1
|
Muhsen IN, Zubair AC, Niederwieser T, Hashmi SK. Space exploration and cancer: the risks of deeper space adventures. Leukemia 2024; 38:1872-1875. [PMID: 38969730 DOI: 10.1038/s41375-024-02298-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/06/2024] [Accepted: 05/29/2024] [Indexed: 07/07/2024]
Affiliation(s)
- Ibrahim N Muhsen
- Section of Hematology and Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Abba C Zubair
- Department of Laboratory Medicine and Pathology, Jacksonville, FL, USA
- Sheikh Shakhbout Medical City-Mayo Clinic Joint Venture, Abu Dhabi, UAE
| | - Tobias Niederwieser
- University of Colorado Boulder, Ann and H.J. Smead Department of Aerospace Engineering Sciences, BioServe Space Technologies, 429 UCB, Boulder, CO, 80309, USA
| | - Shahrukh K Hashmi
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Medicine, Sheikh Shakbout Medical City, Abu Dhabi, UAE.
- Medical and Clinical Affairs, Khalifa University, Abu Dhabi, UAE.
| |
Collapse
|
2
|
Li J, Kunze B, Gössel L, Krebs S, Dreimann M. A new etiology of nontraumatic C0-C1-C2-Complex instability - abnormality of musculus rectus capitis posterior minor: a case report. Arch Orthop Trauma Surg 2024; 144:1969-1976. [PMID: 38554204 DOI: 10.1007/s00402-024-05275-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/06/2024] [Indexed: 04/01/2024]
Abstract
PURPOSE This study presents an abnormality of the musculus rectus capitis posterior minor (RCPmi) as a new etiological factor for nontraumatic sagittal plane instability in the C0-C1-C2-complex, with a focus on identifying the absence or atrophy of RCPmi on both sides. METHODS A 36-year-old male patient presented with recurring neck pain (VAS 8/10) and tingling paresthesia in the entire left hand over a six-month period, without significant neurological deficits. Radiated arm pain was not reported. Imaging examinations revealed sagittal plane instability in the C0-C1-C2-complex, spinal canal stenosis (SCS), and myelopathy at the C1 level. Subsequently, a dorsal C0-1 reposition and fusion with laminectomy were performed. RESULTS The congenital absence or atrophy of RCPmi, leading to the lack of cephalad-rearward traction on the C1-tuberculum-posterius, induced a developmental failure of the C1 posterior arch. Consequently, the oblate-shaped C1 posterior arch lost support from the underlying C2 posterior arch and the necessary cephalad-rearward traction throughout the patient's 36-year life. This gradual loss of support and traction caused the C1 posterior arch to shift gradually to the anterior side of the C2 posterior arch, resulting in a rotational subluxation centered on the C0/1 joints in the sagittal plane. Ultimately, this led to SCS and myelopathy. Traumatic factors were ruled out from birth to the present, and typical degenerative changes were not found in the upper cervical spine, neck muscles, and ligaments. CONCLUSION In this case, we not only report the atrophy or absence of RCPmi as a new etiological factor for nontraumatic sagittal plane instability in the C0-C1-C2-complex but also discovered a new function of RCPmi. The cephalad-rearward traction exerted by RCPmi on the C1 posterior arch is essential for the development of a normal C1 anterior-posterior diameter.
Collapse
Affiliation(s)
- Jun Li
- Spine center for neuroorthopaedics, spinal cord injuries and scoliosis, RKH Orthopedic Clinic Markgröningen gGmbH, Markgröningen, Germany.
| | - Beate Kunze
- Spine center for neuroorthopaedics, spinal cord injuries and scoliosis, RKH Orthopedic Clinic Markgröningen gGmbH, Markgröningen, Germany
| | - Lutz Gössel
- Spine center for neuroorthopaedics, spinal cord injuries and scoliosis, RKH Orthopedic Clinic Markgröningen gGmbH, Markgröningen, Germany
| | - Stefan Krebs
- Spine center for neuroorthopaedics, spinal cord injuries and scoliosis, RKH Orthopedic Clinic Markgröningen gGmbH, Markgröningen, Germany
| | - Marc Dreimann
- Spine center for neuroorthopaedics, spinal cord injuries and scoliosis, RKH Orthopedic Clinic Markgröningen gGmbH, Markgröningen, Germany
| |
Collapse
|
3
|
Maślanka K, Zielinska N, Karauda P, Balcerzak A, Georgiev G, Borowski A, Drobniewski M, Olewnik Ł. Congenital, Acquired, and Trauma-Related Risk Factors for Thoracic Outlet Syndrome-Review of the Literature. J Clin Med 2023; 12:6811. [PMID: 37959276 PMCID: PMC10648912 DOI: 10.3390/jcm12216811] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Thoracic outlet syndrome is a group of disorders that affect the upper extremity and neck, resulting in compression of the neurovascular bundle that exits the thoracic outlet. Depending on the type of compressed structure, the arterial, venous, and neurogenic forms of TOS are distinguished. In some populations, e.g., in certain groups of athletes, some sources report incidence rates as high as about 80 cases per 1000 people, while in the general population, it is equal to 2-4 per 1000. Although the pathogenesis of this condition appears relatively simple, there are a very large number of overlapping risk factors that drive such a high incidence in certain risk groups. Undoubtedly, a thorough knowledge of them and their etiology is essential to estimate the risk of TOS or make a quick and accurate diagnosis.
Collapse
Affiliation(s)
- Krystian Maślanka
- Department of Anatomical Dissection and Donation, Medical University of Lodz, 90-419 Lodz, Poland; (K.M.); (N.Z.); (P.K.); (A.B.)
| | - Nicol Zielinska
- Department of Anatomical Dissection and Donation, Medical University of Lodz, 90-419 Lodz, Poland; (K.M.); (N.Z.); (P.K.); (A.B.)
| | - Piotr Karauda
- Department of Anatomical Dissection and Donation, Medical University of Lodz, 90-419 Lodz, Poland; (K.M.); (N.Z.); (P.K.); (A.B.)
| | - Adrian Balcerzak
- Department of Anatomical Dissection and Donation, Medical University of Lodz, 90-419 Lodz, Poland; (K.M.); (N.Z.); (P.K.); (A.B.)
| | - Georgi Georgiev
- Department of Orthopaedics and Traumatology, University Hospital Queen Giovanna—ISUL, Medical University of Sofia, 1527 Sofia, Bulgaria;
| | - Andrzej Borowski
- Orthopaedics and Paediatric Orthopaedics Department, Medical University of Lodz, 90-419 Lodz, Poland; (A.B.); (M.D.)
| | - Marek Drobniewski
- Orthopaedics and Paediatric Orthopaedics Department, Medical University of Lodz, 90-419 Lodz, Poland; (A.B.); (M.D.)
| | - Łukasz Olewnik
- Department of Anatomical Dissection and Donation, Medical University of Lodz, 90-419 Lodz, Poland; (K.M.); (N.Z.); (P.K.); (A.B.)
| |
Collapse
|
4
|
Swanenburg J, Easthope CA, Meinke A, Langenfeld A, Green DA, Schweinhardt P. Lunar and mars gravity induce similar changes in spinal motor control as microgravity. Front Physiol 2023; 14:1196929. [PMID: 37565140 PMCID: PMC10411353 DOI: 10.3389/fphys.2023.1196929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction: Once more, plans are underway to send humans to the Moon or possibly even to Mars. It is therefore, important to know potential physiological effects of a prolonged stay in space and to minimize possible health risks to astronauts. It has been shown that spinal motor control strategies change during microgravity induced by parabolic flight. The way in which spinal motor control strategies change during partial microgravity, such as that encountered on the Moon and on Mars, is not known. Methods: Spinal motor control measurements were performed during Earth, lunar, Mars, and micro-gravity conditions and two hypergravity conditions of a parabola. Three proxy measures of spinal motor control were recorded: spinal stiffness of lumbar L3 vertebra using the impulse response, muscle activity of lumbar flexors and extensors using surface electromyography, and lumbar curvature using two curvature distance sensors placed at the upper and lower lumbar spine. The participants were six females and six males, with a mean age of 33 years (standard deviation: 7 years). Results: Gravity condition had a statistically significant (Friedmann tests) effect spinal stiffness (p < 0.001); on EMG measures (multifidus (p = 0.047), transversus abdominis (p < 0.001), and psoas (p < 0.001) muscles) and on upper lumbar curvature sensor (p < 0.001). No effect was found on the erector spinae muscle (p = 0.063) or lower curvature sensor (p = 0.170). Post hoc tests revealed a significant increase in stiffness under micro-, lunar-, and Martian gravity conditions (all p's < 0.034). Spinal stiffness decreased under both hypergravity conditions (all p's ≤ 0.012) and decreased during the second hypergravity compared to the first hypergravity condition (p = 0.012). Discussion: Micro-, lunar-, and Martian gravity conditions resulted in similar increases in spinal stiffness, a decrease in transversus abdominis muscle activity, with no change in psoas muscle activity and thus modulation of spinal motor stabilization strategy compared to those observed under Earth's gravity. These findings suggest that the spine is highly sensitive to gravity transitions but that Lunar and Martian gravity are below that required for normal modulation of spinal motor stabilization strategy and thus may be associated with LBP and/or IVD risk without the definition of countermeasures.
Collapse
Affiliation(s)
- Jaap Swanenburg
- Department of Chiropractic Medicine, Integrative Spinal Research ISR, Balgrist University Hospital, Zürich, Switzerland
- Faculty of Medicine, Institute of Anatomy, University of Zurich, Zurich, Switzerland
- Innovation Cluster Space and Aviation (UZH Space Hub), Air Force Center, University of Zurich, Dübendorf, Switzerland
| | - Christopher A. Easthope
- Cereneo—Center for Interdisciplinary Research, Vitznau, Switzerland
- Lake Lucerne Institute, Vitznau, Switzerland
| | - Anita Meinke
- Department of Chiropractic Medicine, Integrative Spinal Research ISR, Balgrist University Hospital, Zürich, Switzerland
| | - Anke Langenfeld
- Department of Chiropractic Medicine, Integrative Spinal Research ISR, Balgrist University Hospital, Zürich, Switzerland
| | - David A. Green
- Centre of Human and Applied Physiological Sciences, King’s College London, London, United Kingdom
- Space Medicine Team, European Astronaut Centre, European Space Agency, Cologne, Germany
- KBRwyle GmbH, Cologne, Germany
| | - Petra Schweinhardt
- Department of Chiropractic Medicine, Integrative Spinal Research ISR, Balgrist University Hospital, Zürich, Switzerland
| |
Collapse
|
5
|
Fu C, Chin-Young B, Park G, Guzmán-Seda M, Laudier D, Han WM. WNT7A suppresses adipogenesis of skeletal muscle mesenchymal stem cells and fatty infiltration through the alternative Wnt-Rho-YAP/TAZ signaling axis. Stem Cell Reports 2023; 18:999-1014. [PMID: 37001514 PMCID: PMC10147829 DOI: 10.1016/j.stemcr.2023.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 04/03/2023] Open
Abstract
Intramuscular fatty infiltration in muscle injuries and diseases, caused by aberrant adipogenesis of fibro-adipogenic progenitors, negatively impacts function. Intramuscular delivery of wingless-type MMTV integration site family 7a (WNT7A) offers a promising strategy to stimulate muscle regeneration, but its effects on adipogenic conversion of fibro-adipogenic progenitors remain unknown. Here, we show that WNT7A decreases adipogenesis of fibro-adipogenic progenitors (FAPs) by inducing nuclear localization of Yes-associated protein (YAP) through Rho in a β-CATENIN-independent manner and by promoting nuclear retention of YAP and transcriptional co-activator with PDZ-binding motif (TAZ) in differentiating FAPs. Furthermore, intramuscular injection of WNT7A in vivo effectively suppresses fatty infiltration in mice following glycerol-induced injury. Our results collectively suggest WNT7A as a potential protein-based therapeutic for diminishing adipogenesis of FAPs and intramuscular fatty infiltration in pathological muscle injuries or diseases.
Collapse
Affiliation(s)
- Chengcheng Fu
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Britney Chin-Young
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - GaYoung Park
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mariana Guzmán-Seda
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Biomedical Engineering, Polytechnic University of Puerto Rico, San Juan, PR, USA
| | - Damien Laudier
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Woojin M Han
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
Lalwala M, Devane KS, Koya B, Hsu FC, Gayzik FS, Weaver AA. Sensitivity Analysis for Multidirectional Spaceflight Loading and Muscle Deconditioning on Astronaut Response. Ann Biomed Eng 2023; 51:430-442. [PMID: 36018394 DOI: 10.1007/s10439-022-03054-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/05/2022] [Indexed: 01/25/2023]
Abstract
A sensitivity analysis for loading conditions and muscle deconditioning on astronaut response for spaceflight transient accelerations was carried out using a mid-size male human body model with active musculature. The model was validated in spaceflight-relevant 2.5-15 g loading magnitudes in seven volunteer tests, showing good biofidelity (CORA: 0.69). Sensitivity analysis was carried out in simulations varying pulse magnitude (5, 10, and 15 g), rise time (32.5 and 120 ms), and direction (10 directions: frontal, rear, vertical, lateral, and their combination) along with muscle size change (± 15% change) and responsiveness (pre-braced, relaxed, vs. delayed response) changes across 600 simulations. Injury metrics were most sensitive to the loading direction (50%, partial-R2) and least sensitive to muscle size changes (0.2%). The pulse magnitude also had significant effect on the injury metrics (16%), whereas muscle responsiveness (3%) and pulse rise time (2%) had only slight effects. Frontal and upward loading directions were the worst for neck, spine, and lower extremity injury metrics, whereas rear and downward directions were the worst for head injury metrics. Higher magnitude pulses and pre-bracing also increased the injury risk.
Collapse
Affiliation(s)
- Mitesh Lalwala
- Department of Biomedical Engineering, Wake Forest University School of Medicine, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
- Virginia Tech-Wake Forest Center for Injury Biomechanics, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
| | - Karan S Devane
- Department of Biomedical Engineering, Wake Forest University School of Medicine, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
- Virginia Tech-Wake Forest Center for Injury Biomechanics, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
| | - Bharath Koya
- Department of Biomedical Engineering, Wake Forest University School of Medicine, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
- Virginia Tech-Wake Forest Center for Injury Biomechanics, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, 525 Vine Street, Winston-Salem, NC, 27101, USA
| | - F Scott Gayzik
- Department of Biomedical Engineering, Wake Forest University School of Medicine, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
- Virginia Tech-Wake Forest Center for Injury Biomechanics, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
| | - Ashley A Weaver
- Department of Biomedical Engineering, Wake Forest University School of Medicine, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA.
- Virginia Tech-Wake Forest Center for Injury Biomechanics, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
7
|
Arbeille P, Greaves D, Guillon L, Hughson RL. 4 days in dry immersion increases arterial wall response to ultrasound wave as measured using radio-frequency signal, comparison with spaceflight data. Front Physiol 2022; 13:983837. [DOI: 10.3389/fphys.2022.983837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Recent studies have reported a significant increase in common carotid artery (CCA) intima media thickness, wall stiffness and reflectivity to ultrasound, in astronauts, after six months of spaceflight. The hypothesis was that 4 days in dry immersion (subjects under bags of water) will be sufficient to change the CCA wall reflectivity to ultrasound similar to what observed after spaceflight. Such response would be quantified using the amplitude of the ultrasound signal returned to the probe by the target concerned. [coefficient of signal return (Rs)]. The Rs for anterior and posterior CCA wall, sternocleidomastoid muscle, intima layer and CCA lumen were calculated from the ultrasound radio frequency (RF) data displayed along each echographic line. After four days of DI, Rs increased in the CCA posterior wall (+15% +/- 10 from pre DI, p < 0.05), while no significant change was observed in the other targets. The observed increase in Rs with DI was approximately half compared to what was observed after six months of space flight (+34% +/- 14). This difference may be explained by dose response (dry immersion only four days in duration). As a marker of tissue-level physical changes, Rs provide complimentary information alongside previously observed CCA wall thickness and stiffness.
Collapse
|
8
|
Frett T, Lecheler L, Speer M, Marcos D, Pesta D, Tegtbur U, Schmitz MT, Jordan J, Green DA. Comparison of trunk muscle exercises in supine position during short arm centrifugation with 1 g at centre of mass and upright in 1 g. Front Physiol 2022; 13:955312. [PMID: 36060705 PMCID: PMC9428406 DOI: 10.3389/fphys.2022.955312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/26/2022] [Indexed: 12/02/2022] Open
Abstract
Spaceflight is associated with reduced antigravitational muscle activity, which results in trunk muscle atrophy and may contribute to post-flight postural and spinal instability. Exercise in artificial gravity (AG) performed via short-arm human centrifugation (SAHC) is a promising multi-organ countermeasure, especially to mitigate microgravity-induced postural muscle atrophy. Here, we compared trunk muscular activity (mm. rectus abdominis, ext. obliques and multifidi), cardiovascular response and tolerability of trunk muscle exercises performed during centrifugation with 1 g at individual center of mass on a SAHC against standard upright exercising. We recorded heart rate, blood pressure, surface trunk muscle activity, motion sickness and rating of perceived exertion (BORG) of 12 participants (8 male/4 female, 34 ± 7 years, 178.4 ± 8.2 cm, 72.1 ± 9.6 kg). Heart rate was significantly increased (p < 0.001) during exercises without differences in conditions. Systolic blood pressure was higher (p < 0.001) during centrifugation with a delayed rise during exercises in upright condition. Diastolic blood pressure was lower in upright (p = 0.018) compared to counter-clockwise but not to clockwise centrifugation. Target muscle activation were comparable between conditions, although activity of multifidi was lower (clockwise: p = 0.003, counter-clockwise: p < 0.001) and rectus abdominis were higher (clockwise: p = 0.0023, counter-clockwise: < 0.001) during centrifugation in one exercise type. No sessions were terminated, BORG scoring reflected a relevant training intensity and no significant increase in motion sickness was reported during centrifugation. Thus, exercising trunk muscles during centrifugation generates comparable targeted muscular and heart rate response and appears to be well tolerated. Differences in blood pressure were relatively minor and not indicative of haemodynamic challenge. SAHC-based muscle training is a candidate to reduce microgravity-induced inter-vertebral disc pathology and trunk muscle atrophy. However, further optimization is required prior to performance of a training study for individuals with trunk muscle atrophy/dysfunction.
Collapse
Affiliation(s)
- Timo Frett
- German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
- *Correspondence: Timo Frett,
| | - Leopold Lecheler
- German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | | | | | - Dominik Pesta
- German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Uwe Tegtbur
- Hannover Medical School, Institutes of Sports Medicine, Hannover, Germany
| | - Marie-Therese Schmitz
- German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
- Informatics and Epidemiology, Institute of Medical Biometry, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jens Jordan
- German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
- Chair of Aerospace Medicine, University of Cologne, Cologne, Germany
| | - David Andrew Green
- European Space Agency, Cologne, Germany
- King’s College London, London, United Kingdom
- Space Medicine Team, European Astronaut Centre, European Space Agency, Cologne, Germany
- KBRwyle GmbH, Cologne, Germany
| |
Collapse
|
9
|
Tran V, De Martino E, Hides J, Cable G, Elliott JM, Hoggarth M, Zange J, Lindsay K, Debuse D, Winnard A, Beard D, Cook JA, Salomoni SE, Weber T, Scott J, Hodges PW, Caplan N. Gluteal Muscle Atrophy and Increased Intramuscular Lipid Concentration Are Not Mitigated by Daily Artificial Gravity Following 60-Day Head-Down Tilt Bed Rest. Front Physiol 2021; 12:745811. [PMID: 34867450 PMCID: PMC8634875 DOI: 10.3389/fphys.2021.745811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/13/2021] [Indexed: 11/27/2022] Open
Abstract
Exposure to spaceflight and head-down tilt (HDT) bed rest leads to decreases in the mass of the gluteal muscle. Preliminary results have suggested that interventions, such as artificial gravity (AG), can partially mitigate some of the physiological adaptations induced by HDT bed rest. However, its effect on the gluteal muscles is currently unknown. This study investigated the effects of daily AG on the gluteal muscles during 60-day HDT bed rest. Twenty-four healthy individuals participated in the study: eight received 30 min of continuous AG; eight received 6 × 5 min of AG, interspersed with rest periods; eight belonged to a control group. T1-weighted Dixon magnetic resonance imaging of the hip region was conducted at baseline and day 59 of HDT bed rest to establish changes in volumes and intramuscular lipid concentration (ILC). Results showed that, across groups, muscle volumes decreased by 9.2% for gluteus maximus (GMAX), 8.0% for gluteus medius (GMED), and 10.5% for gluteus minimus after 59-day HDT bed rest (all p < 0.005). The ILC increased by 1.3% for GMAX and 0.5% for GMED (both p < 0.05). Neither of the AG protocols mitigated deconditioning of the gluteal muscles. Whereas all gluteal muscles atrophied, the ratio of lipids to intramuscular water increased only in GMAX and GMED muscles. These changes could impair the function of the hip joint and increased the risk of falls. The deconditioning of the gluteal muscles in space may negatively impact the hip joint stability of astronauts when reexpose to terrestrial gravity.
Collapse
Affiliation(s)
- Vienna Tran
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Enrico De Martino
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Julie Hides
- School of Health Sciences and Social Work, Griffith University, Brisbane, QLD, Australia
| | - Gordon Cable
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - James M. Elliott
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Faculty of Medicine and Health, The Kolling Research Institute Sydney, Northern Sydney Local Health District, The University of Sydney, Sydney, NSW, Australia
| | - Mark Hoggarth
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | - Jochen Zange
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Kirsty Lindsay
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Dorothée Debuse
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Andrew Winnard
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - David Beard
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Jonathan A. Cook
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Centre for Statistics in Medicine, University of Oxford, Oxford, United Kingdom
| | - Sauro E. Salomoni
- NHMRC Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Tobias Weber
- Space Medicine Team (HRE-OM), European Astronaut Centre, Cologne, Germany
- KBR GmbH, Cologne, Germany
| | - Jonathan Scott
- Space Medicine Team (HRE-OM), European Astronaut Centre, Cologne, Germany
- KBR GmbH, Cologne, Germany
| | - Paul W. Hodges
- NHMRC Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Nick Caplan
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
10
|
Arbeille P, Greaves D, Chaput D, Maillet A, Hughson RL. Index of Reflectivity of Ultrasound Radio Frequency Signal from the Carotid Artery Wall Increases in Astronauts after a 6 mo Spaceflight. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2213-2219. [PMID: 34001406 DOI: 10.1016/j.ultrasmedbio.2021.03.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
The objective was to quantify the index of reflectivity of the common carotid artery and surrounding structures, before and after 6 mo of microgravity. Our hypothesis was that structural changes in the insonated target would increase its index of reflectivity. The neck anterior muscle and common carotid artery (walls and lumen) were visualized by echography (17 MHz linear probe), and the radiofrequency signal along each vertical line was displayed. The limits of the radiofrequency data corresponding to each target (muscle, vessel wall) were determined from the B-mode image and radiofrequency trace. Each target's index of reflectivity was calculated as the proportion of backscattered energy to the whole backscattered energy along the line. After 6 mo in flight, the index of reflectivity increased significantly for both common carotid walls, while it remained unchanged for the neck muscle, carotid intima and lumen. The index of reflectivity provided additional information beyond traditional B-mode imaging.
Collapse
Affiliation(s)
| | - Danielle Greaves
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Ontario, Canada
| | | | - Alain Maillet
- CADMOS-CNES, Toulouse. France; MEDES-IMPS, Toulouse, France
| | - Richard L Hughson
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Ontario, Canada
| |
Collapse
|
11
|
Moosavi D, Wolovsky D, Depompeis A, Uher D, Lennington D, Bodden R, Garber CE. The effects of spaceflight microgravity on the musculoskeletal system of humans and animals, with an emphasis on exercise as a countermeasure: a systematic scoping review. Physiol Res 2021; 70:119-151. [PMID: 33992043 DOI: 10.33549/physiolres.934550] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The purpose of this systematic review is twofold: 1) to identify, evaluate, and synthesize the heretofore disparate scientific literatures regarding the effects of direct exposure to microgravity on the musculoskeletal system, taking into account for the first time both bone and muscle systems of both humans and animals; and 2) to investigate the efficacy and limitations of exercise countermeasures on the musculoskeletal system under microgravity in humans.The Framework for Scoping Studies (Arksey and O'Malley 2005) and the Cochrane Handbook for Systematic Reviews of Interventions (Higgins JPT 2011) were used to guide this review. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist was utilized in obtaining the combined results (Moher, Liberati et al. 2009). Data sources, PubMed, Embase, Scopus, and Web of Science were searched for published articles through October 2019 using the Mesh terms of microgravity, musculoskeletal system, and exercise countermeasures. A total of 84 references were selected, including 40 animal studies and 44 studies with human participants. The heterogeneity in the study designs, methodologies, and outcomes deemed this review unsuitable for a meta-analysis. Thus, we present a narrative synthesis of the results for the key domains under five categories: 1) Skeletal muscle responses to microgravity in humans 2) Skeletal muscle responses to microgravity in animals 3) Adaptation of the skeletal system to microgravity in humans 4) Adaptation of the skeletal system to microgravity in animals 5) Effectiveness of exercise countermeasures on the human musculoskeletal system in microgravity. Existing studies have produced only limited data on the combined effects on bone and muscle of human spaceflight, despite the likelihood that the effects on these two systems are complicated due to the components of the musculoskeletal system being anatomically and functionally interconnected. Bone is directly affected by muscle atrophy as well as by changes in muscle strength, notably at muscle attachments. Given this interplay, the most effective exercise countermeasure is likely to be robust, individualized, resistive exercise, primarily targeting muscle mass and strength.
Collapse
Affiliation(s)
- D Moosavi
- Department of Biobehavioral Sciences, Teachers College, Columbia University. New York City, NY, United States.
| | | | | | | | | | | | | |
Collapse
|
12
|
Scott JPR, Kramer A, Petersen N, Green DA. The Role of Long-Term Head-Down Bed Rest in Understanding Inter-Individual Variation in Response to the Spaceflight Environment: A Perspective Review. Front Physiol 2021; 12:614619. [PMID: 33643065 PMCID: PMC7904881 DOI: 10.3389/fphys.2021.614619] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Exposure to the spaceflight environment results in profound multi-system physiological adaptations in which there appears to be substantial inter-individual variability (IV) between crewmembers. However, performance of countermeasure exercise renders it impossible to separate the effects of the spaceflight environment alone from those associated with exercise, whilst differences in exercise programs, spaceflight operations constraints, and environmental factors further complicate the interpretation of IV. In contrast, long-term head-down bed rest (HDBR) studies isolate (by means of a control group) the effects of mechanical unloading from those associated with countermeasures and control many of the factors that may contribute to IV. In this perspective, we review the available evidence of IV in response to the spaceflight environment and discuss factors that complicate its interpretation. We present individual data from two 60-d HDBR studies that demonstrate that, despite the highly standardized experimental conditions, marked quantitative differences still exist in the response of the cardiorespiratory and musculoskeletal systems between individuals. We also discuss the statistical concept of “true” and “false” individual differences and its potential application to HDBR data. We contend that it is currently not possible to evaluate IV in response to the spaceflight environment and countermeasure exercise. However, with highly standardized experimental conditions and the presence of a control group, HDBR is suitable for the investigation of IV in the physiological responses to gravitational unloading and countermeasures. Such investigations may provide valuable insights into the potential role of IV in adaptations to the spaceflight environment and the effectiveness of current and future countermeasures.
Collapse
Affiliation(s)
- Jonathan P R Scott
- Space Medicine Team, ISS Operations and Astronaut Group, Directorate of Human and Robotic Exploration, European Space Agency, Cologne, Germany.,KBR GmbH, Cologne, Germany
| | - Andreas Kramer
- Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Nora Petersen
- Space Medicine Team, ISS Operations and Astronaut Group, Directorate of Human and Robotic Exploration, European Space Agency, Cologne, Germany.,KBR GmbH, Cologne, Germany
| | - David A Green
- Space Medicine Team, ISS Operations and Astronaut Group, Directorate of Human and Robotic Exploration, European Space Agency, Cologne, Germany.,KBR GmbH, Cologne, Germany.,Centre of Human and Applied Physiology, King's College London, London, United Kingdom
| |
Collapse
|
13
|
Afshinnekoo E, Scott RT, MacKay MJ, Pariset E, Cekanaviciute E, Barker R, Gilroy S, Hassane D, Smith SM, Zwart SR, Nelman-Gonzalez M, Crucian BE, Ponomarev SA, Orlov OI, Shiba D, Muratani M, Yamamoto M, Richards SE, Vaishampayan PA, Meydan C, Foox J, Myrrhe J, Istasse E, Singh N, Venkateswaran K, Keune JA, Ray HE, Basner M, Miller J, Vitaterna MH, Taylor DM, Wallace D, Rubins K, Bailey SM, Grabham P, Costes SV, Mason CE, Beheshti A. Fundamental Biological Features of Spaceflight: Advancing the Field to Enable Deep-Space Exploration. Cell 2020; 183:1162-1184. [PMID: 33242416 PMCID: PMC8441988 DOI: 10.1016/j.cell.2020.10.050] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022]
Abstract
Research on astronaut health and model organisms have revealed six features of spaceflight biology that guide our current understanding of fundamental molecular changes that occur during space travel. The features include oxidative stress, DNA damage, mitochondrial dysregulation, epigenetic changes (including gene regulation), telomere length alterations, and microbiome shifts. Here we review the known hazards of human spaceflight, how spaceflight affects living systems through these six fundamental features, and the associated health risks of space exploration. We also discuss the essential issues related to the health and safety of astronauts involved in future missions, especially planned long-duration and Martian missions.
Collapse
Affiliation(s)
- Ebrahim Afshinnekoo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ryan T Scott
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Matthew J MacKay
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Eloise Pariset
- Universities Space Research Association (USRA), Mountain View, CA 94043, USA; Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Egle Cekanaviciute
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Richard Barker
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | | | - Scott M Smith
- Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Sara R Zwart
- Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mayra Nelman-Gonzalez
- KBR, Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Brian E Crucian
- Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Sergey A Ponomarev
- Institute for the Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Oleg I Orlov
- Institute for the Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Dai Shiba
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki 305-8505, Japan
| | - Masafumi Muratani
- Transborder Medical Research Center, and Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan; Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
| | - Stephanie E Richards
- Bionetics, NASA Kennedy Space Center, Kennedy Space Center, Merritt Island, FL 32899, USA
| | - Parag A Vaishampayan
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jonathan Foox
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jacqueline Myrrhe
- European Space Agency, Research and Payloads Group, Data Exploitation and Utilisation Strategy Office, 2200 AG Noordwijk, the Netherlands
| | - Eric Istasse
- European Space Agency, Research and Payloads Group, Data Exploitation and Utilisation Strategy Office, 2200 AG Noordwijk, the Netherlands
| | - Nitin Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Jessica A Keune
- Space Medicine Operations Division, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Hami E Ray
- ASRC Federal Space and Defense, Inc., Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Mathias Basner
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jack Miller
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Martha Hotz Vitaterna
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL 60208, USA; Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Deanne M Taylor
- Department of Biomedical Informatics, The Children's Hospital of Philadelphia, PA 19104, USA; Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathleen Rubins
- Astronaut Office, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Susan M Bailey
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Peter Grabham
- Center for Radiological Research, Department of Oncology, College of Physicians and Surgeons, Columbia University, New York, NY 10027, USA.
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA.
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA; The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY 10021, USA.
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|