes and NASH progression, which collectively lead to increased risk of CVD.
Collapse
Affiliation(s)
- Rai Ajit K Srivastava
- Integrated Pharma Solutions, Philadelphia, PA USA.,2Department of Nutrition, Wayne State University, Detroit, MI USA
| |
Collapse
|