1
|
Ai L, de Freitas Germano J, Huang C, Aniag M, Sawaged S, Sin J, Thakur R, Rai D, Rainville C, Sterner DE, Song Y, Piplani H, Kumar S, Butt TR, Mentzer RM, Stotland A, Gottlieb RA, Van Eyk JE. Enhanced Parkin-mediated mitophagy mitigates adverse left ventricular remodelling after myocardial infarction: role of PR-364. Eur Heart J 2024:ehae782. [PMID: 39601359 DOI: 10.1093/eurheartj/ehae782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/17/2024] [Accepted: 10/27/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND AND AIMS Almost 30% of survivors of myocardial infarction (MI) develop heart failure (HF), in part due to damage caused by the accumulation of dysfunctional mitochondria. Organelle quality control through Parkin-mediated mitochondrial autophagy (mitophagy) is known to play a role in mediating protection against HF damage post-ischaemic injury and remodelling of the subsequent deteriorated myocardium. METHODS This study has shown that a single i.p. dose (2 h post-MI) of the selective small molecule Parkin activator PR-364 reduced mortality, preserved cardiac ejection fraction, and mitigated the progression of HF. To reveal the mechanism of PR-364, a multi-omic strategy was deployed in combination with classical functional assays using in vivo MI and in vitro cardiomyocyte models. RESULTS In vitro cell data indicated that Parkin activation by PR-364 increased mitophagy and mitochondrial biogenesis, enhanced adenosine triphosphate production via improved citric acid cycle, altered accumulation of calcium localization to the mitochondria, and initiated translational reprogramming with increased expression of mitochondrial translational proteins. In mice, PR-364 administered post-MI resulted in widespread proteome changes, indicating an up-regulation of mitochondrial metabolism and mitochondrial translation in the surviving myocardium. CONCLUSIONS This study demonstrates the therapeutic potential of targeting Parkin-mediated mitophagy using PR-364 to protect surviving cardiac tissue post-MI from progression to HF.
Collapse
Affiliation(s)
- Lizhuo Ai
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S San Vicente Blvd Pavilion, Los Angeles, CA 90048, USA
- Cedars-Sinai Medical Center, Advanced Clinical Biosystems Research Institute, 127 S San Vicente Blvd Pavilion, A9227, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Juliana de Freitas Germano
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S San Vicente Blvd Pavilion, Los Angeles, CA 90048, USA
| | - Chengqun Huang
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S San Vicente Blvd Pavilion, Los Angeles, CA 90048, USA
| | - Marianne Aniag
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S San Vicente Blvd Pavilion, Los Angeles, CA 90048, USA
| | - Savannah Sawaged
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S San Vicente Blvd Pavilion, Los Angeles, CA 90048, USA
| | - Jon Sin
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S San Vicente Blvd Pavilion, Los Angeles, CA 90048, USA
| | - Reetu Thakur
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S San Vicente Blvd Pavilion, Los Angeles, CA 90048, USA
| | - Deepika Rai
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S San Vicente Blvd Pavilion, Los Angeles, CA 90048, USA
| | | | - David E Sterner
- Progenra Inc., 271A Great Valley Parkway, Malvern, PA 19355, USA
| | - Yang Song
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S San Vicente Blvd Pavilion, Los Angeles, CA 90048, USA
- Cedars-Sinai Medical Center, Advanced Clinical Biosystems Research Institute, 127 S San Vicente Blvd Pavilion, A9227, Los Angeles, CA 90048, USA
| | - Honit Piplani
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S San Vicente Blvd Pavilion, Los Angeles, CA 90048, USA
| | - Suresh Kumar
- Progenra Inc., 271A Great Valley Parkway, Malvern, PA 19355, USA
| | - Tauseef R Butt
- Progenra Inc., 271A Great Valley Parkway, Malvern, PA 19355, USA
| | - Robert M Mentzer
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S San Vicente Blvd Pavilion, Los Angeles, CA 90048, USA
| | - Aleksandr Stotland
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S San Vicente Blvd Pavilion, Los Angeles, CA 90048, USA
- Cedars-Sinai Medical Center, Advanced Clinical Biosystems Research Institute, 127 S San Vicente Blvd Pavilion, A9227, Los Angeles, CA 90048, USA
| | - Roberta A Gottlieb
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S San Vicente Blvd Pavilion, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Jennifer E Van Eyk
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S San Vicente Blvd Pavilion, Los Angeles, CA 90048, USA
- Cedars-Sinai Medical Center, Advanced Clinical Biosystems Research Institute, 127 S San Vicente Blvd Pavilion, A9227, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| |
Collapse
|
2
|
Jiang Z, Lu H, Gao B, Huang J, Ding Y. Transcriptomic Analysis of Cardiac Tissues in a Rodent Model of Coronary Microembolization. J Inflamm Res 2024; 17:6645-6659. [PMID: 39345897 PMCID: PMC11437660 DOI: 10.2147/jir.s469297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
Purpose Coronary microembolization (CME) can result in cardiac dysfunction, severe arrhythmias, and a reduced coronary flow reserve. Impairment of mitochondrial energy metabolism has been implicated in the progression and pathogenesis of CME; however, its role remains largely undetermined. This study aimed to explore alterations in mitochondria-related genes in CME. Methods A rat model of CME was successfully established by injecting plastic microspheres into the left ventricle. The cardiac tissues of the two groups were sequenced and mitochondrial functions were assessed. Results Using RNA-Seq, together with GO and KEGG enrichment analyses, we identified 3822 differentially expressed genes (DEGs) in CME rats compared to control rats, and 101 DEGs were mitochondria-related genes. Notably, 36 DEGs were up-regulated and 65 DEGs were down-regulated (CME vs control). In particular, the oxidative phosphorylation (OXPHOS) and mitochondrial electron transport were obviously down-regulated in the CME group. Functional analysis revealed that CME mice exhibited marked reductions in ATP and mitochondrial membrane potential (MMP), by contrast, the production of reactive oxygen species (ROS) was much higher in CME mice than in controls. Protein-protein interaction (PPI) and quantitative PCR (qPCR) validation suggested that eight hub genes including Cmpk2, Isg15, Acsl1, Etfb, Ndufa8, Adhfe1, Gabarapl1 and Acot13 were down-regulated in CME, whereas Aldh18a1 and Hspa5 were up-regulated. Conclusion Our findings suggest that dysfunctions in mitochondrial activity and metabolism are important mechanisms for CME, and mitochondria-related DEGs may be potential therapeutic targets for CME.
Collapse
Affiliation(s)
- Zhaochang Jiang
- Department of Pathology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang, 310009, People's Republic of China
| | - Haohao Lu
- Zhejiang Center of Laboratory Animals, Hangzhou Medical College, Hangzhou, Zhejiang, 310063, People's Republic of China
| | - Beibei Gao
- Department of Cardiology, Hangzhou First People's Hospital, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Jinyu Huang
- Department of Cardiology, Hangzhou First People's Hospital, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Yu Ding
- Department of Clinical Laboratory, Hangzhou First People's Hospital, Hangzhou, Zhejiang, 310006, People's Republic of China
| |
Collapse
|
3
|
Chen A, Lu D, Yang Z, Che X, Xia Y, Shao X, Chen Z, Qian J, Ge J. Association between NLRP3 inflammasome and periprocedural myocardial injury following elective PCI. Heliyon 2023; 9:e19269. [PMID: 37654461 PMCID: PMC10466922 DOI: 10.1016/j.heliyon.2023.e19269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/05/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023] Open
Abstract
Background Periprocedural myocardial injury (PMI) is a common complication of percutaneous coronary intervention (PCI) associated with poor prognosis. Inflammation has been demonstrated to exert a crucial role in PMI. However, how the inflammation is initiated or sustained in PMI remains elusive. Methods RNA-seq in peripheral blood mononuclear cells (PBMCs) from 3 Non-PMI and 6 PMI patients was performed with subsequent bioinformatics analysis. RNA-seq results were verified in a patient cohort. We also established the coronary microembolization (CME) mice model to mimic PMI. The activity of caspase-1 in PBMCs was detected by flow cytometry. The levels of interleukin (IL)-1β, IL-18 and cardiac troponin in plasma were measured by enzyme-linked immunosorbent assay. Results We identified a total of 901 differentially expressed genes (DEGs) between Non-PMI and PMI patients. These DEGs participated in several inflammation-related processes. NOD-like receptor signaling pathway was significantly enriched in pathway analysis. All the key genes composed in the NLRP3 inflammasome, including NLRP3, PYCARD, CASP1 and IL1B, were upregulated in PMI patients. The activation of NLRP3 inflammasome was then verified by increased activity of caspase-1 in PBMCs, and elevated levels of IL-1β and IL-18 in plasma in PMI patients. Spearman analysis confirmed tight correlations between caspase-1 activity, IL-1β, IL-18 levels and troponin T level. In addition, caspase-1 activity, IL-1β and IL-18 levels were also enhanced in CME mice. Conclusions We discovered that NLRP3 inflammasome was involved in PMI, thus providing evidence supporting the therapeutic value of NLRP3 inflammasome-targeted strategies in PMI.
Collapse
Affiliation(s)
- Ao Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Danbo Lu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Zheng Yang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinyu Che
- Shanghai Institute of Infectious Disease and Biosecurity, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Xia
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Xia Shao
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Zhangwei Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Juying Qian
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China
| |
Collapse
|
4
|
Applications of Tandem Mass Spectrometry (MS/MS) in Protein Analysis for Biomedical Research. Molecules 2022; 27:molecules27082411. [PMID: 35458608 PMCID: PMC9031286 DOI: 10.3390/molecules27082411] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
Mass Spectrometry (MS) allows the analysis of proteins and peptides through a variety of methods, such as Electrospray Ionization-Mass Spectrometry (ESI-MS) or Matrix-Assisted Laser Desorption Ionization-Mass Spectrometry (MALDI-MS). These methods allow identification of the mass of a protein or a peptide as intact molecules or the identification of a protein through peptide-mass fingerprinting generated upon enzymatic digestion. Tandem mass spectrometry (MS/MS) allows the fragmentation of proteins and peptides to determine the amino acid sequence of proteins (top-down and middle-down proteomics) and peptides (bottom-up proteomics). Furthermore, tandem mass spectrometry also allows the identification of post-translational modifications (PTMs) of proteins and peptides. Here, we discuss the application of MS/MS in biomedical research, indicating specific examples for the identification of proteins or peptides and their PTMs as relevant biomarkers for diagnostic and therapy.
Collapse
|
5
|
Barta BA, Ruppert M, Fröhlich KE, Cosenza-Contreras M, Oláh A, Sayour AA, Kovács K, Karvaly GB, Biniossek M, Merkely B, Schilling O, Radovits T. Sex-related differences of early cardiac functional and proteomic alterations in a rat model of myocardial ischemia. J Transl Med 2021; 19:507. [PMID: 34895263 PMCID: PMC8666068 DOI: 10.1186/s12967-021-03164-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 11/23/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Reduced cardiovascular risk in premenopausal women has been the focus of research in recent decades. Previous hypothesis-driven experiments have highlighted the role of sex hormones on distinct inflammatory responses, mitochondrial proteins, extracellular remodeling and estrogen-mediated cardioprotective signaling pathways related to post-ischemic recovery, which were associated with better cardiac functional outcomes in females. We aimed to investigate the early, sex-specific functional and proteomic changes following myocardial ischemia in an unbiased approach. METHODS Ischemia was induced in male (M-Isch) and female (F-Isch) rats with sc. injection of isoproterenol (85 mg/kg) daily for 2 days, while controls (M-Co, F-Co) received sc. saline solution. At 48 h after the first injection pressure-volume analysis was carried out to assess left ventricular function. FFPE tissue slides were scanned and analyzed digitally, while myocardial proteins were quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using isobaric labeling. Concentrations of circulating steroid hormones were measured with LC-MS/MS. Feature selection (PLS and PLS-DA) was used to examine associations among functional, proteomic and hormonal datasets. RESULTS Induction of ischemia resulted in 38% vs 17% mortality in M-Isch and F-Isch respectively. The extent of ischemic damage to surviving rats was comparable between the sexes. Systolic dysfunction was more pronounced in males, while females developed a more severe impairment of diastolic function. 2224 proteins were quantified, with 520 showing sex-specific differential regulation. Our analysis identified transcriptional, cytoskeletal, contractile, and mitochondrial proteins, molecular chaperones and the extracellular matrix as sources of disparity between the sexes. Bioinformatics highlighted possible associations of estrogens and their metabolites with early functional and proteomic alterations. CONCLUSIONS Our study has highlighted sex-specific alterations in systolic and diastolic function shortly after ischemia, and provided a comprehensive look at the underlying proteomic changes and the influence of estrogens and their metabolites. According to our bioinformatic analysis, inflammatory, mitochondrial, chaperone, cytoskeletal, extracellular and matricellular proteins are major sources of intersex disparity, and may be promising targets for early sex-specific pharmacologic interventions.
Collapse
Affiliation(s)
- Bálint András Barta
- Experimental Research Laboratory, Heart and Vascular Center, Faculty of Medicine, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary. .,Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany. .,Faculty of Biology, University of Freiburg, Freiburg, Germany.
| | - Mihály Ruppert
- Experimental Research Laboratory, Heart and Vascular Center, Faculty of Medicine, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
| | - Klemens Erwin Fröhlich
- Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Miguel Cosenza-Contreras
- Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,MeInBio Graduate School, University of Freiburg, Freiburg, Germany
| | - Attila Oláh
- Experimental Research Laboratory, Heart and Vascular Center, Faculty of Medicine, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
| | - Alex Ali Sayour
- Experimental Research Laboratory, Heart and Vascular Center, Faculty of Medicine, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
| | - Krisztián Kovács
- Department of Laboratory Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gellért Balázs Karvaly
- Department of Laboratory Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Martin Biniossek
- Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Béla Merkely
- Experimental Research Laboratory, Heart and Vascular Center, Faculty of Medicine, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
| | - Oliver Schilling
- Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - Tamás Radovits
- Experimental Research Laboratory, Heart and Vascular Center, Faculty of Medicine, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
| |
Collapse
|
6
|
Shinde A, Jung H, Lee H, Singh K, Roy M, Gohel D, Kim HB, Mane M, Vasiyani H, Currim F, Seo YR, Yang S, Cho A, Yi EC, Singh R. TNF-α differentially modulates subunit levels of respiratory electron transport complexes of ER/PR +ve/-ve breast cancer cells to regulate mitochondrial complex activity and tumorigenic potential. Cancer Metab 2021; 9:19. [PMID: 33926547 PMCID: PMC8082668 DOI: 10.1186/s40170-021-00254-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/01/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Tumor necrosis factor-α (TNF-α) is an immunostimulatory cytokine that is consistently high in the breast tumor microenvironment (TME); however, its differential role in mitochondrial functions and cell survival in ER/PR +ve and ER/PR -ve breast cancer cells is not well understood. METHODS In the current study, we investigated TNF-α modulated mitochondrial proteome using high-resolution mass spectrometry and identified the differentially expressed proteins in two different breast cancer cell lines, ER/PR positive cell line; luminal, MCF-7 and ER/PR negative cell line; basal-like, MDA-MB-231 and explored its implication in regulating the tumorigenic potential of breast cancer cells. We also compared the activity of mitochondrial complexes, ATP, and ROS levels between MCF-7 and MDA-MB-231 in the presence of TNF-α. We used Tumor Immune Estimation Resource (TIMER) webserver to analyze the correlation between TNF-α and mitochondrial proteins in basal and luminal breast cancer patients. Kaplan-Meier method was used to analyze the correlation between mitochondrial protein expression and survival of breast cancer patients. RESULTS The proteome analysis revealed that TNF-α differentially altered the level of critical proteins of mitochondrial respiratory chain complexes both in MCF-7 and MDA-MB-231, which correlated with differential assembly and activity of mitochondrial ETC complexes. The inhibition of the glycolytic pathway in the presence of TNF-α showed that glycolysis is indispensable for the proliferation and clonogenic ability of MDA-MB-231 cells (ER/PR -ve) as compared to MCF-7 cells (ER/PR +ve). The TIMER database showed a negative correlation between the expressions of TNF-α and key regulators of mitochondrial OXPHOS complexes in basal breast vs lobular carcinoma. Conversely, patient survival analysis showed an improved relapse-free survival with increased expression of identified proteins of ETC complexes and survival of the breast cancer patients. CONCLUSION The evidence presented in our study convincingly demonstrates that TNF-α regulates the survival and proliferation of aggressive tumor cells by modulating the levels of critical assembly factors and subunits involved in mitochondrial respiratory chain supercomplexes organization and function. This favors the rewiring of mitochondrial metabolism towards anaplerosis to support the survival and proliferation of breast cancer cells. Collectively, the results strongly suggest that TNF-α differentially regulates metabolic adaptation in ER/PR +ve (MCF-7) and ER/PR -ve (MDA-MB-231) cells by modulating the mitochondrial supercomplex assembly and activity.
Collapse
Affiliation(s)
- Anjali Shinde
- Department of Bio-Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Sayajigunj, Vadodara, Gujarat, 390002, India
| | - Hyeryeon Jung
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 03080, South Korea
| | - Hayun Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 03080, South Korea
| | - Kritarth Singh
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Milton Roy
- Department of Bio-Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Sayajigunj, Vadodara, Gujarat, 390002, India
| | - Dhruv Gohel
- Department of Bio-Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Sayajigunj, Vadodara, Gujarat, 390002, India
| | - Han Byeol Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 03080, South Korea
| | - Minal Mane
- Department of Bio-Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Sayajigunj, Vadodara, Gujarat, 390002, India
| | - Hitesh Vasiyani
- Department of Bio-Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Sayajigunj, Vadodara, Gujarat, 390002, India
| | - Fatema Currim
- Department of Bio-Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Sayajigunj, Vadodara, Gujarat, 390002, India
| | - Yu Ri Seo
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 03080, South Korea
| | - Seojin Yang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 03080, South Korea
| | - Ara Cho
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 03080, South Korea
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 03080, South Korea.
| | - Rajesh Singh
- Department of Bio-Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Sayajigunj, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
7
|
Pla-Pagà L, Guirro M, Gual-Grau A, Gibert-Ramos A, Foguet-Romero E, Catalán Ú, Mayneris-Perxachs J, Canela N, Valls RM, Arola L, Solà R, Pedret A. Proteomic Analysis of Heart and Kidney Tissues in Healthy and Metabolic Syndrome Rats after Hesperidin Supplementation. Mol Nutr Food Res 2020; 64:e1901063. [PMID: 32281714 DOI: 10.1002/mnfr.201901063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/29/2020] [Indexed: 01/17/2023]
Abstract
SCOPE Proteomics has provided new strategies to elucidate the mechanistic action of hesperidin, a flavonoid present in citrus fruits. Thus, the aim of the present study is to determine the effects of hesperidin supplementation (HS) on the proteomic profiles of heart and kidney tissue samples from healthy and metabolic syndrome (MS) rats. METHODS AND RESULTS 24 Sprague Dawley rats are randomized into four groups: healthy rats fed with a standard diet without HS, healthy rats administered with HS (100 mg kg-1 day-1 ), MS rats without HS, and MS rats administered with HS (100 mg kg-1 day-1 ) for eight weeks. Heart and kidney samples are obtained, and proteomic analysis is performed by mass spectrometry. Multivariate, univariate, and ingenuity pathways analyses are performed. Comparative and semiquantitative proteomic analyses of heart and kidney tissues reveal differential protein expression between MS rats with and without HS. The top diseases and functions implicated are related to the cardiovascular system, free radical scavenging, lipid metabolism, glucose metabolism, and renal and urological diseases. CONCLUSION This study is the first to demonstrate the protective capacity of hesperidin to change to the proteomic profiles in relation to different cardiovascular risk biomarkers in the heart and kidney tissues of MS rats.
Collapse
Affiliation(s)
- Laura Pla-Pagà
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Av/ Universitat 1, Reus, 43204, Spain.,Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Disease Group (NFOC-SALUT), C/ Sant Llorenç 21, Reus, 43201, Spain
| | - Maria Guirro
- Nutrigenomics Research Group, Biochemistry and Biotechnology Department, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, Tarragona, 43007, Spain.,Centre for Omic Sciences, Joint Unit Universitat Rovira i Virgili-EURECAT, Centre Tecnològic de Catalunya, Unique Scientific and Technical Infrastructures, Av/ Universitat 1, Reus, 43204, Spain
| | - Andreu Gual-Grau
- Nutrigenomics Research Group, Biochemistry and Biotechnology Department, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, Tarragona, 43007, Spain
| | - Albert Gibert-Ramos
- Nutrigenomics Research Group, Biochemistry and Biotechnology Department, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, Tarragona, 43007, Spain
| | - Elisabet Foguet-Romero
- Centre for Omic Sciences, Joint Unit Universitat Rovira i Virgili-EURECAT, Centre Tecnològic de Catalunya, Unique Scientific and Technical Infrastructures, Av/ Universitat 1, Reus, 43204, Spain
| | - Úrsula Catalán
- Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Disease Group (NFOC-SALUT), C/ Sant Llorenç 21, Reus, 43201, Spain.,Institut d'Investigació Sanitària Pere Virgili, Av/ Universitat 1, Reus, 43204, Spain
| | - Jordi Mayneris-Perxachs
- Centre for Omic Sciences, Joint Unit Universitat Rovira i Virgili-EURECAT, Centre Tecnològic de Catalunya, Unique Scientific and Technical Infrastructures, Av/ Universitat 1, Reus, 43204, Spain
| | - Nuria Canela
- Institut d'Investigació Sanitària Pere Virgili, Av/ Universitat 1, Reus, 43204, Spain
| | - Rosa M Valls
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Av/ Universitat 1, Reus, 43204, Spain.,Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Disease Group (NFOC-SALUT), C/ Sant Llorenç 21, Reus, 43201, Spain
| | - Lluís Arola
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Av/ Universitat 1, Reus, 43204, Spain.,Nutrigenomics Research Group, Biochemistry and Biotechnology Department, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, Tarragona, 43007, Spain
| | - Rosa Solà
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Av/ Universitat 1, Reus, 43204, Spain.,Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Disease Group (NFOC-SALUT), C/ Sant Llorenç 21, Reus, 43201, Spain.,Hospital Universitari Sant Joan, Av/ Doctor Josep Laporte 2, Reus, 43204, Spain
| | - Anna Pedret
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Av/ Universitat 1, Reus, 43204, Spain.,Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Disease Group (NFOC-SALUT), C/ Sant Llorenç 21, Reus, 43201, Spain
| |
Collapse
|
8
|
Fan M, Chen Z, Huang Y, Xia Y, Chen A, Lu D, Wu Y, Zhang N, Zhang P, Li S, Chen J, Zhang Y, Sun A, Zou Y, Hu K, Qian J, Ge J. Overexpression of the histidine triad nucleotide-binding protein 2 protects cardiac function in the adult mice after acute myocardial infarction. Acta Physiol (Oxf) 2020; 228:e13439. [PMID: 31900976 DOI: 10.1111/apha.13439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/14/2019] [Accepted: 12/31/2019] [Indexed: 12/28/2022]
Abstract
AIM To explore the role of the histidine triad nucleotide-binding 2 (HINT2) protein in heart failure. METHODS Neonatal mouse ventricle myocytes (NMVMs) and myocardial infarction-induced heart failure mice were used for in vitro or in vivo experiments. Adenovirus (ADV) and adeno-associated virus serum type 9 (AAV9) vectors were used to regulate HINT2 expression. The expression of HINT2 was determined by quantifying the mRNA and protein levels. Cell survival was analysed using the CCK-8 kit and TUNEL staining. Mitochondrial function was determined by the mitochondrial membrane potential and oxygen consumption rates. AAV9-HINT2 was injected 24 h post-myocardial infarction following which transthoracic echocardiography and histological analyses were performed after 4 weeks. Positron emission tomography tomography-computed tomography (PET/CT) and targeted metabolomics analyses were used to explore the metabolic status in vivo. NAD levels were measured using a colorimetric kit. Computer-simulated rigid body molecular docking was performed using AUTODOCK4. Molecule binding kinetics assays were performed using biolayer interferometry. RESULTS HINT2 was down-regulated in NMVMs in hypoxia. ADV-HINT2-induced HINT2 overexpression improved NMVM survival after exposure to hypoxia. Mitochondrial function was preserved in the ADV-HINT2 group under hypoxic conditions. In vivo experiments showed that cardiac function and metabolic status was preserved by HINT2 overexpression. HINT2 overexpression restored mitochondrial NAD levels; this was dependent on nicotinamide mononucleotide (NMN). Using computer-simulated molecular docking analysis and biolayer interferometry, we observed that HINT2 potentially binds and associates with NMN. CONCLUSION HINT2 overexpression protects cardiac function in adult mice after myocardial infarction by maintaining mitochondrial NAD homeostasis.
Collapse
Affiliation(s)
- Mengkang Fan
- Department of Cardiology Zhongshan Hospital Fudan University Shanghai Institute of Cardiovascular Diseases Shanghai China
- Department of Cardiovascular Affiliated Hospital of Nantong University Jiangsu China
| | - Zhangwei Chen
- Department of Cardiology Zhongshan Hospital Fudan University Shanghai Institute of Cardiovascular Diseases Shanghai China
| | - Yin Huang
- Department of Geriatric Medicine Affiliated Hospital of Nantong University Jiangsu China
| | - Yan Xia
- Department of Cardiology Zhongshan Hospital Fudan University Shanghai Institute of Cardiovascular Diseases Shanghai China
| | - Ao Chen
- Department of Cardiology Zhongshan Hospital Fudan University Shanghai Institute of Cardiovascular Diseases Shanghai China
| | - Danbo Lu
- Department of Cardiology Zhongshan Hospital Fudan University Shanghai Institute of Cardiovascular Diseases Shanghai China
| | - Yuan Wu
- Department of Cardiology Zhongshan Hospital Fudan University Shanghai Institute of Cardiovascular Diseases Shanghai China
| | - Ning Zhang
- Department of Cardiology Zhongshan Hospital Fudan University Shanghai Institute of Cardiovascular Diseases Shanghai China
| | - Peipei Zhang
- Department of Cardiology Zhongshan Hospital Fudan University Shanghai Institute of Cardiovascular Diseases Shanghai China
| | - Su Li
- Department of Cardiology Zhongshan Hospital Fudan University Shanghai Institute of Cardiovascular Diseases Shanghai China
| | - Jinxiang Chen
- Department of Cardiology Zhongshan Hospital Fudan University Shanghai Institute of Cardiovascular Diseases Shanghai China
| | - Yingmei Zhang
- Department of Cardiology Zhongshan Hospital Fudan University Shanghai Institute of Cardiovascular Diseases Shanghai China
| | - Aijun Sun
- Department of Cardiology Zhongshan Hospital Fudan University Shanghai Institute of Cardiovascular Diseases Shanghai China
| | - Yunzeng Zou
- Department of Cardiology Zhongshan Hospital Fudan University Shanghai Institute of Cardiovascular Diseases Shanghai China
| | - Kai Hu
- Department of Cardiology Zhongshan Hospital Fudan University Shanghai Institute of Cardiovascular Diseases Shanghai China
| | - Juying Qian
- Department of Cardiology Zhongshan Hospital Fudan University Shanghai Institute of Cardiovascular Diseases Shanghai China
| | - Junbo Ge
- Department of Cardiology Zhongshan Hospital Fudan University Shanghai Institute of Cardiovascular Diseases Shanghai China
| |
Collapse
|
9
|
Lu D, Xia Y, Chen Z, Chen A, Wu Y, Jia J, Sun A, Zou Y, Qian J, Ge J. Cardiac Proteome Profiling in Ischemic and Dilated Cardiomyopathy Mouse Models. Front Physiol 2019; 10:750. [PMID: 31275164 PMCID: PMC6591471 DOI: 10.3389/fphys.2019.00750] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/31/2019] [Indexed: 12/22/2022] Open
Abstract
Heart failure (HF) is a worldwide pandemic with an unacceptable high level of morbidity and mortality. Understanding the different pathophysiological mechanisms will contribute to prevention and individualized therapy of HF. We established mouse models for ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM) by inducing myocardial infarction (MI) and Coxsackievirus B3 infection, respectively. Isobaric tags for relative and absolute quantitation and liquid chromatography coupled with tandem mass spectrometry technology was used to identify the protein expression profiles in control and failing hearts. A total of 1,638 proteins were identified and compared in this proteomics analysis. Among them, 286 proteins were differently expressed. Gene ontology, KEGG pathway and ingenuity pathway analysis was performed to systematically assess the potential connections of the differentially expressed proteins to biological functions. Compared with control group, the differentially expressed proteins derived from the hearts of ICM and DCM mice were partially similar and mainly modulated in oxidative phosphorylation, metabolism and protein folding pathways. Moreover, difference still existed, the differentially expressed proteins between DCM and ICM hearts were significantly modulated in oxidative phosphorylation, metabolic and AMPK signaling pathways. Confirmatory western bolt analysis demonstrated that SDHB was down-regulated in both ICM and DCM hearts, while UQCRQ, GLUT4 and adiponectin were up-regulated in ICM hearts. Adenosine triphosphate (ATP) concentration significantly decreased in both DCM and ICM hearts. The protein expression of phospho-AMPKα decreased significantly in DCM hearts, but increased in ICM. In summary, oxidative phosphorylation, cardiac metabolism, and protein folding play critical roles in the pathogenesis of HF. The diverse changes in protein expression profiles between failing hearts induced by either MI or CVB3 infection demonstrated the heterogeneity of HF. Understanding the differences in proteome profiles could offer more precise therapeutic options for HF.
Collapse
Affiliation(s)
- Danbo Lu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Xia
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhangwei Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ao Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianguo Jia
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Aijun Sun
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunzeng Zou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Juying Qian
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|