1
|
Sukhareva KS, Smolina NA, Churkina AI, Kalugina KK, Zhuk SV, Khudiakov AA, Khodot AA, Faggian G, Luciani GB, Sejersen T, Kostareva AA. Desmin mutations impact the autophagy flux in C2C12 cell in mutation-specific manner. Cell Tissue Res 2023; 393:357-375. [PMID: 37277577 PMCID: PMC10406715 DOI: 10.1007/s00441-023-03790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/12/2023] [Indexed: 06/07/2023]
Abstract
Desmin is the main intermediate filament of striated and smooth muscle cells and plays a crucial role in maintaining the stability of muscle fiber during contraction and relaxation cycles. Being a component of Z-disk area, desmin integrates autophagic pathways, and the disturbance of Z-disk proteins' structure negatively affects chaperone-assisted selective autophagy (CASA). In the present study, we focused on alteration of autophagy flux in myoblasts expressing various Des mutations. We applied Western blotting, immunocytochemistry, RNA sequencing, and shRNA approach to demonstrate that DesS12F, DesA357P, DesL345P, DesL370P, and DesD399Y mutations. Mutation-specific effect on autophagy flux being most severe in aggregate-prone Des mutations such as DesL345P, DesL370P, and DesD399Y. RNA sequencing data confirmed the most prominent effect of these mutations on expression profile and, in particular, on autophagy-related genes. To verify CASA contribution to desmin aggregate formation, we suppressed CASA by knocking down Bag3 and demonstrated that it promoted aggregate formation and lead to downregulation of Vdac2 and Vps4a and upregulation of Lamp, Pink1, and Prkn. In conclusion, Des mutations showed a mutation-specific effect on autophagy flux in C2C12 cells with either a predominant impact on autophagosome maturation or on degradation and recycling processes. Aggregate-prone desmin mutations lead to the activation of basal autophagy level while suppressing the CASA pathway by knocking down Bag3 can promote desmin aggregate formation.
Collapse
Affiliation(s)
- K S Sukhareva
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint-Petersburg, Russia.
- Graduate School of Life and Health Science, University of Verona, Verona, Italy.
| | - N A Smolina
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - A I Churkina
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - K K Kalugina
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - S V Zhuk
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - A A Khudiakov
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - A A Khodot
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - G Faggian
- Graduate School of Life and Health Science, University of Verona, Verona, Italy
| | - G B Luciani
- Graduate School of Life and Health Science, University of Verona, Verona, Italy
| | - T Sejersen
- Department of Women's and Children's Health, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
- Department of Neuropaediatrics, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - A A Kostareva
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint-Petersburg, Russia
- Department of Women's and Children's Health, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Environmental Enrichment Protects Offspring of a Rat Model of Preeclampsia from Cognitive Decline. Cell Mol Neurobiol 2023; 43:381-394. [PMID: 35119541 DOI: 10.1007/s10571-022-01192-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/07/2022] [Indexed: 01/07/2023]
Abstract
Preeclampsia affects 5-7% of all pregnancies and contributes to adverse pregnancy and birth outcomes. In addition to the short-term effects of preeclampsia, preeclampsia can exert long-term adverse effects on offspring. Numerous studies have demonstrated that offspring of preeclamptic women exhibit cognitive deficits from childhood to old age. However, effective ways to improve the cognitive abilities of these offspring remain to be investigated. The aim of this study was to explore whether environmental enrichment in early life could restore the cognitive ability of the offspring of a rat model of preeclampsia and to investigate the cellular and molecular mechanisms by which EE improves cognitive ability. L-NAME was used to establish a rat model of preeclampsia. The spatial learning and memory abilities and recognition memory of 56-day-old offspring were evaluated by the Morris water maze and Novel object recognition (NOR) task. Immunofluorescence was performed to evaluate cell proliferation and apoptosis in the DG region of the hippocampus. qRT-PCR was performed to examine the expression levels of neurogenesis-associated genes, pre- and postsynaptic proteins and inflammatory cytokines. An enzyme-linked immune absorbent assay was performed to evaluate the concentration of vascular endothelial growth factor (VEGF) and inflammatory cytokines in the hippocampus. The administration of L-NAME led to increased systolic blood pressure and urine protein levels in pregnant rats. Offspring in the L-NAME group exhibited impaired spatial learning ability and memory as well as NOR memory. Hippocampal neurogenesis and synaptic plasticity were impaired in offspring from the L-NAME group. Furthermore, cell apoptosis in the hippocampus was increased in the L-NAME group. The hippocampus was skewed to a proinflammatory profile, as shown by increased inflammatory cytokine levels. EE improved the cognitive ability of offspring in the L-NAME group and resulted in increased hippocampal neurogenesis and synaptic protein expression levels and decreased apoptosis and inflammatory cytokine levels. Environmental enrichment resolves cognitive impairment in the offspring of a rat model of preeclampsia by improving hippocampal neurogenesis and synaptic plasticity and normalizing the apoptosis level and the inflammatory balance.
Collapse
|
3
|
Yu X, Wang T, Li Y, Li Y, Bai B, Fang J, Han J, Li S, Xiu Z, Liu Z, Yang X, Li Y, Zhu G, Jin N, Shang C, Li X, Zhu Y. Apoptin causes apoptosis in HepG-2 cells via Ca 2+ imbalance and activation of the mitochondrial apoptotic pathway. Cancer Med 2022; 12:8306-8318. [PMID: 36515089 PMCID: PMC10134343 DOI: 10.1002/cam4.5528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/06/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Apoptin is derived from the chicken anemia virus and exhibits specific cytotoxic effects against tumor cells. Herein, we found that Apoptin induced a strong and lasting endoplasmic reticulum (ER) stress response, Ca2+ imbalance, and triggered the mitochondrial apoptotic pathway. The aim of this study was to explore the mechanisms by which Apoptin exhibited anti-tumor effects in HepG-2 cells. METHODS The intracellular levels of calcium (Ca2+ ) were induced by ER stress and determined by electron microscopy, flow cytometry, and fluorescence staining. The mitochondrial injury was determined by mitochondrial membrane potential and electron microscopy. Western blotting was used to investigate the levels of key proteins in ER stress and the apoptotic pathway in mitochondria. The relationship between Ca2+ levels and apoptosis in Apoptin-treated cells was analyzed using a Ca2+ chelator (BAPTA-AM), flow cytometry, and fluorescence staining. We also investigated the in vivo effects of Ca2+ imbalance on the mitochondrial apoptotic pathway using tumor tissues xenografted on nude mice. RESULTS This study showed that Apoptin induced a strong and long- lasting ER stress and injury, which subsequently led to an imbalance of cellular Ca2+ levels, a reduction in the mitochondrial membrane potential, a significant extent image in the mitochondrial structure, and an increase in the expression levels of Smac/Diablo and Cyto-C. CONCLUSIONS In summary, Apoptin induced apoptosis in HepG-2 cells via Ca2+ imbalance and activation of the mitochondrial apoptotic pathway. This study provided a new direction for antitumor research in Apoptin.
Collapse
Affiliation(s)
- Xiaoyang Yu
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Tongxing Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yue Li
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Yiquan Li
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Bing Bai
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Jinbo Fang
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Jicheng Han
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Shanzhi Li
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Zhiru Xiu
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Zirui Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xia Yang
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Yaru Li
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Guangze Zhu
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Ningyi Jin
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China.,Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Chao Shang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiao Li
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China.,Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yilong Zhu
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
4
|
Liang W, Gustafsson ÅB. Recent Insights into the Role of Autophagy in the Heart. CURRENT OPINION IN PHYSIOLOGY 2022. [DOI: 10.1016/j.cophys.2022.100593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Zhang Q, Liu C, Shi R, Zhou S, Shan H, Deng L, Chen T, Guo Y, Zhang Z, Yang GY, Wang Y, Tang Y. Blocking C3d +/GFAP + A1 Astrocyte Conversion with Semaglutide Attenuates Blood-Brain Barrier Disruption in Mice after Ischemic Stroke. Aging Dis 2022; 13:943-959. [PMID: 35656116 PMCID: PMC9116904 DOI: 10.14336/ad.2021.1029] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022] Open
Abstract
Astrocytes play an essential role in the modulation of blood-brain barrier function. Neurological diseases induce the transformation of astrocytes into a neurotoxic A1 phenotype, exacerbating brain injury. However, the effect of A1 astrocytes on the BBB dysfunction after stroke is unknown. Adult male ICR mice (n=97) were subjected to 90-minute transient middle cerebral artery occlusion (tMCAO). Immunohistochemical staining of A1 (C3d) and A2 (S100A10) was performed to characterize phenotypic changes in astrocytes over time after tMCAO. The glucagon-like peptide-1 receptor agonist semaglutide was intraperitoneally injected into mice to inhibit A1 astrocytes. Infarct volume, atrophy volume, neurobehavioral outcomes, and BBB permeability were evaluated. RNA-seq was adopted to explore the potential targets and signaling pathways of A1 astrocyte-induced BBB dysfunction. Astrocytic C3d expression was increased, while expression of S100A10 was decreased in the first two weeks after tMCAO, reflecting a shift in the astrocytic phenotype. Semaglutide treatment reduced the expression of CD16/32 in microglia and C3d in astrocytes after ischemic stroke (p<0.05). Ischemia-induced brain infarct volume, atrophy volume and neuroinflammation were reduced in the semaglutide-treated mice, and neurobehavioral outcomes were improved compared to control mice (p<0.05). We further demonstrated that semaglutide treatment reduced the gap formation of tight junction proteins ZO-1, claudin-5 and occludin, as well as IgG leakage three days following tMCAO (p<0.05). In vitro experiments revealed that A1 astrocyte-conditioned medium disrupted BBB integrity. RNA-seq showed that A1 astrocytes were enriched in inflammatory factors and chemokines and significantly modulated the TNF and chemokine signaling pathways, which are closely related to barrier damage. We concluded that astrocytes undergo a phenotypic shift over time after ischemic stroke. C3d+/GFAP+ astrocytes aggravate BBB disruption, suggesting that inhibiting C3d+/GFAP+ astrocyte formation represents a novel strategy for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Qi Zhang
- 1School of Biomedical Engineering and Shanghai 6th People's Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Chang Liu
- 1School of Biomedical Engineering and Shanghai 6th People's Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Rubing Shi
- 1School of Biomedical Engineering and Shanghai 6th People's Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shiyi Zhou
- 1School of Biomedical Engineering and Shanghai 6th People's Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Huimin Shan
- 1School of Biomedical Engineering and Shanghai 6th People's Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lidong Deng
- 1School of Biomedical Engineering and Shanghai 6th People's Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Tingting Chen
- 1School of Biomedical Engineering and Shanghai 6th People's Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yiyan Guo
- 1School of Biomedical Engineering and Shanghai 6th People's Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhijun Zhang
- 1School of Biomedical Engineering and Shanghai 6th People's Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guo-Yuan Yang
- 1School of Biomedical Engineering and Shanghai 6th People's Hospital, Shanghai Jiao Tong University, Shanghai 200030, China.,2Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yongting Wang
- 1School of Biomedical Engineering and Shanghai 6th People's Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yaohui Tang
- 1School of Biomedical Engineering and Shanghai 6th People's Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
6
|
Li A, Gao M, Liu B, Qin Y, Chen L, Liu H, Wu H, Gong G. Mitochondrial autophagy: molecular mechanisms and implications for cardiovascular disease. Cell Death Dis 2022; 13:444. [PMID: 35534453 PMCID: PMC9085840 DOI: 10.1038/s41419-022-04906-6] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 12/13/2022]
Abstract
Mitochondria are highly dynamic organelles that participate in ATP generation and involve calcium homeostasis, oxidative stress response, and apoptosis. Dysfunctional or damaged mitochondria could cause serious consequences even lead to cell death. Therefore, maintaining the homeostasis of mitochondria is critical for cellular functions. Mitophagy is a process of selectively degrading damaged mitochondria under mitochondrial toxicity conditions, which plays an essential role in mitochondrial quality control. The abnormal mitophagy that aggravates mitochondrial dysfunction is closely related to the pathogenesis of many diseases. As the myocardium is a highly oxidative metabolic tissue, mitochondria play a central role in maintaining optimal performance of the heart. Dysfunctional mitochondria accumulation is involved in the pathophysiology of cardiovascular diseases, such as myocardial infarction, cardiomyopathy and heart failure. This review discusses the most recent progress on mitophagy and its role in cardiovascular disease.
Collapse
Affiliation(s)
- Anqi Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Meng Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bilin Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yuan Qin
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Lei Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Hanyu Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Huayan Wu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Guohua Gong
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
7
|
Song G, Shang C, Sun L, Li Y, Zhu Y, Xiu Z, Liu Z, Li Y, Yang X, Ge C, Fang J, Jin N, Li X. Ad-VT enhances the sensitivity of chemotherapy-resistant lung adenocarcinoma cells to gemcitabine and paclitaxel in vitro and in vivo. Invest New Drugs 2022; 40:274-289. [PMID: 34981275 PMCID: PMC8993744 DOI: 10.1007/s10637-021-01204-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/30/2021] [Indexed: 10/31/2022]
Abstract
Background One of the main challenges in the clinical treatment of lung cancer is resistance to chemotherapeutic drugs. P-glycoprotein (P-gp)-mediated drug resistance is the main obstacle to successfully implementing microtubule-targeted tumor chemotherapy. Purpose In this study, we explored the effect of Ad-hTERTp-E1a-Apoptin (Ad-VT) on drug-resistant cell lines and the molecular mechanism by which Ad-VT combined with chemotherapy affects drug-resistant cells and parental cells. Methods In vitro, cell proliferation, colony formation, resistance index (RI), apoptosis and autophagy assays were performed. Protein expression was analyzed by Western blotting. Finally, a xenograft tumor model in nude mice was used to detect tumor growth and evaluate histological characteristics. Results Our results showed that Ad-VT had an obvious killing effect on A549, A549/GEM and A549/Paclitaxel cancer cells, and the sensitivity of drug-resistant cell lines to Ad-VT was significantly higher than that of parental A549 cells. Compared with A549 cells, A549/GEM and A549/Paclitaxel cells had higher autophagy levels and higher viral replication ability. Ad-VT decreased the levels of p-PI3k, p-Akt and p-mTOR and the expression of P-gp. In vivo, Ad-VT combined with chemotherapy can effectively inhibit the growth of chemotherapy-resistant tumors and prolong the survival of mice. Conclusions Thus, the combination of Ad-VT and chemotherapeutic drugs will be a promising strategy to overcome chemoresistance.
Collapse
Affiliation(s)
- Gaojie Song
- Medical College, Yanbian University, Yanji, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Chao Shang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Lili Sun
- Department of Head and Neck Surgery, Tumor Hospital of Jilin Province, Changchun, China
| | - Yiquan Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Yilong Zhu
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Zhiru Xiu
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Zirui Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yaru Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Xia Yang
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Chenchen Ge
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Jinbo Fang
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China.
| | - Ningyi Jin
- Medical College, Yanbian University, Yanji, China.
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China.
| | - Xiao Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China.
| |
Collapse
|
8
|
Ou W, Yang J, Simanauskaite J, Choi M, Castellanos DM, Chang R, Sun J, Jagadeesan N, Parfitt KD, Cribbs DH, Sumbria RK. Biologic TNF-α inhibitors reduce microgliosis, neuronal loss, and tau phosphorylation in a transgenic mouse model of tauopathy. J Neuroinflammation 2021; 18:312. [PMID: 34972522 PMCID: PMC8719395 DOI: 10.1186/s12974-021-02332-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 11/26/2021] [Indexed: 12/23/2022] Open
Abstract
Background Tumor necrosis factor-α (TNF-α) plays a central role in Alzheimer’s disease (AD) pathology, making biologic TNF-α inhibitors (TNFIs), including etanercept, viable therapeutics for AD. The protective effects of biologic TNFIs on AD hallmark pathology (Aβ deposition and tau pathology) have been demonstrated. However, the effects of biologic TNFIs on Aβ-independent tau pathology have not been reported. Existing biologic TNFIs do not cross the blood–brain barrier (BBB), therefore we engineered a BBB-penetrating biologic TNFI by fusing the extracellular domain of the type-II human TNF-α receptor (TNFR) to a transferrin receptor antibody (TfRMAb) that ferries the TNFR into the brain via receptor-mediated transcytosis. The present study aimed to investigate the effects of TfRMAb-TNFR (BBB-penetrating TNFI) and etanercept (non-BBB-penetrating TNFI) in the PS19 transgenic mouse model of tauopathy. Methods Six-month-old male and female PS19 mice were injected intraperitoneally with saline (n = 12), TfRMAb-TNFR (1.75 mg/kg, n = 10) or etanercept (0.875 mg/kg, equimolar dose of TNFR, n = 10) 3 days/week for 8 weeks. Age-matched littermate wild-type mice served as additional controls. Blood was collected at baseline and 8 weeks for a complete blood count. Locomotion hyperactivity was assessed by the open-field paradigm. Brains were examined for phosphorylated tau lesions (Ser202, Thr205), microgliosis, and neuronal health. The plasma pharmacokinetics were evaluated following a single intraperitoneal injection of 0.875 mg/kg etanercept or 1.75 mg/kg TfRMAb-TNFR or 1.75 mg/kg chronic TfRMAb-TNFR dosing for 4 weeks. Results Etanercept significantly reduced phosphorylated tau and microgliosis in the PS19 mouse brains of both sexes, while TfRMAb-TNFR significantly reduced these parameters in the female PS19 mice. Both TfRMAb-TNFR and etanercept treatment improved neuronal health by significantly increasing PSD95 expression and attenuating hippocampal neuron loss in the PS19 mice. The locomotion hyperactivity in the male PS19 mice was suppressed by chronic etanercept treatment. Equimolar dosing resulted in eightfold lower plasma exposure of the TfRMAb-TNFR compared with etanercept. The hematological profiles remained largely stable following chronic biologic TNFI dosing except for a significant increase in platelets with etanercept. Conclusion Both TfRMAb-TNFR (BBB-penetrating) and non-BBB-penetrating (etanercept) biologic TNFIs showed therapeutic effects in the PS19 mouse model of tauopathy. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02332-7.
Collapse
Affiliation(s)
- Weijun Ou
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, 92618, USA
| | - Joshua Yang
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | | | - Matthew Choi
- Keck Science Department, Claremont McKenna College, Claremont, CA, 91711, USA
| | - Demi M Castellanos
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Rudy Chang
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, 92618, USA
| | - Jiahong Sun
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, 92618, USA
| | - Nataraj Jagadeesan
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, 92618, USA
| | - Karen D Parfitt
- Department of Neuroscience, Pomona College, Claremont, CA, 91711, USA
| | - David H Cribbs
- MIND Institute, University of California, Irvine, CA, 92697, USA
| | - Rachita K Sumbria
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, 92618, USA. .,Department of Neurology, University of California, Irvine, CA, 92868, USA.
| |
Collapse
|
9
|
Liu X, Zheng X, Lu Y, Chen Q, Zheng J, Zhou H. TFEB Dependent Autophagy-Lysosomal Pathway: An Emerging Pharmacological Target in Sepsis. Front Pharmacol 2021; 12:794298. [PMID: 34899355 PMCID: PMC8664376 DOI: 10.3389/fphar.2021.794298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/05/2021] [Indexed: 12/29/2022] Open
Abstract
Sepsis is a life-threatening syndrome induced by aberrant host response towards infection. The autophagy-lysosomal pathway (ALP) plays a fundamental role in maintaining cellular homeostasis and conferring organ protection. However, this pathway is often impaired in sepsis, resulting in dysregulated host response and organ dysfunction. Transcription factor EB (TFEB) is a master modulator of the ALP. TFEB promotes both autophagy and lysosomal biogenesis via transcriptional regulation of target genes bearing the coordinated lysosomal expression and regulation (CLEAR) motif. Recently, increasing evidences have linked TFEB and the TFEB dependent ALP with pathogenetic mechanisms and therapeutic implications in sepsis. Therefore, this review describes the existed knowledge about the mechanisms of TFEB activation in regulating the ALP and the evidences of their protection against sepsis, such as immune modulation and organ protection. In addition, TFEB activators with diversified pharmacological targets are summarized, along with recent advances of their potential therapeutic applications in treating sepsis.
Collapse
Affiliation(s)
- Xin Liu
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, China
| | - Xinchuan Zheng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Yongling Lu
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, China
| | - Qian Chen
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, China
| | - Jiang Zheng
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, China
| | - Hong Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
10
|
Pucci M, Aria F, Premoli M, Maccarinelli G, Mastinu A, Bonini S, Memo M, Uberti D, Abate G. Methylglyoxal affects cognitive behaviour and modulates RAGE and Presenilin-1 expression in hippocampus of aged mice. Food Chem Toxicol 2021; 158:112608. [PMID: 34656697 DOI: 10.1016/j.fct.2021.112608] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 12/12/2022]
Abstract
Methylglyoxal (MG), a potent glycotoxin that can be found in the diet, is one of the main precursors of Advanced glycation end products (AGEs). It is well known that modifications in lifestyle such as nutritional interventions can be of great value for preventing brain deterioration. This study aimed to evaluate in vivo how an oral MG treatment, that mimics a high MG dietary intake, could affect brain health. From our results, we demonstrated that MG administration affected working memory, and induced neuroinflammation and oxidative stress by modulating the Receptor for Advanced glycation end products (RAGE). The gene and protein expressions of RAGE were increased in the hippocampus of MG mice, an area where the activity of glyoxalase 1, one of the main enzymes involved in MG detoxification, was found reduced. Furthermore, at hippocampus level, MG mice showed increased expression of proinflammatory cytokines and increased activities of NADPH oxidase and catalase. MG administration also increased the gene and protein expressions of Presenilin-1, a subunit of the gamma-secretase protein complex linked to Alzheimer's disease. These findings suggest that high MG oral intake induces alteration directly in the brain and might establish an environment predisposing to AD-like pathological conditions.
Collapse
Affiliation(s)
- M Pucci
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - F Aria
- Department of Molecular and Translational Medicine, University of Brescia, Italy; Center for Neural Science, New York University, New York, United States
| | - M Premoli
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - G Maccarinelli
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - A Mastinu
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - S Bonini
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - M Memo
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - D Uberti
- Department of Molecular and Translational Medicine, University of Brescia, Italy; Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - G Abate
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| |
Collapse
|
11
|
Xiao J, Cai T, Fang Y, Liu R, Flores JJ, Wang W, Gao L, Liu Y, Lu Q, Tang L, Zhang JH, Lu H, Tang J. Activation of GPR40 attenuates neuroinflammation and improves neurological function via PAK4/CREB/KDM6B pathway in an experimental GMH rat model. J Neuroinflammation 2021; 18:160. [PMID: 34275493 PMCID: PMC8286626 DOI: 10.1186/s12974-021-02209-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Germinal matrix hemorrhage (GMH) is defined by the rupture of immature blood vessels in the germinal matrix, where subsequent hemorrhage enters the subependymal zone and the cerebral lateral ventricles. The consequent blood clot has been identified as the causative factor of secondary brain injury, which triggers a series of complex parallel and sequential harmful mechanisms, including neuroinflammation. The orphan G-protein-coupled receptor 40 (GPR40), a free fatty acid (FFA) receptor 1, has been shown to exert anti-inflammatory effects when activated and improved outcomes in animal models of stroke. We aimed to investigate the anti-inflammatory effects of GPR40 and its underlying mechanisms after GMH. METHODS GMH model was induced in 7-day-old rat pups by an intraparenchymal injection of bacterial collagenase. GPR40 agonist, GW9508, was administered intranasally 1 h, 25 h, and 49 h after GMH induction. CRISPR targeting GPR40, PAK4, and KDM6B were administered through intracerebroventricular injection 48 h before GMH induction. Neurologic scores, microglia polarization, and brain morphology were evaluated by negative geotaxis, right reflex, rotarod test, foot fault test, Morris water maze, immunofluorescence staining, Western blots, and nissl staining respectfully. RESULTS The results demonstrated that GW9508 improved neurological and morphological outcomes after GMH in the short (24 h, 48 h, 72h) and long-term (days 21-27). However, the neuroprotective effects of treatment were abolished by GW1100, a selective GPR40 antagonist. GW9508 treatment increased populations of M2 microglia and decreased M1 microglia in periventricular areas 24 h after GMH induction. GW9508 upregulated the phosphorylation of PAK4, CREB, and protein level of KDM6B, CD206, IL-10, which was also met with the downregulation of inflammatory markers IL-1β and TNF-α. The mechanism study demonstrated that the knockdown of GPR40, PAK4, and KDM6B reversed the neuroprotective effects brought on by GW9508. This evidence suggests that GPR40/PAK4/CREB/KDM6B signaling pathway in microglia plays a role in the attenuation of neuroinflammation after GMH. CONCLUSIONS In conclusion, the present study demonstrates that the activation of GPR40 attenuated GMH-induced neuroinflammation through the activation of the PAK4/CREB/KDM6B signaling pathway, and M2 microglia may be a major mediator of this effect. Thus, GPR40 may serve as a potential target in the reduction of the inflammatory response following GMH, thereby improving neurological outcomes in the short- and long-term.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Emergency, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, People's Republic of China
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - Tao Cai
- Department of Neurosurgery, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, People's Republic of China
| | - Yuanjian Fang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - Rui Liu
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - Jerry J Flores
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - Wenna Wang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - Ling Gao
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - Yu Liu
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - Qin Lu
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - Lihui Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
- Departments of Anesthesiology, Neurosurgery and Neurology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - Hongwei Lu
- Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, People's Republic of China.
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA.
| |
Collapse
|
12
|
Li T, Zhao J, Xie W, Yuan W, Guo J, Pang S, Gan WB, Gómez-Nicola D, Zhang S. Specific depletion of resident microglia in the early stage of stroke reduces cerebral ischemic damage. J Neuroinflammation 2021; 18:81. [PMID: 33757565 PMCID: PMC7986495 DOI: 10.1186/s12974-021-02127-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Ischemia can induce rapid activation of microglia in the brain. As key immunocompetent cells, reactive microglia play an important role in pathological development of ischemic stroke. However, the role of activated microglia during the development of ischemia remains controversial. Thus, we aimed to investigate the function of reactive microglia in the early stage of ischemic stroke. METHODS A Rose Bengal photothrombosis model was applied to induce targeted ischemic stroke in mice. CX3CR1CreER:R26iDTR mice were used to specifically deplete resident microglia through intragastric administration of tamoxifen (Ta) and intraperitoneal injection of diphtheria toxin (DT). At day 3 after ischemic stroke, behavioral tests were performed. After that, mouse brains were collected for further histological analysis and detection of mRNA expression of inflammatory factors. RESULTS The results showed that specific depletion of microglia resulted in a significant decrease in ischemic infarct volume and improved performance in motor ability 3 days after stroke. Microglial depletion caused a remarkable reduction in the densities of degenerating neurons and inducible nitric oxide synthase positive (iNOS+) cells. Importantly, depleting microglia induced a significant increase in the mRNA expression level of anti-inflammatory factors TGF-β1, Arg1, IL-10, IL-4, and Ym1 as well as a significant decline of pro-inflammatory factors TNF-α, iNOS, and IL-1β 3 days after stroke. CONCLUSIONS These results suggest that activated microglia is an important modulator of the brain's inflammatory response in stroke, contributing to neurological deficit and infarct expansion. Modulation of the inflammatory response through the elimination of microglia at a precise time point may be a promising therapeutic approach for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Ting Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu, 730000, People's Republic of China
| | - Jin Zhao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu, 730000, People's Republic of China
| | - Wenguang Xie
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu, 730000, People's Republic of China
| | - Wanru Yuan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu, 730000, People's Republic of China
| | - Jing Guo
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu, 730000, People's Republic of China
| | - Shengru Pang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu, 730000, People's Republic of China
| | - Wen-Biao Gan
- Molecular Neurobiology Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, USA.
| | - Diego Gómez-Nicola
- Centre for Biological Sciences, University of Southampton, South Lab and Path Block, Mail Point 840 LD80C, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK.
| | - Shengxiang Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu, 730000, People's Republic of China.
| |
Collapse
|
13
|
Long Noncoding RNA H19 Overexpression Protects against Hypoxic-Ischemic Brain Damage by Inhibiting miR-107 and Up-Regulating Vascular Endothelial Growth Factor. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:503-514. [PMID: 33608066 DOI: 10.1016/j.ajpath.2020.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/22/2020] [Accepted: 11/16/2020] [Indexed: 02/05/2023]
Abstract
Long noncoding RNAs play critical roles in cellular homeostasis, and long noncoding RNA H19 (H19) is implicated in several pathologic conditions. The putative role of H19 in the pathogenesis and progression of hypoxic-ischemic brain damage (HIBD) is not yet understood. Therefore, a series of in vivo and in vitro experiments were designed to investigate the potential roles of H19 in neuronal apoptosis and cognitive dysfunction in HIBD. H19 expression was decreased in HIBD rat models established by partial occlusion of carotid artery. H19 bound to and decreased the expression of miR-107, which also increased VEGF expression. H19 overexpression reduced neuronal apoptosis and alleviated cognitive dysfunction in HIBD rats. The up-regulation of miR-107 reversed the protective effects conferred by H19. In addition, the cell model of HIBD was established by oxygen-glucose deprivation in neuronal cells used. H19 overexpression in oxygen-glucose deprivation neurons increased B-cell lymphoma-2 and decreased B-cell lymphoma-2-associated X, total and cleaved caspase-3 expressions. Taken together, the results showed that H19 expresses at a low level in HIBD. H19 overexpression decreased miR-107 and increased VEGF expression, which resulted in repressed neuronal apoptosis and alleviated cognitive dysfunction. Thus, H19 may serve as a molecular target for translational research for HIBD therapy.
Collapse
|
14
|
Liu Y, Yu L, Xu Y, Tang X, Wang X. Substantia nigra Smad3 signaling deficiency: relevance to aging and Parkinson's disease and roles of microglia, proinflammatory factors, and MAPK. J Neuroinflammation 2020; 17:342. [PMID: 33198771 PMCID: PMC7670688 DOI: 10.1186/s12974-020-02023-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/02/2020] [Indexed: 02/08/2023] Open
Abstract
Background Smad3 signaling is indicated to regulate microglia activity. Parkinson’s disease (PD) neurodegeneration is shown to be associated with aging and neuroinflammation. However, it remains unclear about the relationship among Smad3 signaling, aging, neuroinflammation, and PD. Methods Rats were treated with SIS3 (a specific inhibitor of Smad3, intranigal injection) and/or lipopolysaccharide (intraperitoneal injection). We investigated the effect of SIS3 and lipopolysaccharide and their mechanism of action on motor behavior and nigrostriatal dopaminergic system in the rats. Furthermore, we explored the effect of SIS3 and LPS and their potential signaling mechanism of action on inflammatory response by using primary microglial cultures. Finally, we investigated the relationship among aging, Smad3 signaling, and neuroinflammation using animals of different ages. Results Both SIS3 and lipopolysaccharide induced significant behavior deficits and nigrostriatal dopaminergic neurodegeneration in the rats compared with the vehicle-treated (control) rats. Significantly increased behavior deficits and nigrostriatal dopaminergic neurodegeneration were observed in the rats co-treated with SIS3 and lipopolysaccharide compared with the rats treated with vehicle, SIS3, or lipopolysaccharide. Furthermore, both SIS3 and lipopolysaccharide induced significant microglia activation and proinflammatory factor (IL-1β, IL-6, iNOS, and ROS) level increase in the SN of rats compared with the control rats. Significantly enhanced microglial inflammatory response was observed in the rats co-treated with SIS3 and lipopolysaccharide compared with the other three groups. For our in vitro study, both SIS3 and lipopolysaccharide induced significant proinflammatory factor level increase in primary microglia cultures compared with the control cultures. Significantly increased inflammatory response was observed in the cultures co-treated with SIS3 and lipopolysaccharide compared with the other three groups. MAPK (ERK/p38) contributed to microglial inflammatory response induced by co-treatment with SIS3 and lipopolysaccharide. Interestingly, there was decrease in Smad3 and pSmad3 expression (protein) and enhancement of neuroinflammation in the mouse SN with aging. Proinflammatory factor levels were significantly inversely correlated with Smad3 and pSmad3 expression. Conclusion Our study strongly indicates the involvement of SN Smad3 signaling deficiency in aging and PD neurodegeneration and provides a novel molecular mechanism underlying the participation of aging in PD and helps to elucidate the mechanisms for the combined effect of multiple factors in PD.
Collapse
Affiliation(s)
- Ying Liu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, P.R. China
| | - Lijia Yu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, P.R. China
| | - Yaling Xu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, P.R. China
| | - Xiaohui Tang
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, P.R. China
| | - Xijin Wang
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, P.R. China.
| |
Collapse
|
15
|
Under construction: The dynamic assembly, maintenance, and degradation of the cardiac sarcomere. J Mol Cell Cardiol 2020; 148:89-102. [PMID: 32920010 DOI: 10.1016/j.yjmcc.2020.08.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/11/2022]
Abstract
The sarcomere is the basic contractile unit of striated muscle and is a highly ordered protein complex with the actin and myosin filaments at its core. Assembling the sarcomere constituents into this organized structure in development, and with muscle growth as new sarcomeres are built, is a complex process coordinated by numerous factors. Once assembled, the sarcomere requires constant maintenance as its continuous contraction is accompanied by elevated mechanical, thermal, and oxidative stress, which predispose proteins to misfolding and toxic aggregation. To prevent protein misfolding and maintain sarcomere integrity, the sarcomere is monitored by an assortment of protein quality control (PQC) mechanisms. The need for effective PQC is heightened in cardiomyocytes which are terminally differentiated and must survive for many years while preserving optimal mechanical output. To prevent toxic protein aggregation, molecular chaperones stabilize denatured sarcomere proteins and promote their refolding. However, when old and misfolded proteins cannot be salvaged by chaperones, they must be recycled via degradation pathways: the calpain and ubiquitin-proteasome systems, which operate under basal conditions, and the stress-responsive autophagy-lysosome pathway. Mutations to and deficiency of the molecular chaperones and associated factors charged with sarcomere maintenance commonly lead to sarcomere structural disarray and the progression of heart disease, highlighting the necessity of effective sarcomere PQC for maintaining cardiac function. This review focuses on the dynamic regulation of assembly and turnover at the sarcomere with an emphasis on the chaperones involved in these processes and describes the alterations to chaperones - through mutations and deficient expression - implicated in disease progression to heart failure.
Collapse
|
16
|
Lu J, Lu J, Chen Y, Feng Z, Liu S, Guan S. 3-Chloro-1, 2-propanediol inhibits autophagic flux by impairment of lysosomal function in HepG2 cells. Food Chem Toxicol 2020; 144:111575. [PMID: 32702505 DOI: 10.1016/j.fct.2020.111575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 01/30/2023]
Abstract
3-chloro-1, 2-propanediol (3-MCPD) is a well-known contaminant that was produced in the thermal processing of food. Dietary intake represents the greatest source of exposure to 3-MCPD. Autophagy is an important catabolic pathway that plays an important role in liver physiological function. Evidence suggests that 3-MCPD exposure causes toxicity in liver, but the mechanism remains unknown. Here, we explored the effects of 3-MCPD on autophagic flux and traced the molecular mechanism in HepG2 cells. The data showed 3-MCPD exposure promoted the accumulation of autophagosomes in HepG2 cells. Subsequently, by detected te expression of LC3-Ⅱ and P62 and transfection of mRFP-GFP-LC3 adenovirus, we found that the accumulation of autophagosomes was caused by inhibition of autophagic flux. After that, we investigate lysosomal function and found that 3-MCPD induced lysosomal alkalinization. Further, we detected the expression of TFEB, which is a key nuclear transcription factor in control of lysosome biogenesis and function. We found that 3-MCPD inhibited the nuclear expression of TFEB and mRNA levels of some target genes of TFEB. In order to further verify the role of TFEB in autophagic flux blockage in HepG2 cells induced by 3-MCPD, we overexpressed TFEB by transfection with adenovirus and found that both autophagy inhibition and lysosomal alkalization induced by 3-MCPD were alleviated. These results suggested that 3-MCPD could induce the autophagic flux blockage in HepG2 cells. The possible mechanism was due to the destruction of lysosomal function.
Collapse
Affiliation(s)
- Jing Lu
- College of Food Science and Engneering, Jilin University, Changchun, Jilin, 130062, People's Republic of China; Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Jianing Lu
- College of Food Science and Engneering, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Yan Chen
- College of Food Science and Engneering, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Zhe Feng
- College of Food Science and Engneering, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Shuang Liu
- College of Food Science and Engneering, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Shuang Guan
- College of Food Science and Engneering, Jilin University, Changchun, Jilin, 130062, People's Republic of China; Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China.
| |
Collapse
|
17
|
Islam M, Diwan A, Mani K. Come Together: Protein Assemblies, Aggregates and the Sarcostat at the Heart of Cardiac Myocyte Homeostasis. Front Physiol 2020; 11:586. [PMID: 32581848 PMCID: PMC7287178 DOI: 10.3389/fphys.2020.00586] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
Homeostasis in vertebrate systems is contingent on normal cardiac function. This, in turn, depends on intricate protein-based cellular machinery, both for contractile function, as well as, durability of cardiac myocytes. The cardiac small heat shock protein (csHsp) chaperone system, highlighted by αB-crystallin (CRYAB), a small heat shock protein (sHsp) that forms ∼3–5% of total cardiac mass, plays critical roles in maintaining proteostatic function via formation of self-assembled multimeric chaperones. In this work, we review these ancient proteins, from the evolutionarily preserved role of homologs in protists, fungi and invertebrate systems, as well as, the role of sHsps and chaperones in maintaining cardiac myocyte structure and function. We propose the concept of the “sarcostat” as a protein quality control mechanism in the sarcomere. The roles of the proteasomal and lysosomal proteostatic network, as well as, the roles of the aggresome, self-assembling protein complexes and protein aggregation are discussed in the context of cardiac myocyte homeostasis. Finally, we will review the potential for targeting the csHsp system as a novel therapeutic approach to prevent and treat cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Moydul Islam
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO, United States.,Department of Chemistry, Washington University in St. Louis, St. Louis, MO, United States
| | - Abhinav Diwan
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO, United States.,John Cochran Veterans Affairs Medical Center, St. Louis, MO, United States
| | - Kartik Mani
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO, United States.,John Cochran Veterans Affairs Medical Center, St. Louis, MO, United States
| |
Collapse
|
18
|
Ma WX, Li CY, Tao R, Wang XP, Yan LJ. Reductive Stress-Induced Mitochondrial Dysfunction and Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5136957. [PMID: 32566086 PMCID: PMC7277050 DOI: 10.1155/2020/5136957] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/26/2020] [Accepted: 05/12/2020] [Indexed: 02/05/2023]
Abstract
The goal of this review was to summarize reported studies focusing on cellular reductive stress-induced mitochondrial dysfunction, cardiomyopathy, dithiothreitol- (DTT-) induced reductive stress, and reductive stress-related free radical reactions published in the past five years. Reductive stress is considered to be a double-edged sword in terms of antioxidation and disease induction. As many underlying mechanisms are still unclear, further investigations are obviously warranted. Nonetheless, reductive stress is thought to be caused by elevated levels of cellular reducing power such as NADH, glutathione, and NADPH; and this area of research has attracted increasing attention lately. Albeit, we think there is a need to conduct further studies in identifying more indicators of the risk assessment and prevention of developing heart damage as well as exploring more targets for cardiomyopathy treatment. Hence, it is expected that further investigation of underlying mechanisms of reductive stress-induced mitochondrial dysfunction will provide novel insights into therapeutic approaches for ameliorating reductive stress-induced cardiomyopathy.
Collapse
Affiliation(s)
- Wei-Xing Ma
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center (UNTHSC), Fort Worth, Texas 76107, USA
- Qingdao University of Science and Technology, 266042 Qingdao, Shandong, China
| | - Chun-Yan Li
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center (UNTHSC), Fort Worth, Texas 76107, USA
- Shantou University Medical College, 515041 Shantou, Guangdong, China
| | - Ran Tao
- Qingdao Municipal Center for Disease Control & Prevention, 266034 Qingdao, Shandong, China
| | - Xin-Ping Wang
- Qingdao University of Science and Technology, 266042 Qingdao, Shandong, China
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center (UNTHSC), Fort Worth, Texas 76107, USA
| |
Collapse
|
19
|
Shan HM, Zang M, Zhang Q, Shi RB, Shi XJ, Mamtilahun M, Liu C, Luo LL, Tian X, Zhang Z, Yang GY, Tang Y, Pu J, Wang Y. Farnesoid X receptor knockout protects brain against ischemic injury through reducing neuronal apoptosis in mice. J Neuroinflammation 2020; 17:164. [PMID: 32450881 PMCID: PMC7249620 DOI: 10.1186/s12974-020-01838-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
Background Farnesoid X receptor (FXR) is a nuclear receptor that plays a critical role in controlling cell apoptosis in diverse diseases. Previous studies have shown that knocking out FXR improved cardiac function by reducing cardiomyocyte apoptosis in myocardial ischemic mice. However, the role of FXR after cerebral ischemia remains unknown. In this study, we explored the effects and mechanisms of FXR knockout (KO) on the functional recovery of mice post cerebral ischemia-reperfusion. Methods Adult male C57BL/6 wild type and FXR KO mice were subjected to 90-min transient middle cerebral artery occlusion (tMCAO). The mice were divided into five groups: sham, wild-type tMCAO, FXR KO tMCAO, wild-type tMCAO treated with calcium agonist Bayk8644, and FXR KO tMCAO treated with Bayk8644. FXR expression was examined using immunohistochemistry and Western blot. Brain infarct and brain atrophy volume were examined at 3 and 14 days after stroke respectively. Neurobehavioral tests were conducted up to 14 days after stroke. The protein levels of apoptotic factors (Bcl-2, Bax, and Cleaved caspase-3) and mRNA levels of pro-inflammatory factors (TNF-α, IL-6, IL-1β, IL-17, and IL-18) were examined using Western blot and RT-PCR. TUNEL staining and calcium imaging were obtained using confocal and two-photon microscopy. Results The expression of FXR was upregulated after ischemic stroke, which is located in the nucleus of the neurons. FXR KO was found to reduce infarct volume and promote neurobehavioral recovery following tMCAO compared to the vehicle. The expression of apoptotic and pro-inflammatory factors decreased in FXR KO mice compared to the control. The number of NeuN+/TUNEL+ cells declined in the peri-infarct area of FXR KO mice compared to the vehicle. We further demonstrated that inhibition of FXR reduced calcium overload and addition of ionomycin could reverse this neuroprotective effect in vitro. What is more, in vivo results showed that enhancement of intracellular calcium concentrations could aggravate ischemic injury and reverse the neuroprotective effect of FXR KO in mice. Conclusions FXR KO can promote neurobehavioral recovery and attenuate ischemic brain injury, inflammatory release, and neuronal apoptosis via reducing calcium influx, suggesting its role as a therapeutic target for stroke treatments.
Collapse
Affiliation(s)
- Hui-Min Shan
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Minhua Zang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai, 200127, China
| | - Qi Zhang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Ru-Bing Shi
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Xiao-Jing Shi
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Muyassar Mamtilahun
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Chang Liu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Long-Long Luo
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Xiaoying Tian
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Zhijun Zhang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Guo-Yuan Yang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Yaohui Tang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China.
| | - Jun Pu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai, 200127, China.
| | - Yongting Wang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China.
| |
Collapse
|
20
|
Pan B, Li J, Parajuli N, Tian Z, Wu P, Lewno MT, Zou J, Wang W, Bedford L, Mayer RJ, Fang J, Liu J, Cui T, Su H, Wang X. The Calcineurin-TFEB-p62 Pathway Mediates the Activation of Cardiac Macroautophagy by Proteasomal Malfunction. Circ Res 2020; 127:502-518. [PMID: 32366200 DOI: 10.1161/circresaha.119.316007] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RATIONALE The ubiquitin-proteasome system (UPS) and the autophagic-lysosomal pathway are pivotal to proteostasis. Targeting these pathways is emerging as an attractive strategy for treating cancer. However, a significant proportion of patients who receive a proteasome inhibitor-containing regime show cardiotoxicity. Moreover, UPS and autophagic-lysosomal pathway defects are implicated in cardiac pathogenesis. Hence, a better understanding of the cross-talk between the 2 catabolic pathways will help advance cardiac pathophysiology and medicine. OBJECTIVE Systemic proteasome inhibition (PSMI) was shown to increase p62/SQSTM1 expression and induce myocardial macroautophagy. Here we investigate how proteasome malfunction activates cardiac autophagic-lysosomal pathway. METHODS AND RESULTS Myocardial macroautophagy, TFEB (transcription factor EB) expression and activity, and p62 expression were markedly increased in mice with either cardiomyocyte-restricted ablation of Psmc1 (an essential proteasome subunit gene) or pharmacological PSMI. In cultured cardiomyocytes, PSMI-induced increases in TFEB activation and p62 expression were blunted by pharmacological and genetic calcineurin inhibition and by siRNA-mediated Molcn1 silencing. PSMI induced remarkable increases in myocardial autophagic flux in wild type mice but not p62 null (p62-KO) mice. Bortezomib-induced left ventricular wall thickening and diastolic malfunction was exacerbated by p62 deficiency. In cultured cardiomyocytes from wild type mice but not p62-KO mice, PSMI induced increases in LC3-II flux and the lysosomal removal of ubiquitinated proteins. Myocardial TFEB activation by PSMI as reflected by TFEB nuclear localization and target gene expression was strikingly less in p62-KO mice compared with wild type mice. CONCLUSIONS (1) The activation of cardiac macroautophagy by proteasomal malfunction is mediated by the Mocln1-calcineurin-TFEB-p62 pathway; (2) p62 unexpectedly exerts a feed-forward effect on TFEB activation by proteasome malfunction; and (3) targeting the Mcoln1 (mucolipin1)-calcineurin-TFEB-p62 pathway may provide new means to intervene cardiac autophagic-lysosomal pathway activation during proteasome malfunction.
Collapse
Affiliation(s)
- Bo Pan
- From the Division of Basic Biomedical Sciences, University of South Dakota, Sanford School of Medicine, Vermillion (B.P., J. Li, N.P., Z.T., P.W., M.T.L., H.S., X.W.)
| | - Jie Li
- From the Division of Basic Biomedical Sciences, University of South Dakota, Sanford School of Medicine, Vermillion (B.P., J. Li, N.P., Z.T., P.W., M.T.L., H.S., X.W.).,Vascular Biology Center and Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University (J. Li, J.Z., W.W., H.S.)
| | - Nirmal Parajuli
- From the Division of Basic Biomedical Sciences, University of South Dakota, Sanford School of Medicine, Vermillion (B.P., J. Li, N.P., Z.T., P.W., M.T.L., H.S., X.W.)
| | - Zongwen Tian
- From the Division of Basic Biomedical Sciences, University of South Dakota, Sanford School of Medicine, Vermillion (B.P., J. Li, N.P., Z.T., P.W., M.T.L., H.S., X.W.).,Department of Anatomy, Wuhan University College of Basic Medical Sciences, Hubei, China (Z.T.)
| | - Penglong Wu
- From the Division of Basic Biomedical Sciences, University of South Dakota, Sanford School of Medicine, Vermillion (B.P., J. Li, N.P., Z.T., P.W., M.T.L., H.S., X.W.).,Guangzhou Institute of Oncology, Tumor Hospital, Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangdong, China (P.W., W.W., J. Liu)
| | - Megan T Lewno
- From the Division of Basic Biomedical Sciences, University of South Dakota, Sanford School of Medicine, Vermillion (B.P., J. Li, N.P., Z.T., P.W., M.T.L., H.S., X.W.)
| | - Jianqiu Zou
- Vascular Biology Center and Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University (J. Li, J.Z., W.W., H.S.)
| | - Wenjuan Wang
- Vascular Biology Center and Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University (J. Li, J.Z., W.W., H.S.).,Guangzhou Institute of Oncology, Tumor Hospital, Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangdong, China (P.W., W.W., J. Liu)
| | - Lynn Bedford
- School of Life Sciences, University of Nottingham, United Kingdom (L.B.)
| | - R John Mayer
- The University of Nottingham Medical School, Queen's Medical Centre, United Kingdom (R.J.M.)
| | - Jing Fang
- Department of Drug Discovery and Biomedical Sciences (J.F.), University of South Carolina College of Pharmacy, Columbia
| | - Jinbao Liu
- Guangzhou Institute of Oncology, Tumor Hospital, Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangdong, China (P.W., W.W., J. Liu)
| | - Taixing Cui
- Department of Anatomy and Cell Biology (T.C.), University of South Carolina College of Pharmacy, Columbia
| | - Huabo Su
- From the Division of Basic Biomedical Sciences, University of South Dakota, Sanford School of Medicine, Vermillion (B.P., J. Li, N.P., Z.T., P.W., M.T.L., H.S., X.W.).,Vascular Biology Center and Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University (J. Li, J.Z., W.W., H.S.)
| | - Xuejun Wang
- From the Division of Basic Biomedical Sciences, University of South Dakota, Sanford School of Medicine, Vermillion (B.P., J. Li, N.P., Z.T., P.W., M.T.L., H.S., X.W.)
| |
Collapse
|
21
|
Silencing of circFoxO3 Protects HT22 Cells from Glutamate-Induced Oxidative Injury via Regulating the Mitochondrial Apoptosis Pathway. Cell Mol Neurobiol 2020; 40:1231-1242. [PMID: 32140899 DOI: 10.1007/s10571-020-00817-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 02/17/2020] [Indexed: 12/23/2022]
Abstract
Recent studies demonstrated that FoxO3 circular RNA (circFoxO3) plays an important regulatory role in tumourigenesis and cardiomyopathy. However, the role of circFoxO3 in neurodegenerative diseases remains unknown. The aim of this study was to examine the possible role of circFoxO3 in neurodegenerative diseases and the underlying mechanisms. To model human neurodegenerative conditions, hippocampus-derived neurons were treated with glutamate. Using molecular and cellular biology approaches, we found that circFoxO3 expression was significantly higher in the glutamate treatment group than that in the control group. Furthermore, silencing of circFoxO3 protected HT22 cells from glutamate-induced oxidative injury through the inhibition of the mitochondrial apoptotic pathway. Collectively, our study demonstrates that endogenous circFoxO3 plays a key role in inducing apoptosis and neuronal cell death and may act as a novel therapeutic target for neurodegenerative diseases.
Collapse
|