1
|
Kyung Kim J, Jo EK. Host and microbial regulation of mitochondrial reactive oxygen species during mycobacterial infections. Mitochondrion 2024; 75:101852. [PMID: 38360196 DOI: 10.1016/j.mito.2024.101852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/15/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Mycobacteria, including Mycobacterium tuberculosis (Mtb) and non-tuberculous mycobacteria (NTM), pose challenges in treatment due to their increased resistance to antibiotics. Following infection, mycobacteria and their components trigger robust innate and inflammatory immune responses intricately associated with the modulation of mitochondrial functions, including oxidative phosphorylation (OXPHOS) and metabolism. Certainly, mitochondrial reactive oxygen species (mtROS) are an inevitable by-product of OXPHOS and function as a bactericidal weapon; however, an excessive accumulation of mtROS are linked to pathological inflammation and necroptotic cell death during mycobacterial infection. Despite previous studies outlining various host pathways involved in regulating mtROS levels during antimicrobial responses in mycobacterial infection, our understanding of the precise mechanisms orchestrating the fine regulation of this response remains limited. Emerging evidence suggests that mycobacterial proteins play a role in targeting the mitochondria of the host, indicating the potential influence of microbial factors on mitochondrial functions within host cells. In this review, we provide an overview of how both host and Mtb factors influence mtROS generation during infection. A comprehensive study of host and microbial factors that target mtROS will shed light on innovative approaches for effectively managing drug-resistant mycobacterial infections.
Collapse
Affiliation(s)
- Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Eun-Kyeong Jo
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
2
|
Weng W, Shen L, Yu X, Yuan R, Shao M, Han P, Sun H. Artemether regulates liver glycogen and lipid utilization through mitochondrial pyruvate oxidation in db/db mice. Am J Transl Res 2024; 16:27-38. [PMID: 38322550 PMCID: PMC10839377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/29/2023] [Indexed: 02/08/2024]
Abstract
OBJECTIVES Diabetes is an important global health problem. The occurrence and development of type 2 diabetes (T2D) involves multiple organs, among which the liver is an important organ. Artemether is a methyl ether derivative of artemisinin and has displayed significant antidiabetic effects. However, its regulation of glucose metabolism is not clearly elucidated. This study explored the effect of artemether on liver mitochondrial pyruvate metabolism. METHODS T2D db/db mice were used and grouped into db/db and db/db+Art groups. Lean wild type mice served as control. After artemether intervention for 12 weeks, the respiratory exchange ratio (RER), redox state, relevant serum lipid content, liver glycogen and lipid content, liver insulin and insulin-like growth factor 1 (IGF-1) signal transduction, mitochondrial pyruvate oxidation pathway, fatty acid and glycogen metabolic pathways were evaluated. RESULTS This experiment demonstrated that artemether raised RER and enhanced liver mitochondrial pyruvate metabolism in db/db mice. Artemether also reduced serum and urinary lipid peroxidation products and regulated the redox status in liver. The accumulation of liver glycogen in diabetic mice was attenuated, the proportion of lipid content in serum and liver was changed by artemether. The signal pathway associated with liver glycogen metabolism was also regulated by artemether. In addition, artemether increased serum insulin and regulated insulin/IGF-1 signal pathway in liver. CONCLUSIONS The present study confirmed that artemether can regulate liver glycogen and lipid utilization in T2D mice, its biological mechanisms were associated with mitochondrial pyruvate oxidation in the liver.
Collapse
Affiliation(s)
- Wenci Weng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese MedicineNo. 1 Fuhua Road, Futian District, Shenzhen 518033, Guangdong, China
| | - Lingling Shen
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese MedicineNo. 1 Fuhua Road, Futian District, Shenzhen 518033, Guangdong, China
| | - Xuewen Yu
- Department of Pathology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese MedicineNo. 1 Fuhua Road, Futian District, Shenzhen 518033, Guangdong, China
| | - Rui Yuan
- Department of Clinical Laboratory, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese MedicineNo. 1 Fuhua Road, Futian District, Shenzhen 518033, Guangdong, China
| | - Mumin Shao
- Department of Pathology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese MedicineNo. 1 Fuhua Road, Futian District, Shenzhen 518033, Guangdong, China
| | - Pengxun Han
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese MedicineNo. 1 Fuhua Road, Futian District, Shenzhen 518033, Guangdong, China
| | - Huili Sun
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese MedicineNo. 1 Fuhua Road, Futian District, Shenzhen 518033, Guangdong, China
| |
Collapse
|
3
|
Gnaiger E. Complex II ambiguities-FADH 2 in the electron transfer system. J Biol Chem 2024; 300:105470. [PMID: 38118236 PMCID: PMC10772739 DOI: 10.1016/j.jbc.2023.105470] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 12/22/2023] Open
Abstract
The prevailing notion that reduced cofactors NADH and FADH2 transfer electrons from the tricarboxylic acid cycle to the mitochondrial electron transfer system creates ambiguities regarding respiratory Complex II (CII). CII is the only membrane-bound enzyme in the tricarboxylic acid cycle and is part of the electron transfer system of the mitochondrial inner membrane feeding electrons into the coenzyme Q-junction. The succinate dehydrogenase subunit SDHA of CII oxidizes succinate and reduces the covalently bound prosthetic group FAD to FADH2 in the canonical forward tricarboxylic acid cycle. However, several graphical representations of the electron transfer system depict FADH2 in the mitochondrial matrix as a substrate to be oxidized by CII. This leads to the false conclusion that FADH2 from the β-oxidation cycle in fatty acid oxidation feeds electrons into CII. In reality, dehydrogenases of fatty acid oxidation channel electrons to the Q-junction but not through CII. The ambiguities surrounding Complex II in the literature and educational resources call for quality control, to secure scientific standards in current communications of bioenergetics, and ultimately support adequate clinical applications. This review aims to raise awareness of the inherent ambiguity crisis, complementing efforts to address the well-acknowledged issues of credibility and reproducibility.
Collapse
|
4
|
Sadri S, Zhang X, Audi SH, Cowley Jr. AW, Dash RK. Computational Modeling of Substrate-Dependent Mitochondrial Respiration and Bioenergetics in the Heart and Kidney Cortex and Outer Medulla. FUNCTION 2023; 4:zqad038. [PMID: 37575476 PMCID: PMC10413947 DOI: 10.1093/function/zqad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Integrated computational modeling provides a mechanistic and quantitative framework to characterize alterations in mitochondrial respiration and bioenergetics in response to different metabolic substrates in-silico. These alterations play critical roles in the pathogenesis of diseases affecting metabolically active organs such as heart and kidney. Therefore, the present study aimed to develop and validate thermodynamically constrained integrated computational models of mitochondrial respiration and bioenergetics in the heart and kidney cortex and outer medulla (OM). The models incorporated the kinetics of major biochemical reactions and transport processes as well as regulatory mechanisms in the mitochondria of these tissues. Intrinsic model parameters such as Michaelis-Menten constants were fixed at previously estimated values, while extrinsic model parameters such as maximal reaction and transport velocities were estimated separately for each tissue. This was achieved by fitting the model solutions to our recently published respirometry data measured in isolated rat heart and kidney cortex and OM mitochondria utilizing various NADH- and FADH2-linked metabolic substrates. The models were validated by predicting additional respirometry and bioenergetics data, which were not used for estimating the extrinsic model parameters. The models were able to predict tissue-specific and substrate-dependent mitochondrial emergent metabolic system properties such as redox states, enzyme and transporter fluxes, metabolite concentrations, membrane potential, and respiratory control index under diverse physiological and pathological conditions. The models were also able to quantitatively characterize differential regulations of NADH- and FADH2-linked metabolic pathways, which contribute differently toward regulations of oxidative phosphorylation and ATP synthesis in the heart and kidney cortex and OM mitochondria.
Collapse
Affiliation(s)
- Shima Sadri
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Xiao Zhang
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Said H Audi
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Marquette University, Milwaukee, WI 53223, USA
| | - Allen W Cowley Jr.
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ranjan K Dash
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Marquette University, Milwaukee, WI 53223, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
5
|
Kurz FT, Aon MA, Schlemmer HP, Jende JME, O'Rourke B, Armoundas AA. Fractal dynamics of individual mitochondrial oscillators measure local inter-mitochondrial coupling. Biophys J 2023; 122:1459-1469. [PMID: 36905121 PMCID: PMC10147834 DOI: 10.1016/j.bpj.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/29/2022] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Mitochondrial inner membrane potentials in cardiomyocytes may oscillate in cycles of depolarization/repolarization when the mitochondrial network is exposed to metabolic or oxidative stress. The frequencies of such oscillations are dynamically changing while clusters of weakly coupled mitochondrial oscillators adjust to a common phase and frequency. Across the cardiac myocyte, the averaged signal of the mitochondrial population follows self-similar or fractal dynamics; however, fractal properties of individual mitochondrial oscillators have not yet been examined. We show that the largest synchronously oscillating cluster exhibits a fractal dimension, D, that is indicative of self-similar behavior with D=1.27±0.11, in contrast to the remaining network mitochondria whose fractal dimension is close to that of Brownian noise, D=1.58±0.10. We further demonstrate that fractal behavior is correlated with local coupling mechanisms, whereas it is only weakly linked to measures of functional connections between mitochondria. Our findings suggest that individual mitochondrial fractal dimensions may serve as a simple measure of local mitochondrial coupling.
Collapse
Affiliation(s)
- Felix T Kurz
- German Cancer Research Center, Division of Radiology, Heidelberg, Germany; Massachusetts General Hospital, Cardiovascular Research Center, Harvard Medical School, Charlestown, Massachusetts.
| | - Miguel A Aon
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | | | - Johann M E Jende
- Heidelberg University Hospital, Department of Neuroradiology, Heidelberg, Germany
| | - Brian O'Rourke
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, Maryland
| | - Antonis A Armoundas
- Massachusetts General Hospital, Cardiovascular Research Center, Harvard Medical School, Charlestown, Massachusetts; Broad Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
6
|
Mao L, Yuan X, Su J, Ma Y, Li C, Chen H, Zhang F. Human Umbilical Vein Endothelial Cells Survive on the Ischemic TCA Cycle under Lethal Ischemic Conditions. J Proteome Res 2022; 21:2385-2396. [PMID: 36074008 PMCID: PMC9552233 DOI: 10.1021/acs.jproteome.2c00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
It is generally believed that vascular endothelial cells
(VECs)
rely on glycolysis instead of the tricarboxylic acid (TCA) cycle under
both normoxic and hypoxic conditions. However, the metabolic pattern
of human umbilical vein endothelial cells (HUVECs) under extreme ischemia
(hypoxia and nutrient deprivation) needs to be elucidated. We initiated
a lethal ischemic model of HUVECs, performed proteomics and bioinformatics,
and verified the metabolic pattern shift of HUVECs. Ischemic HUVECs
displayed extensive aerobic respiration, including upregulation of
the TCA cycle and mitochondrial respiratory chain in mitochondria
and downregulation of glycolysis in cytoplasm. The TCA cycle was enhanced
while the cell viability was decreased through the citrate synthase
pathway when substrates of the TCA cycle (acetate and/or pyruvate)
were added and vice versa when inhibitors of the TCA cycle (palmitoyl-CoA
and/or avidin) were applied. The inconsistency of the TCA cycle level
and cell viability suggested that the extensive TCA cycle can keep
cells alive yet generate toxic substances that reduce cell viability.
The data revealed that HUVECs depend on “ischemic TCA cycle”
instead of glycolysis to keep cells alive under lethal ischemic conditions,
but consideration must be given to relieve cell injury.
Collapse
Affiliation(s)
- Lisha Mao
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147, China
| | - Xiaoqi Yuan
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147, China
| | - Junlei Su
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147, China
| | - Yaping Ma
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Chaofan Li
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Hongying Chen
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Fugui Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| |
Collapse
|
7
|
Isei MO, Stevens D, Kamunde C. Copper modulates heart mitochondrial H 2O 2 emission differently during fatty acid and pyruvate oxidation. Comp Biochem Physiol C Toxicol Pharmacol 2022; 254:109267. [PMID: 35026399 DOI: 10.1016/j.cbpc.2022.109267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 12/28/2022]
Abstract
Although the preferred cardiac metabolic fuels are fatty acids, glucose metabolism also plays an important role. However, irrespective of substrate type, energy generation results in mitochondrial reactive oxygen species (ROS) formation. To determine if the preference of fat over carbohydrates predisposes cardiomyocytes to oxidant production, we measured total and site-specific H2O2 emission in heart mitochondria oxidizing palmitoylcarnitine or pyruvate during copper (Cu) exposure. H2O2 emission was higher during oxidation of palmitoylcarnitine compared with pyruvate. Moreover, the bulk of the H2O2 emitted during palmitoylcarnitine oxidation originated from the outer ubiquinone binding site of complex III (site IIIQo) and the flavin site of electron transfer flavoprotein (site EF). We found no evidence of ROS production from complex I ubiquinone-binding site (site IQ) by reverse electron transport during oxidation of palmitoylcarnitine. Pyruvate oxidation also drove H2O2 emission primarily from sites IIIQo; however, the flavin sites of pyruvate dehydrogenase (site PF) and complex II (site IIF) contributed substantially. The effect of Cu depended on substrate and redox site, with effects at sites OF and IIIQo being more pronounced in mitochondria oxidizing pyruvate compared with palmitoylcarnitine. Cu imposed a concentration-saturable effect at site PF but concentration-dependently stimulated H2O2 emission at site EF. The substrate-dependent differences in H2O2 emission and effects of Cu suggest that fuel type and points of entry of electrons into the mitochondrial electron transport system determine the mitochondrial ROS production rate. Importantly, knowledge of sites of mitochondrial ROS production is crucial to the understanding of cardiac dysfunction associated with impaired substrate metabolism.
Collapse
Affiliation(s)
- Michael O Isei
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Don Stevens
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
8
|
Grass M, McDougal AD, Blazeski A, Kamm RD, García-Cardeña G, Dewey CF. A computational model of cardiomyocyte metabolism predicts unique reperfusion protocols capable of reducing cell damage during ischemia/reperfusion. J Biol Chem 2022; 298:101693. [PMID: 35157851 PMCID: PMC9062261 DOI: 10.1016/j.jbc.2022.101693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 11/20/2022] Open
Abstract
If a coronary blood vessel is occluded and the neighboring cardiomyocytes deprived of oxygen, subsequent reperfusion of the ischemic tissue can lead to oxidative damage due to excessive generation of reactive oxygen species. Cardiomyocytes and their mitochondria are the main energy producers and consumers of the heart, and their metabolic changes during ischemia seem to be a key driver of reperfusion injury. Here, we hypothesized that tracking changes in cardiomyocyte metabolism, such as oxygen and ATP concentrations, would help in identifying points of metabolic failure during ischemia and reperfusion. To track some of these changes continuously from the onset of ischemia through reperfusion, we developed a system of differential equations representing the chemical reactions involved in the production and consumption of 67 molecular species. This model was validated and used to identify conditions present during periods of critical transition in ischemia and reperfusion that could lead to oxidative damage. These simulations identified a range of oxygen concentrations that lead to reverse mitochondrial electron transport at complex I of the respiratory chain and a spike in mitochondrial membrane potential, which are key suspects in the generation of reactive oxygen species at the onset of reperfusion. Our model predicts that a short initial reperfusion treatment with reduced oxygen content (5% of physiological levels) could reduce the cellular damage from both of these mechanisms. This model should serve as an open-source platform to test ideas for treatment of the ischemia reperfusion process by following the temporal evolution of molecular concentrations in the cardiomyocyte.
Collapse
Affiliation(s)
- Matthias Grass
- Department of Mechanical Engineering, ETH Zurich, Zurich, Switzerland; Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Program in Human Biology and Translational Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Anthony D McDougal
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Adriana Blazeski
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Program in Human Biology and Translational Medicine, Harvard Medical School, Boston, Massachusetts, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Guillermo García-Cardeña
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Program in Human Biology and Translational Medicine, Harvard Medical School, Boston, Massachusetts, USA; Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
| | - C Forbes Dewey
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|
9
|
Cortassa S, Villon P, Sollott SJ, Aon MA. Integrated Multiomics, Bioinformatics, and Computational Modeling Approaches to Central Metabolism in Organs. Methods Mol Biol 2022; 2399:151-170. [PMID: 35604556 PMCID: PMC10074476 DOI: 10.1007/978-1-0716-1831-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Data-driven research led by computational systems biology methods, encompassing bioinformatics of multiomics datasets and mathematical modeling, are critical for discovery. Herein, we describe a multiomics (metabolomics-fluxomics) approach as applied to heart function in diabetes. The methodology presented has general applicability and enables the quantification of the fluxome or set of metabolic fluxes from cytoplasmic and mitochondrial compartments in central catabolic pathways of glucose and fatty acids. Additionally, we present, for the first time, a general method to reduce the dimension of detailed kinetic, and in general stoichiometric models of metabolic networks at the steady state, to facilitate their optimization and avoid numerical problems. Representative results illustrate the powerful mechanistic insights that can be gained from this integrative and quantitative methodology.
Collapse
Affiliation(s)
- Sonia Cortassa
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, USA.
| | - Pierre Villon
- Département de Génie Mécanique, Université de Technologie de Compiègne, Compiègne, France
| | - Steven J Sollott
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Miguel A Aon
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| |
Collapse
|
10
|
Zhang X, Tomar N, Kandel SM, Audi SH, Cowley AW, Dash RK. Substrate- and Calcium-Dependent Differential Regulation of Mitochondrial Oxidative Phosphorylation and Energy Production in the Heart and Kidney. Cells 2021; 11:131. [PMID: 35011693 PMCID: PMC8750792 DOI: 10.3390/cells11010131] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial dehydrogenases are differentially stimulated by Ca2+. Ca2+ has also diverse regulatory effects on mitochondrial transporters and other enzymes. However, the consequences of these regulatory effects on mitochondrial oxidative phosphorylation (OxPhos) and ATP production, and the dependencies of these consequences on respiratory substrates, have not been investigated between the kidney and heart despite the fact that kidney energy requirements are second only to those of the heart. Our objective was, therefore, to elucidate these relationships in isolated mitochondria from the kidney outer medulla (OM) and heart. ADP-induced mitochondrial respiration was measured at different CaCl2 concentrations in the presence of various respiratory substrates, including pyruvate + malate (PM), glutamate + malate (GM), alpha-ketoglutarate + malate (AM), palmitoyl-carnitine + malate (PCM), and succinate + rotenone (SUC + ROT). The results showed that, in both heart and OM mitochondria, and for most complex I substrates, Ca2+ effects are biphasic: small increases in Ca2+ concentration stimulated, while large increases inhibited mitochondrial respiration. Furthermore, significant differences in substrate- and Ca2+-dependent O2 utilization towards ATP production between heart and OM mitochondria were observed. With PM and PCM substrates, Ca2+ showed more prominent stimulatory effects in OM than in heart mitochondria, while with GM and AM substrates, Ca2+ had similar biphasic regulatory effects in both OM and heart mitochondria. In contrast, with complex II substrate SUC + ROT, only inhibitory effects on mitochondrial respiration was observed in both the heart and the OM. We conclude that the regulatory effects of Ca2+ on mitochondrial OxPhos and ATP synthesis are biphasic, substrate-dependent, and tissue-specific.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (X.Z.); (N.T.); (S.M.K.)
| | - Namrata Tomar
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (X.Z.); (N.T.); (S.M.K.)
| | - Sunil M. Kandel
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (X.Z.); (N.T.); (S.M.K.)
| | - Said H. Audi
- Department of Biomedical Engineering, Marquette University, Milwaukee, WI 53223, USA;
| | - Allen W. Cowley
- Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ranjan K. Dash
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (X.Z.); (N.T.); (S.M.K.)
- Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
11
|
Adzigbli L, Sokolov EP, Ponsuksili S, Sokolova IM. Tissue- and substrate-dependent mitochondrial responses to acute hypoxia-reoxygenation stress in a marine bivalve Crassostrea gigas (Thunberg, 1793). J Exp Biol 2021; 225:273950. [PMID: 34904172 DOI: 10.1242/jeb.243304] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/07/2021] [Indexed: 11/20/2022]
Abstract
Hypoxia is a major stressor for aquatic organisms, yet intertidal organisms like the oyster Crassostrea gigas are adapted to frequent oxygen fluctuations by metabolically adjusting to shifts in oxygen and substrate availability during hypoxia-reoxygenation (H/R). We investigated the effects of acute H/R stress (15 min at ∼0% O2, and 10 min reoxygenation) on isolated mitochondria from the gill and the digestive gland of C. gigas respiring on different substrates (pyruvate, glutamate, succinate, palmitate and their mixtures). Gill mitochondria showed better capacity for amino acid and fatty acid oxidation compared to the mitochondria from the digestive gland. Mitochondrial responses to H/R stress strongly depended on the substrate and the activity state of mitochondria. In mitochondria oxidizing NADH-linked substrates exposure to H/R stress suppressed oxygen consumption and ROS generation in the resting state, whereas in the ADP-stimulated state, ROS production increased despite little change in respiration. As a result, electron leak (measured as H2O2 to O2 ratio) increased after H/R stress in the ADP-stimulated mitochondria with NADH-linked substrates. In contrast, H/R exposure stimulated succinate-driven respiration without an increase in electron leak. Reverse electron transport (RET) did not significantly contribute to succinate-driven ROS production in oyster mitochondria except for a slight increase in the OXPHOS state during post-hypoxic recovery. A decrease in NADH-driven respiration and ROS production, enhanced capacity for succinate oxidation and resistance to RET might assist in post-hypoxic recovery of oysters mitigating oxidative stress and supporting rapid ATP re-synthesis during oxygen fluctuations such as commonly observed in estuaries and intertidal zones.
Collapse
Affiliation(s)
- Linda Adzigbli
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany.,Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Eugene P Sokolov
- Leibniz Institute for Baltic Sea Research, Leibniz Science Campus Phosphorus Research, Warnemünde, Rostock, Germany
| | - Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany.,Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
12
|
Sangweni NF, Mosa RA, Dludla PV, Kappo AP, Opoku AR, Muller CJF, Johnson R. The triterpene, methyl-3β-hydroxylanosta-9,24-dien-21-oate (RA3), attenuates high glucose-induced oxidative damage and apoptosis by improving energy metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153546. [PMID: 33799221 DOI: 10.1016/j.phymed.2021.153546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 02/11/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Hyperglycemia-induced cardiovascular dysfunction has been linked to oxidative stress and accelerated apoptosis in the diabetic myocardium. While there is currently no treatment for diabetic cardiomyopathy (DCM), studies suggest that the combinational use of anti-hyperglycemic agents and triterpenes could be effective in alleviating DCM. HYPOTHESIS To investigate the therapeutic effect of methyl-3β-hydroxylanosta-9,24-dien-21-oate (RA3), in the absence or presence of the anti-diabetic drug, metformin (MET), against hyperglycemia-induced cardiac injury using an in vitro H9c2 cell model. METHODS To mimic a hyperglycemic state, H9c2 cells were exposed to high glucose (HG, 33 mM) for 24 h. Thereafter, the cells were treated with RA3 (1 μM), MET (1 μM) and the combination of MET (1 μM) plus RA3 (1 μM) for 24 h, to assess the treatments therapeutic effect. RESULTS Biochemical analysis revealed that RA3, with or without MET, improves glucose uptake via insulin-dependent (IRS-1/PI3K/Akt signaling) and independent (AMPK) pathways whilst ameliorating the activity of antioxidant enzymes in the H9c2 cells. Mechanistically, RA3 was able to alleviate HG-stimulated oxidative stress through the inhibition of reactive oxygen species (ROS) and lipid peroxidation as well as the reduced expression of the PKC/NF-кB cascade through decreased intracellular lipid content. Subsequently, RA3 was able to mitigate HG-induced apoptosis by decreasing the activity of caspase 3/7 and DNA fragmentation in the cardiomyoblasts. CONCLUSION RA3, in the absence or presence of MET, demonstrated potent therapeutic properties against hyperglycemia-mediated cardiac damage and could be a suitable candidate in the prevention of DCM.
Collapse
Affiliation(s)
- Nonhlakanipho F Sangweni
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg 7505, South Africa; Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa.
| | - Rebamang A Mosa
- Department of Biochemistry, Genetics and Microbiology (BGM), Division of Biochemistry, University of Pretoria, Hatfield 0028, South Africa
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg 7505, South Africa; Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy.
| | - Abidemi P Kappo
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park 2006, South Africa
| | - Andy R Opoku
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg 7505, South Africa; Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Rabia Johnson
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg 7505, South Africa; Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa.
| |
Collapse
|
13
|
Park JH, Shim D, Kim KES, Lee W, Shin SJ. Understanding Metabolic Regulation Between Host and Pathogens: New Opportunities for the Development of Improved Therapeutic Strategies Against Mycobacterium tuberculosis Infection. Front Cell Infect Microbiol 2021; 11:635335. [PMID: 33796480 PMCID: PMC8007978 DOI: 10.3389/fcimb.2021.635335] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/01/2021] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) causes chronic granulomatous lung disease in humans. Recently, novel strategies such as host-directed therapeutics and adjunctive therapies that enhance the effect of existing antibiotics have emerged to better control Mtb infection. Recent advances in understanding the metabolic interplay between host immune cells and pathogens have provided new insights into how their interactions ultimately influence disease outcomes and antibiotic-treatment efficacy. In this review, we describe how metabolic cascades in immune environments and relevant metabolites produced from immune cells during Mtb infection play critical roles in the progression of diseases and induction of anti-Mtb protective immunity. In addition, we introduce how metabolic alterations in Mtb itself can lead to the development of persister cells that are resistant to host immunity and can eventually evade antibiotic attacks. Further understanding of the metabolic link between host cells and Mtb may contribute to not only the prevention of Mtb persister development but also the optimization of host anti-Mtb immunity together with enhanced efficacy of existing antibiotics. Overall, this review highlights novel approaches to improve and develop host-mediated therapeutic strategies against Mtb infection by restoring and switching pathogen-favoring metabolic conditions with host-favoring conditions.
Collapse
Affiliation(s)
- Ji-Hae Park
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Dahee Shim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Keu Eun San Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
14
|
Dambrova M, Zuurbier CJ, Borutaite V, Liepinsh E, Makrecka-Kuka M. Energy substrate metabolism and mitochondrial oxidative stress in cardiac ischemia/reperfusion injury. Free Radic Biol Med 2021; 165:24-37. [PMID: 33484825 DOI: 10.1016/j.freeradbiomed.2021.01.036] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
The heart is the most metabolically flexible organ with respect to the use of substrates available in different states of energy metabolism. Cardiac mitochondria sense substrate availability and ensure the efficiency of oxidative phosphorylation and heart function. Mitochondria also play a critical role in cardiac ischemia/reperfusion injury, during which they are directly involved in ROS-producing pathophysiological mechanisms. This review explores the mechanisms of ROS production within the energy metabolism pathways and focuses on the impact of different substrates. We describe the main metabolites accumulating during ischemia in the glucose, fatty acid, and Krebs cycle pathways. Hyperglycemia, often present in the acute stress condition of ischemia/reperfusion, increases cytosolic ROS concentrations through the activation of NADPH oxidase 2 and increases mitochondrial ROS through the metabolic overloading and decreased binding of hexokinase II to mitochondria. Fatty acid-linked ROS production is related to the increased fatty acid flux and corresponding accumulation of long-chain acylcarnitines. Succinate that accumulates during anoxia/ischemia is suggested to be the main source of ROS, and the role of itaconate as an inhibitor of succinate dehydrogenase is emerging. We discuss the strategies to modulate and counteract the accumulation of substrates that yield ROS and the therapeutic implications of this concept.
Collapse
Affiliation(s)
- Maija Dambrova
- Latvian Institute of Organic Synthesis, Riga, Latvia; Riga Stradins University, Riga, Latvia.
| | - Coert J Zuurbier
- Amsterdam UMC, University of Amsterdam, Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, AZ 1105, Amsterdam, the Netherlands
| | - Vilmante Borutaite
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | | |
Collapse
|
15
|
Nian Y, Iske J, Maenosono R, Minami K, Heinbokel T, Quante M, Liu Y, Azuma H, Yang J, Abdi R, Zhou H, Elkhal A, Tullius SG. Targeting age-specific changes in CD4 + T cell metabolism ameliorates alloimmune responses and prolongs graft survival. Aging Cell 2021; 20:e13299. [PMID: 33497523 PMCID: PMC7884034 DOI: 10.1111/acel.13299] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 11/16/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Age impacts alloimmunity. Effects of aging on T-cell metabolism and the potential to interfere with immunosuppressants have not been explored yet. Here, we dissected metabolic pathways of CD4+ and CD8+ T cells in aging and offer novel immunosuppressive targets. Upon activation, CD4+ T cells from old mice failed to exhibit adequate metabolic reprogramming resulting into compromised metabolic pathways, including oxidative phosphorylation (OXPHOS) and glycolysis. Comparable results were also observed in elderly human patients. Although glutaminolysis remained the dominant and age-independent source of mitochondria for activated CD4+ T cells, old but not young CD4+ T cells relied heavily on glutaminolysis. Treating young and old murine and human CD4+ T cells with 6-diazo-5-oxo-l-norleucine (DON), a glutaminolysis inhibitor resulted in significantly reduced IFN-γ production and compromised proliferative capacities specifically of old CD4+ T cells. Of translational relevance, old and young mice that had been transplanted with fully mismatched skin grafts and treated with DON demonstrated dampened Th1- and Th17-driven alloimmune responses. Moreover, DON diminished cytokine production and proliferation of old CD4+ T cells in vivo leading to a significantly prolonged allograft survival specifically in old recipients. Graft prolongation in young animals, in contrast, was only achieved when DON was applied in combination with an inhibition of glycolysis (2-deoxy-d-glucose, 2-DG) and OXPHOS (metformin), two alternative metabolic pathways. Notably, metabolic treatment had not been linked to toxicities. Remarkably, immunosuppressive capacities of DON were specific to CD4+ T cells as adoptively transferred young CD4+ T cells prevented immunosuppressive capacities of DON on allograft survival in old recipients. Depletion of CD8+ T cells did not alter transplant outcomes in either young or old recipients. Taken together, our data introduce an age-specific metabolic reprogramming of CD4+ T cells. Targeting those pathways offers novel and age-specific approaches for immunosuppression.
Collapse
Affiliation(s)
- Yeqi Nian
- Division of Transplant Surgery and Transplant Surgery Research Laboratory Brigham and Women's Hospital Harvard Medical School Boston MA USA
- Department of Urology Second Xiangya Hospital Central South University Changsha China
- Department of Kidney Transplantation Tianjin First Central Hospital Nankai University Tianjin China
| | - Jasper Iske
- Division of Transplant Surgery and Transplant Surgery Research Laboratory Brigham and Women's Hospital Harvard Medical School Boston MA USA
- Institute of Transplant Immunology Hannover Medical School Hannover Germany
| | - Ryoichi Maenosono
- Division of Transplant Surgery and Transplant Surgery Research Laboratory Brigham and Women's Hospital Harvard Medical School Boston MA USA
- Department of Urology Osaka Medical College Osaka Japan
| | - Koichiro Minami
- Division of Transplant Surgery and Transplant Surgery Research Laboratory Brigham and Women's Hospital Harvard Medical School Boston MA USA
- Department of Urology Osaka Medical College Osaka Japan
| | - Timm Heinbokel
- Division of Transplant Surgery and Transplant Surgery Research Laboratory Brigham and Women's Hospital Harvard Medical School Boston MA USA
- Department of Pathology Charité – Universitätsmedizin Berlin Berlin Germany
| | - Markus Quante
- Department of General, Visceral‐ and Transplant Surgery University Hospital Tübingen Tubingen Germany
| | - Yang Liu
- Division of Transplant Surgery and Transplant Surgery Research Laboratory Brigham and Women's Hospital Harvard Medical School Boston MA USA
- Institute of Hepatobiliary Diseases Zhongnan Hospital of Wuhan University Wuhan China
| | | | - Jinrui Yang
- Department of Urology Second Xiangya Hospital Central South University Changsha China
| | - Reza Abdi
- Renal Division Transplantation Research Center Brigham and Women's Hospital Harvard Medical School Boston MA USA
| | - Hao Zhou
- Division of Transplant Surgery and Transplant Surgery Research Laboratory Brigham and Women's Hospital Harvard Medical School Boston MA USA
| | - Abdallah Elkhal
- Division of Transplant Surgery and Transplant Surgery Research Laboratory Brigham and Women's Hospital Harvard Medical School Boston MA USA
| | - Stefan G. Tullius
- Division of Transplant Surgery and Transplant Surgery Research Laboratory Brigham and Women's Hospital Harvard Medical School Boston MA USA
| |
Collapse
|
16
|
Marín-Hernández Á, Gallardo-Pérez JC, Reyes-García MA, Sosa-Garrocho M, Macías-Silva M, Rodríguez-Enríquez S, Moreno-Sánchez R, Saavedra E. Kinetic modeling of glucose central metabolism in hepatocytes and hepatoma cells. Biochim Biophys Acta Gen Subj 2020; 1864:129687. [PMID: 32712171 DOI: 10.1016/j.bbagen.2020.129687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/28/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Kinetic modeling and control analysis of a metabolic pathway may identify the steps with the highest control in tumor cells, and low control in normal cells, which can be proposed as the best therapeutic targets. METHODS Enzyme kinetic characterization, pathway kinetic modeling and control analysis of the glucose central metabolism were carried out in rat (hepatoma AS-30D) and human (cervix HeLa) cancer cells and normal rat hepatocytes. RESULTS The glycogen metabolism enzymes in AS-30D, HeLa cells and hepatocytes showed similar kinetic properties, except for higher AS-30D glycogen phosphorylase (GP) sensitivity to AMP. Pathway modeling indicated that fluxes of glycogen degradation and PPP were mainly controlled by GP and NADPH consumption, respectively, in both hepatocytes and cancer cells. Likewise, hexose-6-phosphate isomerase (HPI) and phosphoglucomutase (PGM) exerted significant control on glycolysis and glycogen synthesis fluxes in cancer cells but not in hepatocytes. Modeling also indicated that glycolytic and glycogen synthesis fluxes could be strongly decreased when HPI and PGM were simultaneously inhibited in AS-30D cells but not in hepatocytes. Experimental assessment of these predictions showed that both the glycolytic and glycogen synthesis fluxes of AS-30D cells, but not of hepatocytes, were inhibited by oxamate, by inducing increased Fru1,6BP levels, a competitive inhibitor of HPI and PGM. CONCLUSION HPI and PGM seem suitable targets for decreasing glycolytic and glycogen synthesis fluxes in AS-30D cells but not in hepatocytes. GENERAL SIGNIFICANCE The present study identified new therapeutic targets within glucose central metabolism in the analyzed cancer cells, with no effects on non-cancer cells.
Collapse
Affiliation(s)
- Álvaro Marín-Hernández
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico City 14080, Mexico.
| | | | | | - Marcela Sosa-Garrocho
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Marina Macías-Silva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | - Rafael Moreno-Sánchez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico City 14080, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico City 14080, Mexico.
| |
Collapse
|
17
|
Jespersen NR, Hjortbak MV, Lassen TR, Støttrup NB, Johnsen J, Tonnesen PT, Larsen S, Kimose HH, Bøtker HE. Cardioprotective effect of succinate dehydrogenase inhibition in rat hearts and human myocardium with and without diabetes mellitus. Sci Rep 2020; 10:10344. [PMID: 32587298 PMCID: PMC7316713 DOI: 10.1038/s41598-020-67247-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/02/2020] [Indexed: 11/09/2022] Open
Abstract
Ischemia reperfusion (IR) injury may be attenuated through succinate dehydrogenase (SDH) inhibition by dimethyl malonate (DiMAL). Whether SDH inhibition yields protection in diabetic individuals and translates into human cardiac tissue remain unknown. In isolated perfused hearts from 24 weeks old male Zucker diabetic fatty (ZDF) and age matched non-diabetic control rats and atrial trabeculae from patients with and without diabetes, we compared infarct size, contractile force recovery and mitochondrial function. The cardioprotective effect of a 10 minutes DiMAL administration prior to global ischemia and ischemic preconditioning (IPC) was evaluated. In non-diabetic hearts exposed to IR, DiMAL 0.1 mM reduced infarct size compared to IR (55 ± 7% vs. 69 ± 6%, p < 0.05). Mitochondrial respiration was reduced by DiMAL 0.6 mM compared to sham and DiMAL 0.1 mM (p < 0.05). In diabetic hearts an increased concentration of DiMAL (0.6 mM) was required for protection compared to IR (64 ± 13% vs. 79 ± 8%, p < 0.05). Mitochondrial function remained unchanged. In trabeculae from humans without diabetes, IPC and DiMAL improved contractile force recovery compared to IR (43 ± 12% and 43 ± 13% vs. 23 ± 13%, p < 0.05) but in patients with diabetes only IPC provided protection compared to IR (51 ± 15% vs. 21 ± 8%, p < 0.05). Neither IPC nor DiMAL modulated mitochondrial respiration in patients. Cardioprotection by SDH inhibition is possible in human tissue, but depends on diabetes status. The narrow therapeutic range and discrepancy in respiration between experimental and human studies may limit clinical translation.
Collapse
Affiliation(s)
| | | | | | | | - Jacob Johnsen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Hans-Henrik Kimose
- Department of Cardiothoracic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
18
|
Lai N, Fealy CE, Kummitha CM, Cabras S, Kirwan JP, Hoppel CL. Mitochondrial Utilization of Competing Fuels Is Altered in Insulin Resistant Skeletal Muscle of Non-obese Rats (Goto-Kakizaki). Front Physiol 2020; 11:677. [PMID: 32612543 PMCID: PMC7308651 DOI: 10.3389/fphys.2020.00677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/26/2020] [Indexed: 12/25/2022] Open
Abstract
Aim Insulin-resistant skeletal muscle is characterized by metabolic inflexibility with associated alterations in substrate selection, mediated by peroxisome-proliferator activated receptor δ (PPARδ). Although it is established that PPARδ contributes to the alteration of energy metabolism, it is not clear whether it plays a role in mitochondrial fuel competition. While nutrient overload may impair metabolic flexibility by fuel congestion within mitochondria, in absence of obesity defects at a mitochondrial level have not yet been excluded. We sought to determine whether reduced PPARδ content in insulin-resistant rat skeletal muscle of a non-obese rat model of T2DM (Goto-Kakizaki, GK) ameliorate the inhibitory effect of fatty acid (i.e., palmitoylcarnitine) on mitochondrial carbohydrate oxidization (i.e., pyruvate) in muscle fibers. Methods Bioenergetic function was characterized in oxidative soleus (S) and glycolytic white gastrocnemius (WG) muscles with measurement of respiration rates in permeabilized fibers in the presence of complex I, II, IV, and fatty acid substrates. Mitochondrial content was measured by citrate synthase (CS) and succinate dehydrogenase activity (SDH). Western blot was used to determine protein expression of PPARδ, PDK isoform 2 and 4. Results CS and SDH activity, key markers of mitochondrial content, were reduced by ∼10-30% in diabetic vs. control, and the effect was evident in both oxidative and glycolytic muscles. PPARδ (p < 0.01), PDK2 (p < 0.01), and PDK4 (p = 0.06) protein content was reduced in GK animals compared to Wistar rats (N = 6 per group). Ex vivo respiration rates in permeabilized muscle fibers determined in the presence of complex I, II, IV, and fatty acid substrates, suggested unaltered mitochondrial bioenergetic function in T2DM muscle. Respiration in the presence of pyruvate was higher compared to palmitoylcarnitine in both animal groups and fiber types. Moreover, respiration rates in the presence of both palmitoylcarnitine and pyruvate were reduced by 25 ± 6% (S), 37 ± 6% (WG) and 63 ± 6% (S), 57 ± 8% (WG) compared to pyruvate for both controls and GK, respectively. The inhibitory effect of palmitoylcarnitine on respiration was significantly greater in GK than controls (p < 10-3). Conclusion With competing fuels, the presence of fatty acids diminishes mitochondria ability to utilize carbohydrate derived substrates in insulin-resistant muscle despite reduced PPARδ content.
Collapse
Affiliation(s)
- Nicola Lai
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, United States.,Biomedical Engineering Institute, Old Dominion University, Norfolk, VA, United States.,Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States.,Center for Mitochondrial Disease, Case Western Reserve University, Cleveland, OH, United States
| | - Ciarán E Fealy
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Chinna M Kummitha
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Silvia Cabras
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - John P Kirwan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States.,Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Charles L Hoppel
- Center for Mitochondrial Disease, Case Western Reserve University, Cleveland, OH, United States.,Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States.,Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|