1
|
Medvedev RY, Afolabi SO, Turner DGP, Glukhov AV. Mechanisms of stretch-induced electro-anatomical remodeling and atrial arrhythmogenesis. J Mol Cell Cardiol 2024; 193:11-24. [PMID: 38797242 PMCID: PMC11260238 DOI: 10.1016/j.yjmcc.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Atrial fibrillation (AF) is the most common cardiac rhythm disorder, often occurring in the setting of atrial distension and elevated myocardialstretch. While various mechano-electrochemical signal transduction pathways have been linked to AF development and progression, the underlying molecular mechanisms remain poorly understood, hampering AF therapies. In this review, we describe different aspects of stretch-induced electro-anatomical remodeling as seen in animal models and in patients with AF. Specifically, we focus on cellular and molecular mechanisms that are responsible for mechano-electrochemical signal transduction and the development of ectopic beats triggering AF from pulmonary veins, the most common source of paroxysmal AF. Furthermore, we describe structural changes caused by stretch occurring before and shortly after the onset of AF as well as during AF progression, contributing to longstanding forms of AF. We also propose mechanical stretch as a new dimension to the concept "AF begets AF", in addition to underlying diseases. Finally, we discuss the mechanisms of these electro-anatomical alterations in a search for potential therapeutic strategies and the development of novel antiarrhythmic drugs targeted at the components of mechano-electrochemical signal transduction not only in cardiac myocytes, but also in cardiac non-myocyte cells.
Collapse
Affiliation(s)
- Roman Y Medvedev
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Saheed O Afolabi
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; Department of Pharmacology and Therapeutics, University of Ilorin, Ilorin, Nigeria
| | - Daniel G P Turner
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Alexey V Glukhov
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
2
|
Egorov YV. Atypical Antiadrenergic Effect of Refralon as a Mechanism of High Antiarrhythmic Effectiveness. Bull Exp Biol Med 2024; 177:57-62. [PMID: 38954299 DOI: 10.1007/s10517-024-06131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Indexed: 07/04/2024]
Abstract
We studied the effect of Refralon on the electrophysiological properties of the supraventricular myocardium against the background of adrenergic (epinephrine) influence in the zone of the pulmonary veins, the area where 50-90% of atrial arrhythmias is triggered. The experiments were carried out on isolated tissue preparations of Wistar rats. The multichannel microelectrode array technique was used to record action potentials simultaneously in the atrium and in the ostium and distal parts of the pulmonary veins. Epinephrine application (12-50 nM) led to depolarization of the resting potential and the conduction block in the distal part of the pulmonary veins. Refralon (30 μg/kg) restored the resting potential in the distal part of the pulmonary veins. Against the background of epinephrine, Refralon did not significantly change the duration of the action potential at 90% repolarization in comparison with control. At the same time, the comparison drug E-4031 against the background of epinephrine significantly increased the duration of action potential in the atrium and in the ostium of the pulmonary veins, and sotalol increased it only in the ostium. Neither E-4031, nor sotalol restored conduction in their distal part. Refralon has a biphasic effect under conditions of adrenergic stimulation: the fast component is responsible for stabilizing the resting potential in the pulmonary vein and reduces the dispersion of action potential duration in the atrium and pulmonary vein and is also quickly washed away, and the slow component is responsible for the increase of the action potential duration and is slowly washed away.
Collapse
Affiliation(s)
- Y V Egorov
- National Medical Research Centre of Cardiology named after academician E. I. Chazov, Moscow, Russia.
| |
Collapse
|
3
|
Egorov YV, Filatova TS, Abramov AA, Kuzmin VS. Suprastin (Chloropyramine) Causes Proarrhythmic Deterioration of Excitation Conduction, Depolarization and Potentiates Adrenergic Automaticity in the Pulmonary Veins Myocardium. Bull Exp Biol Med 2024; 176:761-766. [PMID: 38896318 DOI: 10.1007/s10517-024-06104-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Indexed: 06/21/2024]
Abstract
A number of pharmacological drugs have side effects that contribute to the occurrence of atrial fibrillation, the most common type of cardiac rhythm disorders. The clinical use of antihistamines is widespread; however, information regarding their anti- and/or proarrhythmic effects is contradictory. In this work, we studied the effects and mechanisms of the potential proarrhythmic action of the first-generation antihistamine chloropyramine (Suprastin) in the atrial myocardium and pulmonary vein (PV) myocardial tissue. In PV, chloropyramine caused depolarization of the resting potential and led to reduction of excitation wave conduction. These effects are likely due to suppression of the inward rectifier potassium current (IK1). In presence of epinephrine, chloropyramine induced spontaneous automaticity in the PV and could not be suppressed by atrial pacing. Chloropyramine change functional characteristics of PV and contribute to occurrence of atrial fibrillation. It should be noted that chloropyramine does not provoke atrial tachyarrhythmias, but create conditions for their occurrence during physical exercise and sympathetic stimulation.
Collapse
Affiliation(s)
- Yu V Egorov
- E. I. Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - T S Filatova
- E. I. Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A A Abramov
- E. I. Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V S Kuzmin
- E. I. Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
4
|
Joglar JA, Chung MK, Armbruster AL, Benjamin EJ, Chyou JY, Cronin EM, Deswal A, Eckhardt LL, Goldberger ZD, Gopinathannair R, Gorenek B, Hess PL, Hlatky M, Hogan G, Ibeh C, Indik JH, Kido K, Kusumoto F, Link MS, Linta KT, Marcus GM, McCarthy PM, Patel N, Patton KK, Perez MV, Piccini JP, Russo AM, Sanders P, Streur MM, Thomas KL, Times S, Tisdale JE, Valente AM, Van Wagoner DR. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2024; 149:e1-e156. [PMID: 38033089 PMCID: PMC11095842 DOI: 10.1161/cir.0000000000001193] [Citation(s) in RCA: 721] [Impact Index Per Article: 721.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
AIM The "2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation" provides recommendations to guide clinicians in the treatment of patients with atrial fibrillation. METHODS A comprehensive literature search was conducted from May 12, 2022, to November 3, 2022, encompassing studies, reviews, and other evidence conducted on human subjects that were published in English from PubMed, EMBASE, the Cochrane Library, the Agency for Healthcare Research and Quality, and other selected databases relevant to this guideline. Additional relevant studies, published through November 2022, during the guideline writing process, were also considered by the writing committee and added to the evidence tables, where appropriate. STRUCTURE Atrial fibrillation is the most sustained common arrhythmia, and its incidence and prevalence are increasing in the United States and globally. Recommendations from the "2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation" and the "2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation" have been updated with new evidence to guide clinicians. In addition, new recommendations addressing atrial fibrillation and thromboembolic risk assessment, anticoagulation, left atrial appendage occlusion, atrial fibrillation catheter or surgical ablation, and risk factor modification and atrial fibrillation prevention have been developed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anita Deswal
- ACC/AHA Joint Committee on Clinical Practice Guidelines liaison
| | | | | | | | | | - Paul L Hess
- ACC/AHA Joint Committee on Performance Measures liaison
| | | | | | | | | | - Kazuhiko Kido
- American College of Clinical Pharmacy representative
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Joglar JA, Chung MK, Armbruster AL, Benjamin EJ, Chyou JY, Cronin EM, Deswal A, Eckhardt LL, Goldberger ZD, Gopinathannair R, Gorenek B, Hess PL, Hlatky M, Hogan G, Ibeh C, Indik JH, Kido K, Kusumoto F, Link MS, Linta KT, Marcus GM, McCarthy PM, Patel N, Patton KK, Perez MV, Piccini JP, Russo AM, Sanders P, Streur MM, Thomas KL, Times S, Tisdale JE, Valente AM, Van Wagoner DR. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol 2024; 83:109-279. [PMID: 38043043 PMCID: PMC11104284 DOI: 10.1016/j.jacc.2023.08.017] [Citation(s) in RCA: 223] [Impact Index Per Article: 223.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
AIM The "2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Patients With Atrial Fibrillation" provides recommendations to guide clinicians in the treatment of patients with atrial fibrillation. METHODS A comprehensive literature search was conducted from May 12, 2022, to November 3, 2022, encompassing studies, reviews, and other evidence conducted on human subjects that were published in English from PubMed, EMBASE, the Cochrane Library, the Agency for Healthcare Research and Quality, and other selected databases relevant to this guideline. Additional relevant studies, published through November 2022, during the guideline writing process, were also considered by the writing committee and added to the evidence tables, where appropriate. STRUCTURE Atrial fibrillation is the most sustained common arrhythmia, and its incidence and prevalence are increasing in the United States and globally. Recommendations from the "2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation" and the "2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation" have been updated with new evidence to guide clinicians. In addition, new recommendations addressing atrial fibrillation and thromboembolic risk assessment, anticoagulation, left atrial appendage occlusion, atrial fibrillation catheter or surgical ablation, and risk factor modification and atrial fibrillation prevention have been developed.
Collapse
|
6
|
Findlay I, Pasqualin C, Yu A, Maupoil V, Bredeloux P. Selective Inhibition of Pulmonary Vein Excitability by Constitutively Active GIRK Channels Blockade in Rats. Int J Mol Sci 2023; 24:13629. [PMID: 37686437 PMCID: PMC10487709 DOI: 10.3390/ijms241713629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Pulmonary veins (PV) are the main source of ectopy, triggering atrial fibrillation. This study investigated the roles of G protein-coupled inwardly rectifying potassium (GIRK) channels in the PV and the left atrium (LA) of the rat. Simultaneous intracellular microelectrode recording from the LA and the PV of the rat found that in the presence or absence of acetylcholine, the GIRK channel blocker tertiapin-Q induced AP duration elongation in the LA and the loss of over-shooting AP in the PV, suggesting the presence of constitutively active GIRK channels in these tissues. Patch-clamp recordings from isolated myocytes showed that tertiapin-Q inhibited a basal inwardly rectified background current in PV cells with little effect in LA cells. Experiments with ROMK1 and KCa1.1 channel blockers ruled out the possibility of an off-target effect. Western blot showed that GIRK4 subunit expression was greater in PV cardiomyocytes, which may explain the differences observed between PV and LA in response to tertiapin-Q. In conclusion, GIRK channels blockade abolishes AP only in the PV, providing a molecular target to induce electrical disconnection of the PV from the LA.
Collapse
Affiliation(s)
- Ian Findlay
- Laboratoire de Pharmacologie, Faculté de Pharmacie, Université de Tours, 37200 Tours, France;
| | - Côme Pasqualin
- EA4245, Transplantation, Immunologie et Inflammation, Université de Tours, 37200 Tours, France; (C.P.); (A.Y.); (V.M.)
| | - Angèle Yu
- EA4245, Transplantation, Immunologie et Inflammation, Université de Tours, 37200 Tours, France; (C.P.); (A.Y.); (V.M.)
| | - Véronique Maupoil
- EA4245, Transplantation, Immunologie et Inflammation, Université de Tours, 37200 Tours, France; (C.P.); (A.Y.); (V.M.)
| | - Pierre Bredeloux
- EA4245, Transplantation, Immunologie et Inflammation, Université de Tours, 37200 Tours, France; (C.P.); (A.Y.); (V.M.)
| |
Collapse
|
7
|
Telle Å, Bargellini C, Chahine Y, del Álamo JC, Akoum N, Boyle PM. Personalized biomechanical insights in atrial fibrillation: opportunities & challenges. Expert Rev Cardiovasc Ther 2023; 21:817-837. [PMID: 37878350 PMCID: PMC10841537 DOI: 10.1080/14779072.2023.2273896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/18/2023] [Indexed: 10/26/2023]
Abstract
INTRODUCTION Atrial fibrillation (AF) is an increasingly prevalent and significant worldwide health problem. Manifested as an irregular atrial electrophysiological activation, it is associated with many serious health complications. AF affects the biomechanical function of the heart as contraction follows the electrical activation, subsequently leading to reduced blood flow. The underlying mechanisms behind AF are not fully understood, but it is known that AF is highly correlated with the presence of atrial fibrosis, and with a manifold increase in risk of stroke. AREAS COVERED In this review, we focus on biomechanical aspects in atrial fibrillation, current and emerging use of clinical images, and personalized computational models. We also discuss how these can be used to provide patient-specific care. EXPERT OPINION Understanding the connection betweenatrial fibrillation and atrial remodeling might lead to valuable understanding of stroke and heart failure pathophysiology. Established and emerging imaging modalities can bring us closer to this understanding, especially with continued advancements in processing accuracy, reproducibility, and clinical relevance of the associated technologies. Computational models of cardiac electromechanics can be used to glean additional insights on the roles of AF and remodeling in heart function.
Collapse
Affiliation(s)
- Åshild Telle
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Clarissa Bargellini
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Yaacoub Chahine
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Juan C. del Álamo
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Division of Cardiology, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | - Nazem Akoum
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Patrick M Boyle
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
Automatic Activity Arising in Cardiac Muscle Sleeves of the Pulmonary Vein. Biomolecules 2021; 12:biom12010023. [PMID: 35053171 PMCID: PMC8773798 DOI: 10.3390/biom12010023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
Ectopic activity in the pulmonary vein cardiac muscle sleeves can both induce and maintain human atrial fibrillation. A central issue in any study of the pulmonary veins is their difference from the left atrial cardiac muscle. Here, we attempt to summarize the physiological phenomena underlying the occurrence of ectopic electrical activity in animal pulmonary veins. We emphasize that the activation of multiple signaling pathways influencing not only myocyte electrophysiology but also the means of excitation–contraction coupling may be required for the initiation of triggered or automatic activity. We also gather information regarding not only the large-scale structure of cardiac muscle sleeves but also recent studies suggesting that cellular heterogeneity may contribute to the generation of arrythmogenic phenomena and to the distinction between pulmonary vein and left atrial heart muscle.
Collapse
|