1
|
Tinklenberg JA, Slick RA, Sutton J, Zhang L, Meng H, Beatka MJ, Vanden Avond M, Prom MJ, Ott E, Montanaro F, Heisner J, Toro R, Hardeman EC, Geurts AM, Stowe DF, Hill RB, Lawlor MW. Different Mouse Models of Nemaline Myopathy Harboring Acta1 Mutations Display Differing Abnormalities Related to Mitochondrial Biology. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1548-1567. [PMID: 37419385 PMCID: PMC10548277 DOI: 10.1016/j.ajpath.2023.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023]
Abstract
ACTA1 encodes skeletal muscle-specific α-actin, which polymerizes to form the thin filament of the sarcomere. Mutations in ACTA1 are responsible for approximately 30% of nemaline myopathy (NM) cases. Previous studies of weakness in NM have focused on muscle structure and contractility, but genetic issues alone do not explain the phenotypic heterogeneity observed in patients with NM or NM mouse models. To identify additional biological processes related to NM phenotypic severity, proteomic analysis was performed using muscle protein isolates from wild-type mice in comparison to moderately affected knock-in (KI) Acta1H40Y and the minimally affected transgenic (Tg) ACTA1D286G NM mice. This analysis revealed abnormalities in mitochondrial function and stress-related pathways in both mouse models, supporting an in-depth assessment of mitochondrial biology. Interestingly, evaluating each model in comparison to its wild-type counterpart identified different degrees of mitochondrial abnormality that correlated well with the phenotypic severity of the mouse model. Muscle histology, mitochondrial respiration, electron transport chain function, and mitochondrial transmembrane potential were all normal or minimally affected in the TgACTA1D286G mouse model. In contrast, the more severely affected KI.Acta1H40Y mice displayed significant abnormalities in relation to muscle histology, mitochondrial respirometry, ATP, ADP, and phosphate content, and mitochondrial transmembrane potential. These findings suggest that abnormal energy metabolism is related to symptomatic severity in NM and may constitute a contributor to phenotypic variability and a novel treatment target.
Collapse
Affiliation(s)
- Jennifer A Tinklenberg
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Rebecca A Slick
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jessica Sutton
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Liwen Zhang
- Mass Spectrometry and Proteomics Facility, Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio
| | - Hui Meng
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Margaret J Beatka
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mark Vanden Avond
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mariah J Prom
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Emily Ott
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Federica Montanaro
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - James Heisner
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Rafael Toro
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Edna C Hardeman
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - David F Stowe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - R Blake Hill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael W Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
2
|
Effect of GNE Mutations on Cytoskeletal Network Proteins: Potential Gateway to Understand Pathomechanism of GNEM. Neuromolecular Med 2022; 24:452-468. [PMID: 35503500 DOI: 10.1007/s12017-022-08711-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 04/09/2022] [Indexed: 12/27/2022]
Abstract
GNE myopathy is an inherited neuromuscular disorder caused by mutations in GNE (UDP-N-acetylglucosamine 2-epimerase/N-acetyl mannosamine kinase) gene catalyzing the sialic acid biosynthesis pathway. The characteristic features include muscle weakness in upper and lower extremities, skeletal muscle wasting, and rimmed vacuole formation. More than 200 GNE mutations in either epimerase or kinase domain have been reported worldwide. In Indian subcontinent, several GNE mutations have been recently identified with unknown functional correlation. Alternate role of GNE in various cellular processes such as cell adhesion, migration, apoptosis, protein aggregation, and cytoskeletal organization have been proposed in recent studies. We aim to understand and compare the effect of various GNE mutations from Indian origin on regulation of the cytoskeletal network. In particular, F-actin dynamics was determined quantitatively by determining F/G-actin ratios in immunoblots for specific proteins. The extent of F-actin polymerization was visualized by immunostaining with Phalloidin using confocal microscopy. The proteins regulating F-actin dynamics such as RhoA, cofilin, Arp2, and alpha-actinin were studied in various GNE mutants. The altered level of cytoskeletal organization network proteins affected cell migration of GNE mutant proteins as measured by wound healing assay. The functional comparison of GNE mutations will help in better understanding of the genotypic severity of the disease in the Indian population. Our study offers a potential for identification of therapeutic molecules regulating actin dynamics in GNE specific mutations.
Collapse
|
3
|
Laitila J, Wallgren-Pettersson C. Recent advances in nemaline myopathy. Neuromuscul Disord 2021; 31:955-967. [PMID: 34561123 DOI: 10.1016/j.nmd.2021.07.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 11/18/2022]
Abstract
The nemaline myopathies constitute a large proportion of the congenital or structural myopathies. Common to all patients is muscle weakness and the presence in the muscle biopsy of nemaline rods. The causative genes are at least twelve, encoding structural or regulatory proteins of the thin filament, and the clinical picture as well as the histological appearance on muscle biopsy vary widely. Here, we suggest a renewed clinical classification to replace the original one, summarise what is known about the pathogenesis from mutations in each causative gene to the forms of nemaline myopathy described to date, and provide perspectives on pathogenetic mechanisms possibly open to therapeutic modalities.
Collapse
Affiliation(s)
- Jenni Laitila
- The Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Department of Medical Genetics, Medicum, University of Helsinki, Finland; Department of Biomedical Sciences, University of Copenhagen, Denmark.
| | - Carina Wallgren-Pettersson
- The Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Department of Medical Genetics, Medicum, University of Helsinki, Finland
| |
Collapse
|
4
|
Devi SS, Yadav R, Mashangva F, Chaudhary P, Sharma S, Arya R. Generation and Characterization of a Skeletal Muscle Cell-Based Model Carrying One Single Gne Allele: Implications in Actin Dynamics. Mol Neurobiol 2021; 58:6316-6334. [PMID: 34510381 DOI: 10.1007/s12035-021-02549-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/28/2021] [Indexed: 12/13/2022]
Abstract
UDP-N-Acetyl glucosamine-2 epimerase/N-acetyl mannosamine kinase (GNE) catalyzes key enzymatic reactions in the biosynthesis of sialic acid. Mutation in GNE gene causes GNE myopathy (GNEM) characterized by adult-onset muscle weakness and degeneration. However, recent studies propose alternate roles of GNE in other cellular processes beside sialic acid biosynthesis, particularly interaction of GNE with α-actinin 1 and 2. Lack of appropriate model system limits drug and treatment options for GNEM as GNE knockout was found to be embryonically lethal. In the present study, we have generated L6 rat skeletal muscle myoblast cell-based model system carrying one single Gne allele where GNE gene is knocked out at exon-3 using AAV mediated SEPT homology recombination (SKM-GNEHz). The cell line was heterozygous for GNE gene with one wild type and one truncated allele as confirmed by sequencing. The phenotype showed reduced GNE epimerase activity with little reduction in sialic acid content. In addition, the heterozygous GNE knockout cells revealed altered cytoskeletal organization with disrupted actin filament. Further, we observed increased levels of RhoA leading to reduced cofilin activity and causing reduced F-actin polymerization. The disturbed signaling cascade resulted in reduced migration of SKM-GNEHz cells. Our study indicates possible role of GNE in regulating actin dynamics and cell migration of skeletal muscle cell. The skeletal muscle cell-based system offers great potential in understanding pathomechanism and target identification for GNEM.
Collapse
Affiliation(s)
| | - Rashmi Yadav
- School of Biotechnology, Jawaharlal Nehru University, 110067, New Delhi, India
| | | | - Priyanka Chaudhary
- School of Biotechnology, Jawaharlal Nehru University, 110067, New Delhi, India
| | - Shweta Sharma
- School of Biotechnology, Jawaharlal Nehru University, 110067, New Delhi, India
| | - Ranjana Arya
- School of Biotechnology, Jawaharlal Nehru University, 110067, New Delhi, India. .,Special Centre for Systems Medicine (Concurrent Faculty), Jawaharlal Nehru University, New Mehrauli Road, 110067, New Delhi, India.
| |
Collapse
|
5
|
Gruszczynska-Biegala J, Stefan A, Kasprzak AA, Dobryszycki P, Khaitlina S, Strzelecka-Gołaszewska H. Myopathy-Sensitive G-Actin Segment 227-235 Is Involved in Salt-Induced Stabilization of Contacts within the Actin Filament. Int J Mol Sci 2021; 22:ijms22052327. [PMID: 33652657 PMCID: PMC7956362 DOI: 10.3390/ijms22052327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/16/2021] [Accepted: 02/21/2021] [Indexed: 01/09/2023] Open
Abstract
Formation of stable actin filaments, critically important for actin functions, is determined by the ionic strength of the solution. However, not much is known about the elements of the actin fold involved in ionic-strength-dependent filament stabilization. In this work, F-actin was destabilized by Cu2+ binding to Cys374, and the effects of solvent conditions on the dynamic properties of F-actin were correlated with the involvement of Segment 227-235 in filament stabilization. The results of our work show that the presence of Mg2+ at the high-affinity cation binding site of Cu-modified actin polymerized with MgCl2 strongly enhances the rate of filament subunit exchange and promotes the filament instability. In the presence of 0.1 M KCl, the filament subunit exchange was 2-3-fold lower than that in the MgCl2-polymerized F-actin. This effect correlates with the reduced accessibility of the D-loop and Segment 227-235 on opposite filament strands, consistent with an ionic-strength-dependent conformational change that modulates involvement of Segment 227-235 in stabilization of the intermonomer interface. KCl may restrict the mobility of the α-helix encompassing part of Segment 227-235 and/or be bound to Asp236 at the boundary of Segment 227-235. These results provide experimental evidence for the involvement of Segment 227-235 in salt-induced stabilization of contacts within the actin filament and suggest that they can be weakened by mutations characteristic of actin-associated myopathies.
Collapse
Affiliation(s)
- Joanna Gruszczynska-Biegala
- Department of Muscle Biochemistry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (J.G.-B.); (A.S.); (A.A.K.); (H.S.-G.)
- Molecular Biology Unit, Mossakowski Medical Research Institute Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Andrzej Stefan
- Department of Muscle Biochemistry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (J.G.-B.); (A.S.); (A.A.K.); (H.S.-G.)
| | - Andrzej A. Kasprzak
- Department of Muscle Biochemistry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (J.G.-B.); (A.S.); (A.A.K.); (H.S.-G.)
| | - Piotr Dobryszycki
- Faculty of Chemistry, Wrocław University of Technology, 50-370 Wroclaw, Poland;
| | - Sofia Khaitlina
- Laboratory of Cytology of Unicellular Organisms, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
- Correspondence:
| | - Hanna Strzelecka-Gołaszewska
- Department of Muscle Biochemistry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (J.G.-B.); (A.S.); (A.A.K.); (H.S.-G.)
| |
Collapse
|