1
|
Nagai M, Rommel KP, Po SS, Dasari TW. Autonomic neuromodulation for cardiomyopathy associated with metabolic syndrome - Prevention of precursors for heart failure with preserved ejection fraction. Hypertens Res 2024; 47:3318-3329. [PMID: 39261699 DOI: 10.1038/s41440-024-01886-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024]
Abstract
Metabolic syndrome (MetS) induces a systemic inflammatory state which can lead to cardiomyopathy, manifesting clinically as heart failure (HF) with preserved ejection fraction (HFpEF). MetS components are intricately linked to the pathophysiologic processes of myocardial remodeling. Increased sympathetic nervous system activity, which is noted as an upstream factor of MetS, has been linked to adverse myocardial structural changes. Since renal denervation and vagus nerve stimulation have a sympathoinhibitory effect, attention has been paid to the cardioprotective effects of autonomic neuromodulation. In this review, the pathophysiology underlying the relationship between MetS and HF is elucidated, and the evidence regarding autonomic neuromodulation in HFpEF is summarized.
Collapse
Affiliation(s)
- Michiaki Nagai
- Cardiovascular section, Department of Medicine, University of Oklahoma, Health Science Center, Oklahoma, USA.
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan.
| | - Karl-Philipp Rommel
- Department of Cardiology, University Medical Center Mainz and German Center for Cardiovascular Research, Mainz, Germany
| | - Sunny S Po
- Cardiovascular section, Department of Medicine, University of Oklahoma, Health Science Center, Oklahoma, USA
| | - Tarun W Dasari
- Cardiovascular section, Department of Medicine, University of Oklahoma, Health Science Center, Oklahoma, USA.
| |
Collapse
|
2
|
Gottlieb LA, Mahfoud F, Stavrakis S, Jespersen T, Linz D. Autonomic Nervous System: A Therapeutic Target for Cardiac End-Organ Damage in Hypertension. Hypertension 2024; 81:2027-2037. [PMID: 39136127 PMCID: PMC11404762 DOI: 10.1161/hypertensionaha.123.19460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
More than 1.5 billion people worldwide have arterial hypertension. Hypertension increases the risks of death and cardiovascular disease, such as atrial fibrillation and heart failure. The autonomic nervous system plays an essential role in hypertension development and disease progression. While lifestyle factors, such as obesity and obstructive sleep apnea, predispose to hypertension by increasing sympathetic activity, hypertension itself maintains the autonomic nervous imbalance, providing the substrate for atrial fibrillation and heart failure. Therefore, autonomic nervous system modulation either by direct targeting or indirect treatment of comorbidities has the potential to treat both hypertension and related atrial and ventricular end-organ damage. We discuss interventions for the modulation of the autonomic nervous system for hypertension and related cardiac end-organ damage, including pharmacological adrenergic beta-receptor blockade, renal denervation, carotid baroreceptor stimulation, low-level vagal stimulation, and ablation of ganglionated plexuses. In summary, the literature suggests that targeting the autonomic nervous system potentially represents a therapeutic approach to prevent atrial and ventricular end-organ damage in patients with hypertension. However, clinical trials specifically designed to test the effect of autonomic modulation on hypertension-mediated cardiac end-organ damage are scarce.
Collapse
Affiliation(s)
- Lisa A Gottlieb
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.A.G., T.J., D.L.)
| | - Felix Mahfoud
- Department of Internal Medicine III, Cardiology, Angiology, and Intensive Care Medicine, Saarland University Hospital, Homburg, Germany (F.M.)
| | - Stavros Stavrakis
- Department of Internal Medicine, Cardiovascular Section, University of Oklahoma Health Sciences Center, Oklahoma City (S.S.)
| | - Thomas Jespersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.A.G., T.J., D.L.)
| | - Dominik Linz
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.A.G., T.J., D.L.)
- Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, the Netherlands (D.L.)
| |
Collapse
|
3
|
Conde SV, Sacramento JF, Zinno C, Mazzoni A, Micera S, Guarino MP. Bioelectronic modulation of carotid sinus nerve to treat type 2 diabetes: current knowledge and future perspectives. Front Neurosci 2024; 18:1378473. [PMID: 38646610 PMCID: PMC11026613 DOI: 10.3389/fnins.2024.1378473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
Bioelectronic medicine are an emerging class of treatments aiming to modulate body nervous activity to correct pathological conditions and restore health. Recently, it was shown that the high frequency electrical neuromodulation of the carotid sinus nerve (CSN), a small branch of the glossopharyngeal nerve that connects the carotid body (CB) to the brain, restores metabolic function in type 2 diabetes (T2D) animal models highlighting its potential as a new therapeutic modality to treat metabolic diseases in humans. In this manuscript, we review the current knowledge supporting the use of neuromodulation of the CSN to treat T2D and discuss the future perspectives for its clinical application. Firstly, we review in a concise manner the role of CB chemoreceptors and of CSN in the pathogenesis of metabolic diseases. Secondly, we describe the findings supporting the potential therapeutic use of the neuromodulation of CSN to treat T2D, as well as the feasibility and reversibility of this approach. A third section is devoted to point up the advances in the neural decoding of CSN activity, in particular in metabolic disease states, that will allow the development of closed-loop approaches to deliver personalized and adjustable treatments with minimal side effects. And finally, we discuss the findings supporting the assessment of CB activity in metabolic disease patients to screen the individuals that will benefit therapeutically from this bioelectronic approach in the future.
Collapse
Affiliation(s)
- Silvia V. Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Joana F. Sacramento
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ciro Zinno
- The BioRobotics Institute Scuola Superiore Sant’Anna, Pontedera, Italy
| | - Alberto Mazzoni
- The BioRobotics Institute Scuola Superiore Sant’Anna, Pontedera, Italy
| | - Silvestro Micera
- The BioRobotics Institute Scuola Superiore Sant’Anna, Pontedera, Italy
| | - Maria P. Guarino
- ciTechCare, School of Health Sciences Polytechnic of Leiria, Leiria, Portugal
| |
Collapse
|
4
|
Jelinek M, Lipkova J, Duris K. Vagus nerve stimulation as immunomodulatory therapy for stroke: A comprehensive review. Exp Neurol 2024; 372:114628. [PMID: 38042360 DOI: 10.1016/j.expneurol.2023.114628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/20/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Stroke is a devastating cerebrovascular pathology with high morbidity and mortality. Inflammation plays a central role in the pathophysiology of stroke. Vagus nerve stimulation (VNS) is a promising immunomodulatory method that has shown positive effects in stroke treatment, including neuroprotection, anti-apoptosis, anti-inflammation, antioxidation, reduced infarct volume, improved neurological scores, and promotion of M2 microglial polarization. In this review, we summarize the current knowledge about the vagus nerve's immunomodulatory effects through the cholinergic anti-inflammatory pathway (CAP) and provide a comprehensive assessment of the available experimental literature focusing on the use of VNS in stroke treatment.
Collapse
Affiliation(s)
- Matyas Jelinek
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jolana Lipkova
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Kamil Duris
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Neurosurgery, The University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
5
|
Mogi M, Tanaka A, Node K, Tomitani N, Hoshide S, Narita K, Nozato Y, Katsurada K, Maruhashi T, Higashi Y, Matsumoto C, Bokuda K, Yoshida Y, Shibata H, Toba A, Masuda T, Nagata D, Nagai M, Shinohara K, Kitada K, Kuwabara M, Kodama T, Kario K. 2023 update and perspectives. Hypertens Res 2024; 47:6-32. [PMID: 37710033 DOI: 10.1038/s41440-023-01398-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/30/2023] [Indexed: 09/16/2023]
Abstract
Total 276 manuscripts were published in Hypertension Research in 2022. Here our editorial members picked up the excellent papers, summarized the current topics from the published papers and discussed future perspectives in the sixteen fields. We hope you enjoy our special feature, 2023 update and perspectives in Hypertension Research.
Collapse
Affiliation(s)
- Masaki Mogi
- Deparment of Pharmacology, Ehime University Graduate School of Medicine, 454 Shitsukawa Tohon, Ehime, 791-0295, Japan.
| | - Atsushi Tanaka
- Department of Cardiovascular Medicine, Saga University, 5-1-1, Nabeshima, Saga, Saga, 849-8501, Japan
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University, 5-1-1, Nabeshima, Saga, Saga, 849-8501, Japan
| | - Naoko Tomitani
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Satoshi Hoshide
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Keisuke Narita
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Yoichi Nozato
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Kenichi Katsurada
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University School of Medicine, 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Tatsuya Maruhashi
- Department of Regenerative Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Yukihito Higashi
- Department of Regenerative Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
- Divivsion of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Chisa Matsumoto
- Center for Health Surveillance & Preventive Medicine, Tokyo Medical University Hospital, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
- Department of Cardiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Kanako Bokuda
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Yuichi Yoshida
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu city, Oita, 879-5593, Japan
| | - Hirotaka Shibata
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu city, Oita, 879-5593, Japan
| | - Ayumi Toba
- Tokyo Metropolitan Institute for Geriatrics and Gerontology, Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Takahiro Masuda
- Division of Nephrology, Department of Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Daisuke Nagata
- Division of Nephrology, Department of Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Michiaki Nagai
- Cardiovascular Section, Department of Internal Medicine, Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 800 SL Young Blvd, COM 5400, Oklahoma City, OK, 73104, USA
- Department of Cardiology, Hiroshima City Asa Hospital, 1-2-1 Kameyamaminami Asakita-ku, Hiroshima, 731-0293, Japan
| | - Keisuke Shinohara
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kento Kitada
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Miki, Kita, Kagawa, 761-0793, Japan
| | - Masanari Kuwabara
- Department of Cardiology, Toranomon Hospital, 2-2-2, Toranomon, Minato-ku, Tokyo, 105-8470, Japan
| | - Takahide Kodama
- Department of Cardiology, Toranomon Hospital, 2-2-2, Toranomon, Minato-ku, Tokyo, 105-8470, Japan
| | - Kazuomi Kario
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| |
Collapse
|
6
|
Ji N, Li Y, Wei J, Huang L, Lin WH, Li G. The Changes of Cardiovascular Neurotransmitter Levels under Low-Intensity Focused Ultrasound Stimulation of the Vagus Nerve. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083122 DOI: 10.1109/embc40787.2023.10340334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
BACKGROUND Our previous study has shown that stimulation of the vagus nerve with low-intensity focused ultrasound could modulate blood pressure (BP), but the underlying mechanisms remain unclear. This study investigated the changes of cardiovascular neurotransmitter levels to indirectly evaluate the responses of the autonomic nervous system and renin-angiotensin system under low-intensity focused ultrasound stimulation (FUS) of the vagus nerve. METHODS Cardiovascular neurotransmitter levels of epinephrine (EPI), norepinephrine (NE), and angiotensin II (ANGII) were measured and compared before and after the FUS in seven spontaneously hypertensive rats; and were also measured and compared between a target stimulation group (FUS, n = 6) and non-target stimulation group (Control, n = 5) after stimulation to exclude the influence of potential confounding factors. RESULTS The t-test results showed that the levels of EPI, NE, and ANGII were significantly decreased (P < 0.05) after stimulation compared to before stimulation. Additionally, the levels of NE and EPI were significantly lower (P < 0.05) in the FUS group than in the Control group after stimulation, indicating that the activities of the sympathetic nervous system and renin-angiotensin system of the vagus nerve might be inhibited by FUS of the vagus nerve. CONCLUSION These findings reveal the mechanism of BP lowing in response to FUS of the vagus nerve.Clinical Relevance-This study revealed the mechanism of BP lowering in response to focused ultrasound stimulation of the vagus nerve through analyzing the changes of cardiovascular neurotransmitter levels.
Collapse
|
7
|
Ji N, Li Y, Wei J, Chen F, Xu L, Li G, Lin WH. Autonomic modulation by low-intensity focused ultrasound stimulation of the vagus nerve. J Neural Eng 2022; 19. [PMID: 36541473 DOI: 10.1088/1741-2552/aca8cd] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Objective.Our previous study has shown that low-intensity focused ultrasound stimulation (FUS) of the vagus nerve could modulate blood pressure (BP), but its underlying mechanisms remain unclear. We hypothesized that low-intensity FUS of the vagus nerve would regulate autonomic function and thus BP.Approach.17 anesthetized spontaneously hypertensive rats were treated with low-intensity FUS of the left vagus nerve for 15 min each trial. Continuous BP, heart rate, respiration rate (RR), and core body temperature were simultaneously recorded to evaluate the effects on BP and other physiological parameters. Heart rate variability (HRV), systolic BP variability, and baroreflex sensitivity were computed to evaluate the autonomic modulation function. A Control-sham group without stimulation and another Control-FUS group with non-target stimulation were also examined to exclude the influence of potential confounding factors on autonomic modulation.Main results.A prolonged significant decrease in BP, pulse pressure, RR, the normalized low-frequency power of HRV, and the low-to-high frequency power ratio of HRV were found after the low-intensity FUS of the left vagus nerve in comparison with the baseline and those of the control groups, demonstrating that activities of the sympathetic nervous system were inhibited. The prolonged significant increase of the normalized high-frequency power of HRV suggested the activation of parasympathetic activity.Significance.Low-intensity FUS of the left vagus nerve effectively improved the autonomic function by activating parasympathetic efferent and inhibiting sympathetic efferent, which contributes to BP reduction. The findings shed light on the hypotensive mechanism underlying FUS.
Collapse
Affiliation(s)
- Ning Ji
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110819, People's Republic of China.,CAS Key Lab of Human-Machine Intelligence-Synergy Systems and Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, People's Republic of China
| | - Yuanheng Li
- CAS Key Lab of Human-Machine Intelligence-Synergy Systems and Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, People's Republic of China
| | - Jingjing Wei
- CAS Key Lab of Human-Machine Intelligence-Synergy Systems and Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, People's Republic of China.,Department of Human Anatomy, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, People's Republic of China
| | - Fei Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Lisheng Xu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110819, People's Republic of China
| | - Guanglin Li
- CAS Key Lab of Human-Machine Intelligence-Synergy Systems and Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, People's Republic of China
| | - Wan-Hua Lin
- CAS Key Lab of Human-Machine Intelligence-Synergy Systems and Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, People's Republic of China
| |
Collapse
|
8
|
Ahmed U, Chang YC, Zafeiropoulos S, Nassrallah Z, Miller L, Zanos S. Strategies for precision vagus neuromodulation. Bioelectron Med 2022; 8:9. [PMID: 35637543 PMCID: PMC9150383 DOI: 10.1186/s42234-022-00091-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/05/2022] [Indexed: 12/21/2022] Open
Abstract
The vagus nerve is involved in the autonomic regulation of physiological homeostasis, through vast innervation of cervical, thoracic and abdominal visceral organs. Stimulation of the vagus with bioelectronic devices represents a therapeutic opportunity for several disorders implicating the autonomic nervous system and affecting different organs. During clinical translation, vagus stimulation therapies may benefit from a precision medicine approach, in which stimulation accommodates individual variability due to nerve anatomy, nerve-electrode interface or disease state and aims at eliciting therapeutic effects in targeted organs, while minimally affecting non-targeted organs. In this review, we discuss the anatomical and physiological basis for precision neuromodulation of the vagus at the level of nerve fibers, fascicles, branches and innervated organs. We then discuss different strategies for precision vagus neuromodulation, including fascicle- or fiber-selective cervical vagus nerve stimulation, stimulation of vagal branches near the end-organs, and ultrasound stimulation of vagus terminals at the end-organs themselves. Finally, we summarize targets for vagus neuromodulation in neurological, cardiovascular and gastrointestinal disorders and suggest potential precision neuromodulation strategies that could form the basis for effective and safe therapies.
Collapse
Affiliation(s)
- Umair Ahmed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Yao-Chuan Chang
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Stefanos Zafeiropoulos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Zeinab Nassrallah
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Larry Miller
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA.
| |
Collapse
|
9
|
Aniwattanapong D, List JJ, Ramakrishnan N, Bhatti GS, Jorge R. Effect of Vagus Nerve Stimulation on Attention and Working Memory in Neuropsychiatric Disorders: A Systematic Review. Neuromodulation 2022; 25:343-355. [PMID: 35088719 DOI: 10.1016/j.neurom.2021.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND It has been suggested that vagus nerve stimulation (VNS) may enhance attention and working memory. The neuromodulator effects of VNS are thought to activate the release of neurotransmitters involving cognition and to promote neuronal plasticity. Therefore, VNS has been studied for its effects on attention and working memory impairment in neuropsychiatric disorders. OBJECTIVES This study aimed to assess the effects of VNS on attention and working memory among patients with neuropsychiatric disorders, examine stimulation parameters, provide mechanistic hypotheses, and propose future studies using VNS. MATERIALS AND METHODS We conducted a systematic review using electronic databases MEDLINE (Ovid), Embase (Ovid), Cochrane library, and PsycINFO (Ovid). Narrative analysis was used to describe the therapeutic effects of VNS on attention and working memory, describe stimulation parameters, and propose explanatory mechanisms. RESULTS We identified 20 studies reporting VNS effects on attention and working memory in patients with epilepsy or mood disorders. For epilepsy, there was one randomized controlled trial from all 18 studies. It demonstrated no statistically significant differences in the cognitive tasks between active and control VNS. From a within-subject experimental design, significant improvement of working memory after VNS was demonstrated. One of three nonrandomized controlled trials found significantly improved attentional performance after VNS. The cohort studies compared VNS and surgery and found attentional improvement in both groups. Nine of 12 pretest-posttest studies showed improvement of attention or working memory after VNS. For mood disorders, although one study showed significant improvement of attention following VNS, the other did not. CONCLUSIONS This review suggests that, although we identified some positive results from eligible studies, there is insufficient good-quality evidence to establish VNS as an effective intervention to enhance attention and working memory in persons with neuropsychiatric disorders. Further studies assessing the efficacy of such intervention are needed.
Collapse
Affiliation(s)
- Daruj Aniwattanapong
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Chulalongkorn Cognitive, Clinical & Computational Neuroscience Lab, Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.
| | - Justine J List
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; Mental Health Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Baylor College of Medicine, Houston, TX, USA
| | - Nithya Ramakrishnan
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; Mental Health Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Baylor College of Medicine, Houston, TX, USA
| | - Gursimrat S Bhatti
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; Mental Health Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Baylor College of Medicine, Houston, TX, USA
| | - Ricardo Jorge
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; Mental Health Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
10
|
Shah JV, Collar BJ, Ditslear E, Irazoqui PP. An ASIC System for Closed-Loop Blood Pressure Modulation through Right Cervical Vagus Nerve Stimulation. IEEE Trans Biomed Eng 2022; 69:3021-3028. [PMID: 35294339 DOI: 10.1109/tbme.2022.3159597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Heart disease is the leading cause of death worldwide. Hypertension is an important precursor and the most common risk factor to heart failure. While some patients can control their high blood pressure with pharmaceuticals, many suffer from resistant hypertension, where antihypertensive medications do not achieve the desired outcome. Electrical stimulation is an emerging therapy to modulate blood pressure and integrating it with closed-loop feedback can improve blood pressure control. METHODS We design and fabricate two application-specific integrated circuits (ASICs) for stimulation and pressure sensing using TSMC's 180 nm MS RF G process. We create a closed-loop system by integrating the ASICs with a microscale pressure sensor and a custom-built Python script and test the full system in six Long Evans rats using vagus nerve stimulation. RESULTS After calibration and benchtop verification, we prove the functionality of the system in lowering, and maintaining a desired blood pressure in vivo. The system effectively monitors pressure and stimulates when that pressure exceeds the user-determined threshold. CONCLUSION By combining this stimulation therapy with a pressure sensor, we present a novel closed-loop, electroceutical system that has the potential to monitor and modulate blood pressure. SIGNIFICANCE We present a drug-free, potentially side-effect-free electroceutical therapeutic for managing resistant hypertension.
Collapse
|
11
|
Murray EC, Nosalski R, MacRitchie N, Tomaszewski M, Maffia P, Harrison DG, Guzik TJ. Therapeutic targeting of inflammation in hypertension: from novel mechanisms to translational perspective. Cardiovasc Res 2021; 117:2589-2609. [PMID: 34698811 PMCID: PMC9825256 DOI: 10.1093/cvr/cvab330] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 01/18/2023] Open
Abstract
Both animal models and human observational and genetic studies have shown that immune and inflammatory mechanisms play a key role in hypertension and its complications. We review the effects of immunomodulatory interventions on blood pressure, target organ damage, and cardiovascular risk in humans. In experimental and small clinical studies, both non-specific immunomodulatory approaches, such as mycophenolate mofetil and methotrexate, and medications targeting T and B lymphocytes, such as tacrolimus, cyclosporine, everolimus, and rituximab, lower blood pressure and reduce organ damage. Mechanistically targeted immune interventions include isolevuglandin scavengers to prevent neo-antigen formation, co-stimulation blockade (abatacept, belatacept), and anti-cytokine therapies (e.g. secukinumab, tocilizumab, canakinumab, TNF-α inhibitors). In many studies, trial designs have been complicated by a lack of blood pressure-related endpoints, inclusion of largely normotensive study populations, polypharmacy, and established comorbidities. Among a wide range of interventions reviewed, TNF-α inhibitors have provided the most robust evidence of blood pressure lowering. Treatment of periodontitis also appears to deliver non-pharmacological anti-hypertensive effects. Evidence of immunomodulatory drugs influencing hypertension-mediated organ damage are also discussed. The reviewed animal models, observational studies, and trial data in humans, support the therapeutic potential of immune-targeted therapies in blood pressure lowering and in hypertension-mediated organ damage. Targeted studies are now needed to address their effects on blood pressure in hypertensive individuals.
Collapse
Affiliation(s)
- Eleanor C Murray
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8TA Glasgow, UK
| | - Ryszard Nosalski
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8TA Glasgow, UK,Department of Internal Medicine, Collegium Medicum, Jagiellonian University, 31-008 Kraków, Poland
| | - Neil MacRitchie
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8TA Glasgow, UK
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, M13 9PL Manchester, UK,Manchester Heart Centre and Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, M13 9WL Manchester, UK
| | - Pasquale Maffia
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8TA Glasgow, UK,Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8TA Glasgow, UK,Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - David G Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbildt University Medical Centre, Nashville, 37232 TN, USA
| | - Tomasz J Guzik
- Corresponding author. Tel: +44 141 3307590; fax: +44 141 3307590, E-mail:
| |
Collapse
|
12
|
Stiegler A, Li JH, Shah V, Tsaava T, Tynan A, Yang H, Tamari Y, Brines M, Tracey KJ, Chavan SS. Systemic administration of choline acetyltransferase decreases blood pressure in murine hypertension. Mol Med 2021; 27:133. [PMID: 34674633 PMCID: PMC8529785 DOI: 10.1186/s10020-021-00380-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/11/2021] [Indexed: 12/12/2022] Open
Abstract
Acetylcholine (ACh) decreases blood pressure by stimulating endothelium nitric oxide-dependent vasodilation in resistance arterioles. Normal plasma contains choline acetyltransferase (ChAT) and its biosynthetic product ACh at appreciable concentrations to potentially act upon the endothelium to affect blood pressure. Recently we discovered a T-cell subset expressing ChAT (TChAT), whereby genetic ablation of ChAT in these cells produces hypertension, indicating that production of ACh by TChAT regulates blood pressure. Accordingly, we reasoned that increasing systemic ChAT concentrations might induce vasodilation and reduce blood pressure. To evaluate this possibility, recombinant ChAT was administered intraperitoneally to mice having angiotensin II-induced hypertension. This intervention significantly and dose-dependently decreased mean arterial pressure. ChAT-mediated attenuation of blood pressure was reversed by administration of the nitric oxide synthesis blocker L-nitro arginine methyl ester, indicating ChAT administration decreases blood pressure by stimulating nitic oxide dependent vasodilation, consistent with an effect of ACh on the endothelium. To prolong the half life of circulating ChAT, the molecule was modified by covalently attaching repeating units of polyethylene glycol (PEG), resulting in enzymatically active PEG-ChAT. Administration of PEG-ChAT to hypertensive mice decreased mean arterial pressure with a longer response duration when compared to ChAT. Together these findings suggest further studies are warranted on the role of ChAT in hypertension.
Collapse
Affiliation(s)
- Andrew Stiegler
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Jian-Hua Li
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Vivek Shah
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Tea Tsaava
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Aisling Tynan
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Huan Yang
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Yehuda Tamari
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Circulatory Technology, Inc, 21 Singworth St, Oyster Bay, NY, 11771, USA
| | - Michael Brines
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Kevin J Tracey
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 350 Community Drive, Manhasset, NY, 11030, USA
- The Elmezzi Graduate School of Molecular Medicine, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Sangeeta S Chavan
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 350 Community Drive, Manhasset, NY, 11030, USA.
- The Elmezzi Graduate School of Molecular Medicine, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
| |
Collapse
|
13
|
Wu Y, Xu H, Tu X, Gao Z. The Role of Short-Chain Fatty Acids of Gut Microbiota Origin in Hypertension. Front Microbiol 2021; 12:730809. [PMID: 34650536 PMCID: PMC8506212 DOI: 10.3389/fmicb.2021.730809] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
Hypertension is a significant risk factor for cardiovascular and cerebrovascular diseases, and its development involves multiple mechanisms. Gut microbiota has been reported to be closely linked to hypertension. Short-chain fatty acids (SCFAs)-the metabolites of gut microbiota-participate in hypertension development through various pathways, including specific receptors, immune system, autonomic nervous system, metabolic regulation and gene transcription. This article reviews the possible mechanisms of SCFAs in regulating blood pressure and the prospects of SCFAs as a target to prevent and treat hypertension.
Collapse
Affiliation(s)
- Yeshun Wu
- Department of Cardiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Hongqing Xu
- Department of Cardiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xiaoming Tu
- Department of Cardiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Zhenyan Gao
- Department of Cardiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| |
Collapse
|
14
|
Cavalcante GL, Brognara F, Oliveira LVDC, Lataro RM, Durand MDT, Oliveira AP, Nóbrega ACL, Salgado HC, Sabino JPJ. Benefits of pharmacological and electrical cholinergic stimulation in hypertension and heart failure. Acta Physiol (Oxf) 2021; 232:e13663. [PMID: 33884761 DOI: 10.1111/apha.13663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/12/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022]
Abstract
Systemic arterial hypertension and heart failure are cardiovascular diseases that affect millions of individuals worldwide. They are characterized by a change in the autonomic nervous system balance, highlighted by an increase in sympathetic activity associated with a decrease in parasympathetic activity. Most therapeutic approaches seek to treat these diseases by medications that attenuate sympathetic activity. However, there is a growing number of studies demonstrating that the improvement of parasympathetic function, by means of pharmacological or electrical stimulation, can be an effective tool for the treatment of these cardiovascular diseases. Therefore, this review aims to describe the advances reported by experimental and clinical studies that addressed the potential of cholinergic stimulation to prevent autonomic and cardiovascular imbalance in hypertension and heart failure. Overall, the published data reviewed demonstrate that the use of central or peripheral acetylcholinesterase inhibitors is efficient to improve the autonomic imbalance and hemodynamic changes observed in heart failure and hypertension. Of note, the baroreflex and the vagus nerve activation have been shown to be safe and effective approaches to be used as an alternative treatment for these cardiovascular diseases. In conclusion, pharmacological and electrical stimulation of the parasympathetic nervous system has the potential to be used as a therapeutic tool for the treatment of hypertension and heart failure, deserving to be more explored in the clinical setting.
Collapse
Affiliation(s)
- Gisele L. Cavalcante
- Graduate Program in Pharmaceutical Sciences Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
- Department of Pharmacology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - Fernanda Brognara
- Department of Physiology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - Lucas Vaz de C. Oliveira
- Graduate Program in Pharmaceutical Sciences Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
| | - Renata M. Lataro
- Department of Physiological Sciences Center of Biological Sciences Federal University of Santa Catarina Florianópolis SP Brazil
| | | | - Aldeidia P. Oliveira
- Graduate Program in Pharmacology Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
| | | | - Helio C. Salgado
- Department of Physiology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - João Paulo J. Sabino
- Graduate Program in Pharmaceutical Sciences Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
| |
Collapse
|
15
|
Li Y, Wu X, Mao Y, Liu C, Wu Y, Tang J, Zhao K, Li P. Nitric Oxide Alleviated High Salt-Induced Cardiomyocyte Apoptosis and Autophagy Independent of Blood Pressure in Rats. Front Cell Dev Biol 2021; 9:646575. [PMID: 33996809 PMCID: PMC8117152 DOI: 10.3389/fcell.2021.646575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/23/2021] [Indexed: 11/18/2022] Open
Abstract
The present study aimed to explore whether high-salt diet (HSD) could cause cardiac damage independent of blood pressure, and whether nitric oxide (NO) could alleviate high-salt-induced cardiomyocyte apoptosis and autophagy in rats. The rats received 8% HSD in vivo. H9C2 cells or primary neonatal rat cardiomyocytes (NRCM) were treated with sodium chloride (NaCl) in vitro. The levels of cleaved-caspase 3/caspase 3, cleaved-caspase 8/caspase 8, Bax/Bcl2, LC3 II/LC3 I, Beclin-1 and autophagy related 7 (ATG7) were increased in the heart of HSD rats with hypertension (HTN), and in hypertension-prone (HP) and hypertension-resistant (HR) rats. Middle and high doses (50 and 100 mM) of NaCl increased the level of cleaved-caspase 3/caspase 3, cleaved-caspase 8/caspase 8, Bax/Bcl2, LC3 II/LC3 I, Beclin-1, and ATG7 in H9C2 cells and NRCM. The endothelial NO synthase (eNOS) level was increased, but p-eNOS level was reduced in the heart of HSD rats and H9C2 cells treated with 100 mM NaCl. The level of NO was reduced in the serum and heart of HSD rats. NO donor sodium nitroprusside (SNP) reversed the increases of cleaved-caspase 3/caspase 3, cleaved-caspase 8/caspase 8, Bax/Bcl2 induced by NaCl (100 mM) in H9C2 cells and NRCM. SNP treatment attenuated the increases of cleaved-caspase 3/caspase 3, Bax/Bcl2, LC3 II/LC3 I, Beclin-1, and ATG7 in the heart, but had no effect on the blood pressure of HSD rats with HR. These results demonstrated that HSD enhanced cardiac damage independently of blood pressure. Exogenous NO supplementarity could alleviate the high salt-induced apoptosis and autophagy in cardiomyocytes.
Collapse
Affiliation(s)
- Yong Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoguang Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yukang Mao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chi Liu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yiting Wu
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Junzhe Tang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Peng Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Mughrabi IT, Hickman J, Jayaprakash N, Thompson D, Ahmed U, Papadoyannis ES, Chang YC, Abbas A, Datta-Chaudhuri T, Chang EH, Zanos TP, Lee SC, Froemke RC, Tracey KJ, Welle C, Al-Abed Y, Zanos S. Development and characterization of a chronic implant mouse model for vagus nerve stimulation. eLife 2021; 10:e61270. [PMID: 33821789 PMCID: PMC8051950 DOI: 10.7554/elife.61270] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 04/02/2021] [Indexed: 12/17/2022] Open
Abstract
Vagus nerve stimulation (VNS) suppresses inflammation and autoimmune diseases in preclinical and clinical studies. The underlying molecular, neurological, and anatomical mechanisms have been well characterized using acute electrophysiological stimulation of the vagus. However, there are several unanswered mechanistic questions about the effects of chronic VNS, which require solving numerous technical challenges for a long-term interface with the vagus in mice. Here, we describe a scalable model for long-term VNS in mice developed and validated in four research laboratories. We observed significant heart rate responses for at least 4 weeks in 60-90% of animals. Device implantation did not impair vagus-mediated reflexes. VNS using this implant significantly suppressed TNF levels in endotoxemia. Histological examination of implanted nerves revealed fibrotic encapsulation without axonal pathology. This model may be useful to study the physiology of the vagus and provides a tool to systematically investigate long-term VNS as therapy for chronic diseases modeled in mice.
Collapse
Affiliation(s)
- Ibrahim T Mughrabi
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Jordan Hickman
- Departments of Neurosurgery, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Naveen Jayaprakash
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Dane Thompson
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
- The Elmezzi Graduate School of Molecular MedicineManhassetUnited States
| | - Umair Ahmed
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Eleni S Papadoyannis
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York UniversityNew YorkUnited States
- Department of Neuroscience and Physiology, Neuroscience Institute, Center for Neural Science, New York University School of Medicine, New York UniversityNew YorkUnited States
- Department of Otolaryngology, New York University School of Medicine, New York UniversityNew YorkUnited States
- Howard Hughes Medical Institute Faculty Scholar, New York University School of Medicine, New York UniversityNew YorkUnited States
| | - Yao-Chuan Chang
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Adam Abbas
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Timir Datta-Chaudhuri
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Eric H Chang
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Theodoros P Zanos
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Sunhee C Lee
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Robert C Froemke
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York UniversityNew YorkUnited States
- Department of Neuroscience and Physiology, Neuroscience Institute, Center for Neural Science, New York University School of Medicine, New York UniversityNew YorkUnited States
- Department of Otolaryngology, New York University School of Medicine, New York UniversityNew YorkUnited States
- Howard Hughes Medical Institute Faculty Scholar, New York University School of Medicine, New York UniversityNew YorkUnited States
| | - Kevin J Tracey
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Cristin Welle
- Departments of Neurosurgery, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| |
Collapse
|
17
|
Cracchiolo M, Ottaviani MM, Panarese A, Strauss I, Vallone F, Mazzoni A, Micera S. Bioelectronic medicine for the autonomic nervous system: clinical applications and perspectives. J Neural Eng 2021; 18. [PMID: 33592597 DOI: 10.1088/1741-2552/abe6b9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/16/2021] [Indexed: 12/11/2022]
Abstract
Bioelectronic medicine (BM) is an emerging new approach for developing novel neuromodulation therapies for pathologies that have been previously treated with pharmacological approaches. In this review, we will focus on the neuromodulation of autonomic nervous system (ANS) activity with implantable devices, a field of BM that has already demonstrated the ability to treat a variety of conditions, from inflammation to metabolic and cognitive disorders. Recent discoveries about immune responses to ANS stimulation are the laying foundation for a new field holding great potential for medical advancement and therapies and involving an increasing number of research groups around the world, with funding from international public agencies and private investors. Here, we summarize the current achievements and future perspectives for clinical applications of neural decoding and stimulation of the ANS. First, we present the main clinical results achieved so far by different BM approaches and discuss the challenges encountered in fully exploiting the potential of neuromodulatory strategies. Then, we present current preclinical studies aimed at overcoming the present limitations by looking for optimal anatomical targets, developing novel neural interface technology, and conceiving more efficient signal processing strategies. Finally, we explore the prospects for translating these advancements into clinical practice.
Collapse
Affiliation(s)
- Marina Cracchiolo
- The BioRobotics Institute and Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Matteo Maria Ottaviani
- The BioRobotics Institute and Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alessandro Panarese
- The BioRobotics Institute and Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Ivo Strauss
- The BioRobotics Institute and Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Fabio Vallone
- The BioRobotics Institute and Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alberto Mazzoni
- The BioRobotics Institute and Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Silvestro Micera
- The BioRobotics Institute and Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Bertarelli Foundation Chair in Translational NeuroEngineering, Centre for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
18
|
Ji N, Lin WH, Chen F, Xu L, Huang J, Li G. Blood Pressure Modulation With Low-Intensity Focused Ultrasound Stimulation to the Vagus Nerve: A Pilot Animal Study. Front Neurosci 2020; 14:586424. [PMID: 33304236 PMCID: PMC7693571 DOI: 10.3389/fnins.2020.586424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/06/2020] [Indexed: 01/15/2023] Open
Abstract
Objective For hypertensive individuals, their blood pressure (BP) is often managed by taking medications. However, antihypertensive drugs might cause adverse effects such as congestive heart failure and are ineffective in significant numbers of the hypertensive population. As an alternative method for hypertension management, non-drug devices-based neuromodulation approaches such as functional electrical stimulation (FES) have been proposed. The FES approach requires the implantation of a stimulator into the body. One recently emerging technique, called low-intensity focused ultrasound stimulation (FUS), has been proposed to non-invasively modulate neural activities. In this pilot study, the feasibility of adopting low-intensity FUS neuromodulation for BP regulation was investigated using animal models. Methods A FUS system was developed for BP modulation in rabbits. For each rabbit, the low-intensity FUS with different acoustic intensities was used to stimulate its exposed left vagus nerve, and the BP waveform was synchronously recorded in its right common carotid artery. The effects of the different FUS intensities on systolic blood pressure (SBP), diastolic blood pressure (DBP), mean blood pressure (MAP), and heart rate (HR) were extensively examined from the BP recordings. Results The results demonstrated that the proposed FUS method could successfully induce changes in SBP, DBP, MAP, and HR values. When increasing acoustic intensities, the values of SBP, DBP, and MAP would tend to decrease more substantially. Conclusion The findings of this study suggested that BP could be modulated through the FUS, which might provide a new way for non-invasive and non-drug management of hypertension.
Collapse
Affiliation(s)
- Ning Ji
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems and Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), and the SIAT Branch, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China.,College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Wan-Hua Lin
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems and Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), and the SIAT Branch, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China.,Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Fei Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Lisheng Xu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Jianping Huang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems and Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), and the SIAT Branch, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China
| | - Guanglin Li
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems and Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), and the SIAT Branch, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China
| |
Collapse
|
19
|
Pope BS, Wood SK. Advances in understanding mechanisms and therapeutic targets to treat comorbid depression and cardiovascular disease. Neurosci Biobehav Rev 2020; 116:337-349. [PMID: 32598982 DOI: 10.1016/j.neubiorev.2020.06.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
Abstract
Chronic or repeated social stress exposure often precipitates the onset of depression and cardiovascular disease (CVD). Despite a clear clinical association between CVD and depression, the pathophysiology underlying these comorbid conditions is unclear. Chronic exposure to social stress can lead to immune system dysregulation, mitochondrial dysfunction, and vagal withdrawal. Further, regular physical exercise is well-known to exert cardioprotective effects, and accumulating evidence demonstrates the antidepressant effect of exercise. This review explores the contribution of inflammation, mitochondrial dysfunction, and vagal withdrawal to stress-induced depression and CVD. Evidence for therapeutic benefits of exercise, anti-inflammatory therapies, and vagus nerve stimulation are also reviewed. Benefits of targeted therapeutics of mitochondrial agents, anti-inflammatory therapies, and vagus nerve stimulation are discussed. Importantly, the ability of exercise to impact each of these factors is also reviewed. The current findings described here implicate a new direction for research, targeting the shared mechanisms underlying comorbid depression-CVD. This will guide the development of novel therapeutic strategies for the prevention and treatment of these stress-related pathologies, particularly within treatment-resistant populations.
Collapse
Affiliation(s)
- Brittany S Pope
- Department of Exercise Science, University of South Carolina Arnold School of Public Health, Columbia, SC, 20208, United States
| | - Susan K Wood
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29209, United States; William Jennings Bryan Dorn Veterans Administration Medical Center, Columbia, SC, 29209, United States.
| |
Collapse
|
20
|
Yaghouby F, Shafer B, Vasudevan S. A rodent model for long-term vagus nerve stimulation experiments. ACTA ACUST UNITED AC 2019. [DOI: 10.2217/bem-2019-0016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: Investigations into the benefits of vagus nerve stimulation (VNS) using rodents have led to promising findings for treating clinical disorders. However, the majority of research has been limited to acute timelines. We developed a rodent model for longitudinal assessment of VNS and validated it with a long-term experiment incorporating continuous physiological monitoring. While the primary aim was not to investigate the effects of VNS on the cardiovascular system, we analyzed cardiovascular parameters to demonstrate the model's capabilities in a long-term stimulation-and-recording setup. Materials & methods: Rats were implanted with a cuff electrode around the cervical vagus nerve and electrocardiogram monitoring devices were implanted in the peritoneal cavity. We also designed a connector mount for seamless access to the cuff electrode for VNS in awake-behaving rats. Results & conclusion: Results signified easy-to-interface VNS system, electrode robustness and discernible physiological signals in a long-term setup. Analysis of the cardiovascular parameters revealed some transient effects during VNS. Our proposed model enables long-term VNS experiments along with physiological monitoring in unanesthetized rats.
Collapse
Affiliation(s)
- Farid Yaghouby
- US Food & Drug Administration, Center for Devices & Radiological Health (CDRH), Office of Science & Engineering Laboratory (OSEL), Division of Biomedical Physics (DBP), Silver Spring, MD 20993, USA
| | - Benjamin Shafer
- US Food & Drug Administration, Center for Devices & Radiological Health (CDRH), Office of Science & Engineering Laboratory (OSEL), Division of Biomedical Physics (DBP), Silver Spring, MD 20993, USA
| | - Srikanth Vasudevan
- US Food & Drug Administration, Center for Devices & Radiological Health (CDRH), Office of Science & Engineering Laboratory (OSEL), Division of Biomedical Physics (DBP), Silver Spring, MD 20993, USA
| |
Collapse
|
21
|
Annoni EM, Tolkacheva EG. Stochastic and periodic vagus nerve stimulation: how do they affect the heart? ACTA ACUST UNITED AC 2018. [DOI: 10.2217/bem-2019-0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Elizabeth M Annoni
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elena G Tolkacheva
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|