1
|
Crispino A, Loppini A, Uzelac I, Iravanian S, Bhatia NK, Burke M, Filippi S, Fenton FH, Gizzi A. A cross species thermoelectric and spatiotemporal analysis of alternans in live explanted hearts using dual voltage-calcium fluorescence optical mapping. Physiol Meas 2024; 45:065001. [PMID: 38772394 DOI: 10.1088/1361-6579/ad4e8f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/21/2024] [Indexed: 05/23/2024]
Abstract
Objective.Temperature plays a crucial role in influencing the spatiotemporal dynamics of the heart. Electrical instabilities due to specific thermal conditions typically lead to early period-doubling bifurcations and beat-to-beat alternans. These pro-arrhythmic phenomena manifest in voltage and calcium traces, resulting in compromised contractile behaviors. In such intricate scenario, dual optical mapping technique was used to uncover unexplored multi-scale and nonlinear couplings, essential for early detection and understanding of cardiac arrhythmia.Approach.We propose a methodological analysis of synchronized voltage-calcium signals for detecting alternans, restitution curves, and spatiotemporal alternans patterns under different thermal conditions, based on integral features calculation. To validate our approach, we conducted a cross-species investigation involving rabbit and guinea pig epicardial ventricular surfaces and human endocardial tissue under pacing-down protocols.Main results.We show that the proposed integral feature, as the area under the curve, could be an easily applicable indicator that may enhance the predictability of the onset and progression of cardiac alternans. Insights into spatiotemporal correlation analysis of characteristic spatial lengths across different heart species were further provided.Significance.Exploring cross-species thermoelectric features contributes to understanding temperature-dependent proarrhythmic regimes and their implications on coupled spatiotemporal voltage-calcium dynamics. The findings provide preliminary insights and potential strategies for enhancing arrhythmia detection and treatment.
Collapse
Affiliation(s)
- Anna Crispino
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Alessandro Loppini
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Ilija Uzelac
- Virginia Commonwealth University, Richmond, VA, United States of America
| | - Shahriar Iravanian
- Department of Cardiovascular Medicine, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Neal K Bhatia
- Department of Cardiovascular Medicine, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Michael Burke
- Department of Cardiovascular Medicine, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Simonetta Filippi
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Flavio H Fenton
- School of Physics, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Alessio Gizzi
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
2
|
Viola F, Del Corso G, De Paulis R, Verzicco R. GPU accelerated digital twins of the human heart open new routes for cardiovascular research. Sci Rep 2023; 13:8230. [PMID: 37217483 DOI: 10.1038/s41598-023-34098-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
The recruitment of patients for rare or complex cardiovascular diseases is a bottleneck for clinical trials and digital twins of the human heart have recently been proposed as a viable alternative. In this paper we present an unprecedented cardiovascular computer model which, relying on the latest GPU-acceleration technologies, replicates the full multi-physics dynamics of the human heart within a few hours per heartbeat. This opens the way to extensive simulation campaigns to study the response of synthetic cohorts of patients to cardiovascular disorders, novel prosthetic devices or surgical procedures. As a proof-of-concept we show the results obtained for left bundle branch block disorder and the subsequent cardiac resynchronization obtained by pacemaker implantation. The in-silico results closely match those obtained in clinical practice, confirming the reliability of the method. This innovative approach makes possible a systematic use of digital twins in cardiovascular research, thus reducing the need of real patients with their economical and ethical implications. This study is a major step towards in-silico clinical trials in the era of digital medicine.
Collapse
Affiliation(s)
- Francesco Viola
- Gran Sasso Science Institute (GSSI), L'Aquila, Italy
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (AQ), Italy
| | - Giulio Del Corso
- Gran Sasso Science Institute (GSSI), L'Aquila, Italy
- Institute of Information Science and Technologies A. Faedo, CNR, Pisa, Italy
| | - Ruggero De Paulis
- European Hospital, Rome, Italy
- UniCamillus International University of Health Sciences, Rome, Italy
| | - Roberto Verzicco
- Gran Sasso Science Institute (GSSI), L'Aquila, Italy.
- University of Rome Tor Vergata, Rome, Italy.
- POF Group, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
3
|
Mechanoelectric effects in healthy cardiac function and under Left Bundle Branch Block pathology. Comput Biol Med 2023; 156:106696. [PMID: 36870172 PMCID: PMC10040614 DOI: 10.1016/j.compbiomed.2023.106696] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/18/2023] [Accepted: 02/14/2023] [Indexed: 03/03/2023]
Abstract
Mechanoelectric feedback (MEF) in the heart operates through several mechanisms which serve to regulate cardiac function. Stretch activated channels (SACs) in the myocyte membrane open in response to cell lengthening, while tension generation depends on stretch, shortening velocity, and calcium concentration. How all of these mechanisms interact and their effect on cardiac output is still not fully understood. We sought to gauge the acute importance of the different MEF mechanisms on heart function. An electromechanical computer model of a dog heart was constructed, using a biventricular geometry of 500K tetrahedral elements. To describe cellular behavior, we used a detailed ionic model to which a SAC model and an active tension model, dependent on stretch and shortening velocity and with calcium sensitivity, were added. Ventricular inflow and outflow were connected to the CircAdapt model of cardiovascular circulation. Pressure-volume loops and activation times were used for model validation. Simulations showed that SACs did not affect acute mechanical response, although if their trigger level was decreased sufficiently, they could cause premature excitations. The stretch dependence of tension had a modest effect in reducing the maximum stretch, and stroke volume, while shortening velocity had a much bigger effect on both. MEF served to reduce the heterogeneity in stretch while increasing tension heterogeneity. In the context of left bundle branch block, a decreased SAC trigger level could restore cardiac output by reducing the maximal stretch when compared to cardiac resynchronization therapy. MEF is an important aspect of cardiac function and could potentially mitigate activation problems.
Collapse
|
4
|
Woodworth LA, Cansız B, Kaliske M. Balancing conduction velocity error in cardiac electrophysiology using a modified quadrature approach. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3589. [PMID: 35266643 DOI: 10.1002/cnm.3589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/20/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Conduction velocity error is often the main culprit behind the need for very fine spatial discretizations and high computational effort in cardiac electrophysiology problems. In light of this, a novel approach for simulating an accurate conduction velocity in coarse meshes with linear elements is suggested based on a modified quadrature approach. In this approach, the quadrature points are placed at arbitrary offsets of the isoparametric coordinates. A numerical study illustrates the dependence of the conduction velocity on the spatial discretization and the conductivity when using different quadrature rules and calculation approaches. Additionally, examples using the modified quadrature in coarse meshes for wave propagation demonstrate the improved accuracy of the conduction velocity with this method. This novel approach possesses great potential in reducing the computational effort required but remains limited to specific linear elements and experiences a reduction in accuracy for irregular meshes and heterogeneous conductivities. Further research can focus on developing an adaptive quadrature and extending the approach to other element formulations in order to make the approach more generally applicable.
Collapse
Affiliation(s)
- Lucas A Woodworth
- Institute for Structural Analysis, Technische Universität Dresden, Dresden, Germany
| | - Barış Cansız
- Institute for Structural Analysis, Technische Universität Dresden, Dresden, Germany
| | - Michael Kaliske
- Institute for Structural Analysis, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
5
|
Saliani A, Biswas S, Jacquemet V. Simulation of atrial fibrillation in a non-ohmic propagation model with dynamic gap junctions. CHAOS (WOODBURY, N.Y.) 2022; 32:043113. [PMID: 35489863 DOI: 10.1063/5.0082763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Gap junctions exhibit nonlinear electrical properties that have been hypothesized to be relevant to arrhythmogenicity in a structurally remodeled tissue. Large-scale implementation of gap junction dynamics in 3D propagation models remains challenging. We aim to quantify the impact of nonlinear diffusion during episodes of arrhythmias simulated in a left atrial model. Homogenization of conduction properties in the presence of nonlinear gap junctions was performed by generalizing a previously developed mathematical framework. A monodomain model was solved in which conductivities were time-varying and depended on transjunctional potentials. Gap junction conductances were derived from a simplified Vogel-Weingart model with first-order gating and adjustable time constant. A bilayer interconnected cable model of the left atrium with 100 μm resolution was used. The diffusion matrix was recomputed at each time step according to the state of the gap junctions. Sinus rhythm and atrial fibrillation episodes were simulated in remodeled tissue substrates. Slow conduction was induced by reduced coupling and by diffuse or stringy fibrosis. Simulations starting from the same initial conditions were repeated with linear and nonlinear gap junctions. The discrepancy in activation times between the linear and nonlinear diffusion models was quantified. The results largely validated the linear approximation for conduction velocities >20 cm/s. In very slow conduction substrates, the discrepancy accumulated over time during atrial fibrillation, eventually leading to qualitative differences in propagation patterns, while keeping the descriptive statistics, such as cycle lengths, unchanged. The discrepancy growth rate was increased by impaired conduction, fibrosis, conduction heterogeneity, lateral uncoupling, fast gap junction time constant, and steeper action potential duration restitution.
Collapse
Affiliation(s)
- Ariane Saliani
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, C.P. 6128, succ. Centre-ville, Montreal, Quebec H3C 3J7, Canada
| | - Subhamoy Biswas
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, C.P. 6128, succ. Centre-ville, Montreal, Quebec H3C 3J7, Canada
| | - Vincent Jacquemet
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, C.P. 6128, succ. Centre-ville, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
6
|
Cusimano N, Gerardo-Giorda L, Gizzi A. A space-fractional bidomain framework for cardiac electrophysiology: 1D alternans dynamics. CHAOS (WOODBURY, N.Y.) 2021; 31:073123. [PMID: 34340362 DOI: 10.1063/5.0050897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Cardiac electrophysiology modeling deals with a complex network of excitable cells forming an intricate syncytium: the heart. The electrical activity of the heart shows recurrent spatial patterns of activation, known as cardiac alternans, featuring multiscale emerging behavior. On these grounds, we propose a novel mathematical formulation for cardiac electrophysiology modeling and simulation incorporating spatially non-local couplings within a physiological reaction-diffusion scenario. In particular, we formulate, a space-fractional electrophysiological framework, extending and generalizing similar works conducted for the monodomain model. We characterize one-dimensional excitation patterns by performing an extended numerical analysis encompassing a broad spectrum of space-fractional derivative powers and various intra- and extracellular conductivity combinations. Our numerical study demonstrates that (i) symmetric properties occur in the conductivity parameters' space following the proposed theoretical framework, (ii) the degree of non-local coupling affects the onset and evolution of discordant alternans dynamics, and (iii) the theoretical framework fully recovers classical formulations and is amenable for parametric tuning relying on experimental conduction velocity and action potential morphology.
Collapse
Affiliation(s)
| | | | - Alessio Gizzi
- Department of Engineering, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| |
Collapse
|
7
|
Loppini A, Barone A, Gizzi A, Cherubini C, Fenton FH, Filippi S. Thermal effects on cardiac alternans onset and development: A spatiotemporal correlation analysis. Phys Rev E 2021; 103:L040201. [PMID: 34005953 PMCID: PMC8202768 DOI: 10.1103/physreve.103.l040201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/09/2021] [Indexed: 01/08/2023]
Abstract
Alternans of cardiac action potential duration represent critical precursors for the development of life-threatening arrhythmias and sudden cardiac death. The system's thermal state affects these electrical disorders requiring additional theoretical and experimental efforts to improve a patient-specific clinical understanding. In such a scenario, we generalize a recent work from Loppini et al. [Phys. Rev. E 100, 020201(R) (2019)PREHBM2470-004510.1103/PhysRevE.100.020201] by performing an extended spatiotemporal correlation study. We consider high-resolution optical mapping recordings of canine ventricular wedges' electrical activity at different temperatures and pacing frequencies. We aim to recommend the extracted characteristic length as a potential predictive index of cardiac alternans onset and evolution within a wide range of system states. In particular, we show that a reduction of temperature results in a drop of the characteristic length, confirming the impact of thermal instabilities on cardiac dynamics. Moreover, we theoretically investigate the use of such an index to identify and predict different alternans regimes. Finally, we propose a constitutive phenomenological law linking conduction velocity, characteristic length, and temperature in view of future numerical investigations.
Collapse
Affiliation(s)
- Alessandro Loppini
- Department of Engineering, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Alessandro Barone
- Department of Engineering, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Alessio Gizzi
- Department of Engineering, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Christian Cherubini
- Department of Science and Technology for Humans and the Environment and ICRA, Campus Bio-Medico University of Rome, 00128 Rome, Italy and International Center for Relativistic Astrophysics Network-ICRANet, 65122 Pescara, Italy
| | - Flavio H. Fenton
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Simonetta Filippi
- Department of Engineering and ICRA, Campus Bio-Medico University of Rome, 00128 Rome, Italy and International Center for Relativistic Astrophysics Network-ICRANet, 65122 Pescara, Italy
| |
Collapse
|
8
|
A three-compartment non-linear model of myocardial cell conduction block during photosensitization. Med Biol Eng Comput 2021; 59:703-710. [PMID: 33608842 DOI: 10.1007/s11517-021-02329-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/24/2021] [Indexed: 10/22/2022]
Abstract
This study constructed a new non-linear model of myocardial electrical conduction block during photosensitization reaction to identify the vulnerable cell population and generate an index for recurrent risk following catheter ablation for tachyarrhythmia. A three-compartment model of conductive, vulnerable, and blocked cells was proposed. To determine the non-linearity of the rate parameter for the change from vulnerable cells to conductive cells, we compared a previously reported non-linear model and our newly proposed model with non-linear rate parameters in the modeling of myocardial cell electrical conduction block during photosensitization reaction. The rate parameters were optimized via a bi-nested structure using measured synchronicity data during the photosensitization reaction of myocardial cell wires. The newly proposed model had a better fit to the measured data than the conventional model. The sum of the error until the time where the measured value was higher than 0.6, was 0.22 in the conventional model and 0.07 in our new model. The non-linear rate parameter from the vulnerable cell to the conductive cell compartment may be the preferred structure of the electrical conduction block model induced by photosensitization reaction. This simulation model provides an index to evaluate recurrent risk after tachyarrhythmia catheter ablation by photosensitization reaction. A three-compartment non-linear model of myocardial cell conduction block during photosensitization.
Collapse
|
9
|
Abstract
Mechanosensing is a key feature through which organisms can receive inputs from the environment and convert them into specific functional and behavioral outputs. Mechanosensation occurs in many cells and tissues, regulating a plethora of molecular processes based on the distribution of forces and stresses both at the cell membrane and at the intracellular organelles levels, through complex interactions between cells’ microstructures, cytoskeleton, and extracellular matrix. Although several primary and secondary mechanisms have been shown to contribute to mechanosensation, a fundamental pathway in simple organisms and mammals involves the presence of specialized sensory neurons and the presence of different types of mechanosensitive ion channels on the neuronal cell membrane. In this contribution, we present a review of the main ion channels which have been proven to be significantly involved in mechanotransduction in neurons. Further, we discuss recent studies focused on the biological mechanisms and modeling of mechanosensitive ion channels’ gating, and on mechanotransduction modeling at different scales and levels of details.
Collapse
|
10
|
Modeling and Analysis of Cardiac Hybrid Cellular Automata via GPU-Accelerated Monte Carlo Simulation. MATHEMATICS 2021. [DOI: 10.3390/math9020164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The heart consists of a complex network of billions of cells. Under physiological conditions, cardiac cells propagate electrical signals in space, generating the heartbeat in a synchronous and coordinated manner. When such a synchronization fails, life-threatening events can arise. The inherent complexity of the underlying nonlinear dynamics and the large number of biological components involved make the modeling and the analysis of electrophysiological properties in cardiac tissue still an open challenge. We consider here a Hybrid Cellular Automata (HCA) approach modeling the cardiac cell-cell membrane resistance with a free variable. We show that the modeling approach can reproduce important and complex spatiotemporal properties paving the ground for promising future applications. We show how GPU-based technology can considerably accelerate the simulation and the analysis. Furthermore, we study the cardiac behavior within a unidimensional domain considering inhomogeneous resistance and we perform a Monte Carlo analysis to evaluate our approach.
Collapse
|
11
|
Li J, Marra MA, Verdonschot N, Lu Y. A three-dimensional finite-element model of gluteus medius muscle incorporating inverse-dynamics-based optimization for simulation of non-uniform muscle contraction. Med Eng Phys 2021; 87:38-44. [DOI: 10.1016/j.medengphy.2020.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/29/2020] [Accepted: 11/18/2020] [Indexed: 01/17/2023]
|
12
|
On the Role of Ionic Modeling on the Signature of Cardiac Arrhythmias for Healthy and Diseased Hearts. MATHEMATICS 2020. [DOI: 10.3390/math8122242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Computational cardiology is rapidly becoming the gold standard for innovative medical treatments and device development. Despite a worldwide effort in mathematical and computational modeling research, the complexity and intrinsic multiscale nature of the heart still limit our predictability power raising the question of the optimal modeling choice for large-scale whole-heart numerical investigations. We propose an extended numerical analysis among two different electrophysiological modeling approaches: a simplified phenomenological one and a detailed biophysical one. To achieve this, we considered three-dimensional healthy and infarcted swine heart geometries. Heterogeneous electrophysiological properties, fine-tuned DT-MRI -based anisotropy features, and non-conductive ischemic regions were included in a custom-built finite element code. We provide a quantitative comparison of the electrical behaviors during steady pacing and sustained ventricular fibrillation for healthy and diseased cases analyzing cardiac arrhythmias dynamics. Action potential duration (APD) restitution distributions, vortex filament counting, and pseudo-electrocardiography (ECG) signals were numerically quantified, introducing a novel statistical description of restitution patterns and ventricular fibrillation sustainability. Computational cost and scalability associated with the two modeling choices suggests that ventricular fibrillation signatures are mainly controlled by anatomy and structural parameters, rather than by regional restitution properties. Finally, we discuss limitations and translational perspectives of the different modeling approaches in view of large-scale whole-heart in silico studies.
Collapse
|
13
|
Del Corso G, Verzicco R, Viola F. Sensitivity analysis of an electrophysiology model for the left ventricle. J R Soc Interface 2020; 17:20200532. [PMID: 33109017 DOI: 10.1098/rsif.2020.0532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Modelling the cardiac electrophysiology entails dealing with the uncertainties related to the input parameters such as the heart geometry and the electrical conductivities of the tissues, thus calling for an uncertainty quantification (UQ) of the results. Since the chambers of the heart have different shapes and tissues, in order to make the problem affordable, here we focus on the left ventricle with the aim of identifying which of the uncertain inputs mostly affect its electrophysiology. In a first phase, the uncertainty of the input parameters is evaluated using data available from the literature and the output quantities of interest (QoIs) of the problem are defined. According to the polynomial chaos expansion, a training dataset is then created by sampling the parameter space using a quasi-Monte Carlo method whereas a smaller independent dataset is used for the validation of the resulting metamodel. The latter is exploited to run a global sensitivity analysis with nonlinear variance-based indices and thus reduce the input parameter space accordingly. Thereafter, the uncertainty probability distribution of the QoIs are evaluated using a direct UQ strategy on a larger dataset and the results discussed in the light of the medical knowledge.
Collapse
Affiliation(s)
| | - Roberto Verzicco
- Gran Sasso Science Institute (GSSI), L'Aquila, Italy.,University of Rome Tor Vergata, Rome, Italy.,POF Group, University of Twente, Enschede, The Netherlands
| | | |
Collapse
|
14
|
Marta Varela, Roy A, Lee J. A survey of pathways for mechano-electric coupling in the atria. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 159:136-145. [PMID: 33053408 PMCID: PMC7848589 DOI: 10.1016/j.pbiomolbio.2020.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 09/09/2020] [Accepted: 09/29/2020] [Indexed: 11/26/2022]
Abstract
Mechano-electric coupling (MEC) in atrial tissue has received sparse investigation to date, despite the well-known association between chronic atrial dilation and atrial fibrillation (AF). Of note, no fewer than six different mechanisms pertaining to stretch-activated channels, cellular capacitance and geometric effects have been identified in the literature as potential players. In this mini review, we briefly survey each of these pathways to MEC. We then perform computational simulations using single cell and tissue models in presence of various stretch regimes and MEC pathways. This allows us to assess the relative significance of each pathway in determining action potential duration, conduction velocity and rotor stability. For chronic atrial stretch, we find that stretch-induced alterations in membrane capacitance decrease conduction velocity and increase action potential duration, in agreement with experimental findings. In the presence of time-dependent passive atrial stretch, stretch-activated channels play the largest role, leading to after-depolarizations and rotor hypermeandering. These findings suggest that physiological atrial stretches, such as passive stretch during the atrial reservoir phase, may play an important part in the mechanisms of atrial arrhythmogenesis. Passive strains caused by ventricular contraction need to be considered when incorporating mechano-electro feedback in atrial electrophysiology models. In chronic stretch, stretch-induced capacitance changes dominate. Chronic stretch leads to an increase in action potential duration and a reduction in conduction velocity, consistent with experimental studies. In the presence of passive stretch, stretch-activated channels can induce delayed after-depolarisations and lead to rotor hypermeandering. Mechano-electro feedback is thus likely to have implications for the genesis and maintenance of atrial arrhythmias.
Collapse
Affiliation(s)
- Marta Varela
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
| | - Aditi Roy
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Computing, University of Oxford, Oxford, UK
| | - Jack Lee
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| |
Collapse
|
15
|
Quinn TA, Kohl P. Cardiac Mechano-Electric Coupling: Acute Effects of Mechanical Stimulation on Heart Rate and Rhythm. Physiol Rev 2020; 101:37-92. [PMID: 32380895 DOI: 10.1152/physrev.00036.2019] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The heart is vital for biological function in almost all chordates, including humans. It beats continually throughout our life, supplying the body with oxygen and nutrients while removing waste products. If it stops, so does life. The heartbeat involves precise coordination of the activity of billions of individual cells, as well as their swift and well-coordinated adaption to changes in physiological demand. Much of the vital control of cardiac function occurs at the level of individual cardiac muscle cells, including acute beat-by-beat feedback from the local mechanical environment to electrical activity (as opposed to longer term changes in gene expression and functional or structural remodeling). This process is known as mechano-electric coupling (MEC). In the current review, we present evidence for, and implications of, MEC in health and disease in human; summarize our understanding of MEC effects gained from whole animal, organ, tissue, and cell studies; identify potential molecular mediators of MEC responses; and demonstrate the power of computational modeling in developing a more comprehensive understanding of ‟what makes the heart tick.ˮ.
Collapse
Affiliation(s)
- T Alexander Quinn
- Department of Physiology and Biophysics and School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada; Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Medical Faculty of the University of Freiburg, Freiburg, Germany; and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Peter Kohl
- Department of Physiology and Biophysics and School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada; Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Medical Faculty of the University of Freiburg, Freiburg, Germany; and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Cusimano N, Gizzi A, Fenton F, Filippi S, Gerardo-Giorda L. Key aspects for effective mathematical modelling of fractional-diffusion in cardiac electrophysiology: a quantitative study. COMMUNICATIONS IN NONLINEAR SCIENCE & NUMERICAL SIMULATION 2020; 84:105152. [PMID: 32863678 PMCID: PMC7453933 DOI: 10.1016/j.cnsns.2019.105152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microscopic structural features of cardiac tissue play a fundamental role in determining complex spatio-temporal excitation dynamics at the macroscopic level. Recent efforts have been devoted to the development of mathematical models accounting for non-local spatio-temporal coupling able to capture these complex dynamics without the need of resolving tissue heterogeneities down to the micro-scale. In this work, we analyse in detail several important aspects affecting the overall predictive power of these modelling tools and provide some guidelines for an effective use of space-fractional models of cardiac electrophysiology in practical applications. Through an extensive computational study in simplified computational domains, we highlight the robustness of models belonging to different categories, i.e., physiological and phenomenological descriptions, against the introduction of non-locality, and lay down the foundations for future research and model validation against experimental data. A modern genetic algorithm framework is used to investigate proper parameterisations of the considered models, and the crucial role played by the boundary assumptions in the considered settings is discussed. Several numerical results are provided to support our claims.
Collapse
Affiliation(s)
- N. Cusimano
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, 48009 Bilbao, Spain
| | - A. Gizzi
- Department of Engineering, University of Rome Campus Bio-Medico, via A. del Portillo 21, 00128 Rome, Italy
| | - F.H. Fenton
- School of Physics, Georgia Insitute of Technology, 837 State Street NW, Atlanta, GA 30332, United States
| | - S. Filippi
- Department of Engineering, University of Rome Campus Bio-Medico, via A. del Portillo 21, 00128 Rome, Italy
| | - L. Gerardo-Giorda
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, 48009 Bilbao, Spain
| |
Collapse
|
17
|
Propp A, Gizzi A, Levrero-Florencio F, Ruiz-Baier R. An orthotropic electro-viscoelastic model for the heart with stress-assisted diffusion. Biomech Model Mechanobiol 2020; 19:633-659. [PMID: 31630280 PMCID: PMC7105452 DOI: 10.1007/s10237-019-01237-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/09/2019] [Indexed: 12/21/2022]
Abstract
We propose and analyse the properties of a new class of models for the electromechanics of cardiac tissue. The set of governing equations consists of nonlinear elasticity using a viscoelastic and orthotropic exponential constitutive law, for both active stress and active strain formulations of active mechanics, coupled with a four-variable phenomenological model for human cardiac cell electrophysiology, which produces an accurate description of the action potential. The conductivities in the model of electric propagation are modified according to stress, inducing an additional degree of nonlinearity and anisotropy in the coupling mechanisms, and the activation model assumes a simplified stretch-calcium interaction generating active tension or active strain. The influence of the new terms in the electromechanical model is evaluated through a sensitivity analysis, and we provide numerical validation through a set of computational tests using a novel mixed-primal finite element scheme.
Collapse
Affiliation(s)
- Adrienne Propp
- Mathematical Institute, University of Oxford, A. Wiles Building, Woodstock Road, Oxford, OX2 6GG United Kingdom
| | - Alessio Gizzi
- Nonlinear Physics and Mathematical Modeling Laboratory, Department of Engineering, University Campus Bio-Medico, Rome, Italy
| | | | - Ricardo Ruiz-Baier
- Mathematical Institute, University of Oxford, A. Wiles Building, Woodstock Road, Oxford, OX2 6GG United Kingdom
- Laboratory of Mathematical Modelling, Institute of Personalised Medicine, Sechenov University, Moscow, Russian Federation
| |
Collapse
|
18
|
Heikhmakhtiar AK, Lee CH, Song KS, Lim KM. Computational prediction of the effect of D172N KCNJ2 mutation on ventricular pumping during sinus rhythm and reentry. Med Biol Eng Comput 2020; 58:977-990. [PMID: 32095980 DOI: 10.1007/s11517-020-02124-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/07/2020] [Indexed: 01/30/2023]
Abstract
The understanding of cardiac arrhythmia under genetic mutations has grown in interest among researchers. Previous studies focused on the effect of the D172N mutation on electrophysiological behavior. In this study, we analyzed not only the electrophysiological activity but also the mechanical responses during normal sinus rhythm and reentry conditions by using computational modeling. We simulated four different ventricular conditions including normal case of ten Tusscher model 2006 (TTM), wild-type (WT), heterozygous (WT/D172N), and homozygous D172N mutation. The 2D simulation result (in wire-shaped mesh) showed the WT/D172N and D172N mutation shortened the action potential duration by 14%, and by 23%, respectively. The 3D electrophysiological simulation results showed that the electrical wavelength between TTM and WT conditions were identical. Under sinus rhythm condition, the WT/D172N and D172N reduced the pumping efficacy with a lower left ventricle (LV) and aortic pressures, stroke volume, ejection fraction, and cardiac output. Under the reentry conditions, the WT condition has a small probability of reentry. However, in the event of reentry, WT has shown the most severe condition. Furthermore, we found that the position of the rotor or the scroll wave substantially influenced the ventricular pumping efficacy during arrhythmia. If the rotor stays in the LV, it will cause very poor pumping performance. Graphical Abstract A model of a ventricular electromechanical system. This whole model was established to observe the effect of D172N KCNJ2 mutation on ventricular pumping behavior during sinus rhythm and reentry conditions. The model consists of two components; electrical component and mechanical component. The electrophysiological model based on ten Tusscher et al. with the IK1 D172N KCNJ2 mutation, and the myofilament dynamic (cross-bridge) model based on Rice et al. study. The 3D electrical component is a ventricular geometry based on MRI which composed of nodes representing single-cell with electrophysiological activation. The 3D ventricular mechanic is a finite element mesh composed of single-cells myofilament dynamic model. Both components were coupled with Ca2+ concentration. We used Gaussian points for the calcium interpolation from the electrical mesh to the mechanical mesh.
Collapse
Affiliation(s)
- Aulia Khamas Heikhmakhtiar
- Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea
| | - Chung Hao Lee
- Department of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK, USA
| | - Kwang Soup Song
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea
| | - Ki Moo Lim
- Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea.
| |
Collapse
|
19
|
Loppini A, Gizzi A, Cherubini C, Cherry EM, Fenton FH, Filippi S. Spatiotemporal correlation uncovers characteristic lengths in cardiac tissue. Phys Rev E 2019; 100:020201. [PMID: 31574686 DOI: 10.1103/physreve.100.020201] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Indexed: 06/10/2023]
Abstract
Complex spatiotemporal patterns of action potential duration have been shown to occur in many mammalian hearts due to period-doubling bifurcations that develop with increasing frequency of stimulation. Here, through high-resolution optical mapping experiments and mathematical modeling, we introduce a characteristic spatial length of cardiac activity in canine ventricular wedges via a spatiotemporal correlation analysis, at different stimulation frequencies and during fibrillation. We show that the characteristic length ranges from 40 to 20 cm during one-to-one responses and it decreases to a specific value of about 3 cm at the transition from period-doubling bifurcation to fibrillation. We further show that during fibrillation, the characteristic length is about 1 cm. Another significant outcome of our analysis is the finding of a constitutive phenomenological law obtained from a nonlinear fitting of experimental data which relates the conduction velocity restitution curve with the characteristic length of the system. The fractional exponent of 3/2 in our phenomenological law is in agreement with the domain size remapping required to reproduce experimental fibrillation dynamics within a realistic cardiac domain via accurate mathematical models.
Collapse
Affiliation(s)
- Alessandro Loppini
- Department of Engineering, Campus Bio-Medico University of Rome, Via A. del Portillo 21, I-00128 Rome, Italy
| | - Alessio Gizzi
- Department of Engineering, Campus Bio-Medico University of Rome, Via A. del Portillo 21, I-00128 Rome, Italy
| | - Christian Cherubini
- Department of Engineering, Campus Bio-Medico University of Rome, Via A. del Portillo 21, I-00128 Rome, Italy
- ICRANet, Piazza delle Repubblica 10, I-65122 Pescara, Italy
| | - Elizabeth M Cherry
- School of Mathematical Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, New York 14623, USA
| | - Flavio H Fenton
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, Georgia 30332, USA
| | - Simonetta Filippi
- Department of Engineering, Campus Bio-Medico University of Rome, Via A. del Portillo 21, I-00128 Rome, Italy
- ICRANet, Piazza delle Repubblica 10, I-65122 Pescara, Italy
| |
Collapse
|